At each point/function f0 for all functions $u$, $\nabla F$ should satisfy
$$\langle \langle \nabla F (f_0), u \rangle \rangle = D_u F = \lim_{\epsilon \to 0} \frac{F(f_0 + \epsilon u) - F(f_0)}{\epsilon}$$
$$= \lim_{\epsilon \to 0} \frac{\langle \langle f_0 + \epsilon u, g \rangle \rangle - \langle \langle f_0 , g \rangle \rangle}{\epsilon} $$
$$= \lim_{\epsilon \to 0} \frac{\langle \langle \epsilon u, g \rangle \rangle}{\epsilon} $$
$$ = \lim_{\epsilon \to 0} \langle \langle u, g \rangle \rangle$$
$$= \langle \langle u, g \rangle \rangle$$
The only solution to this $\langle \langle \nabla F (f_0), u \rangle \rangle = \langle \langle u, g \rangle \rangle$ for all $u$ is to let
$$\nabla F(f_0) = g$$
At each point/function f0 for all functions $u$, $\nabla F$ should satisfy
$$\langle \langle \nabla F (f_0), u \rangle \rangle = D_u F = \lim_{\epsilon \to 0} \frac{F(f_0 + \epsilon u) - F(f_0)}{\epsilon}$$
$$= \lim_{\epsilon \to 0} \frac{\langle \langle f_0 + \epsilon u, g \rangle \rangle - \langle \langle f_0 , g \rangle \rangle}{\epsilon} $$
$$= \lim_{\epsilon \to 0} \frac{\langle \langle \epsilon u, g \rangle \rangle}{\epsilon} $$
$$ = \lim_{\epsilon \to 0} \langle \langle u, g \rangle \rangle$$
$$= \langle \langle u, g \rangle \rangle$$
The only solution to this $\langle \langle \nabla F (f_0), u \rangle \rangle = \langle \langle u, g \rangle \rangle$ for all $u$ is to let
$$\nabla F(f_0) = g$$