
C++: A Programmer’s Perspective

15-362/662 | Computer Graphics Lecture 02.5 | C++

15-362/662 | Computer Graphics Lecture 02.5 | C++

• Introduction To C++

• C++ Concepts

• Closing Message

15-362/662 | Computer Graphics

C++

• C++ was developed by Bell Labs in

1979 as an extension of the C language

• Goal was to add object-oriented
programming into the C language

• Still wanted to maintain low-level

functionality of C

• Called “C with Classes”

• Changed to C++ in 1983

• Every few years a new C++ standard
comes out

• C++11
• C++14
• C++17

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Why C++ For Graphics

• “I want a fast language, not a safe

language” -- max slater

• Computer graphics requires quick

access of large data

• Pixel buffers

• Geometry buffers

• Textures

• Offscreen buffers

• C++ is very efficient at handling

large data

• Many graphics APIs already exist in, or

work closely with C++

• OpenGL

• Vulkan

• Direct3D

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Why C++ For Graphics

• "C makes it easy to shoot yourself in the

foot; C++ makes it harder, but when you

do it blows your whole leg off” -- Bjarne

Stroustrup (1986) creator of C++

• You are responsible for dealing with

your own memory

• Some safety features in C++, but

since we’re working with large

amounts of memory, easy run out of

application memory

• With a lot of memory, easy to end up in

the wrong place/index

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Why C++ For Graphics

• For many, this will be your first time

using C++

• This course is designed to teach

you BOTH graphics and C++

• C++ is ubiquitous in graphics

academics, research, and industry

• Having a working knowledge of C++

is essential if continuing graphics

• Another language you can add to your

resume :) WALL-E (2008) Pixar

Lecture 02.5 | C++

15-362/662 | Computer Graphics

• Introduction To C++

• C++ Concepts

• Closing Message

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Classes

class A {

public:

 int x;

private:

 int y;

protected:

 int z:

};

class B: public A {

 void test1() {

 // works: B has access to public and protected

 return x + z;

 }

 void test2() {

 // fails: B doesn't have access to private

 return y;

 }

}

• Classes in C++ are defined with a

class name and function/variable

definitions

• public: values are accessible

outside the class

• private: values are not accessible

outside classes and can only be

accessed inside class functions

• protected: values are private

except to other classes that are

derived from the class

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Classes

class A {

public:

 int x;

private:

 int y;

 // specify B is a friend class of A

 friend class B

protected:

 int z:

};

class B: public A {

 void test1() {

 // works: B has access to public and protected

 return x + z;

 }

 void test2() {

 // works: B is a friend class and

 // can access private A values

 return y;

 }

}

• test1() can execute because

public and protected values of the

base class A are visible to the

derived class B

• test2() fails because a derived

class does not have access to

private values of a base class.

• To fix this, we can declare B as

a friend class of A

• Classes trust friends with their

private values!

Lecture 02.5 | C++

15-362/662 | Computer Graphics

class Vertex {

public:

 HalfedgeRef& halfedge() {return _halfedge;}

 HalfedgeCRef halfedge() const {return _halfedge;}

 bool on_boundary() const;

 unsigned int degree() const;

 Vec3 normal() const;

 Vec3 center() const;

 Vec3 neighborhood_center() const;

 unsigned int id() const {return _id;}

 Vec3 pos;

private:

 Vertex(unsigned int id) : _id(id) {}

 Vec3 new_pos;

 bool is_new = false;

 unsigned int _id = 0;

 HalfedgeRef _halfedge;

 friend class Halfedge_Mesh;

};

• In Scotty3D, the Vertex constructor is

a private field

• We do not want just anyone
creating Vertex objects

• We declare the constructor as
private and give only certain classes

access to create Vertex objects using

the friend class specifier

Lecture 02.5 | C++

Classes

15-362/662 | Computer Graphics

Classes

class Vertex {

public:

 HalfedgeRef& halfedge() {return _halfedge;}

 HalfedgeCRef halfedge() const {return _halfedge;}

 bool on_boundary() const;

 unsigned int degree() const;

 Vec3 normal() const;

 Vec3 center() const;

 Vec3 neighborhood_center() const;

 unsigned int id() const {return _id;}

 Vec3 pos;

private:

 Vertex(unsigned int id) : _id(id) {}

 Vec3 new_pos;

 bool is_new = false;

 unsigned int _id = 0;

 HalfedgeRef _halfedge;

 friend class Halfedge_Mesh;

};

Vertex *c = vertexList[i];

// works: public variable

c->pos = Vec3(1.f,0.f,0.f);

// fails: private variable

c->new_pos = Vec3(1.f,0.f,0.f);

• Some features we can edit directly

without using a class function, but
other features are private and

cannot be edited

• How do we edit new_pos ?

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Classes

class Vertex {

...

private:

 ...

 // we give Halfedge_Mesh access to private values

 friend class Halfedge_Mesh;

};

class Halfedge_Mesh {

public:

 // access to public & private values in Vertex class

 class Vertex;

 class Edge;

 class Face;

 class Halfedge;

 std::optional<FaceRef> bevel_vertex(VertexRef v);

 std::optional<FaceRef> bevel_edge(EdgeRef e);

 std::optional<FaceRef> bevel_face(FaceRef f);

}

• Classes can inherit attributes from

other classes, gaining access to

public and private values in those

classes

• The Halfedge_Mesh class is built

using Vertex, Edge, Face,

and Halfedge components

• We can declare Halfedge_Mesh

as a friend class in the Vertex

class

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Classes

class Vertex {

...

private:

 ...

 // we give Halfedge_Mesh access to private values

 friend class Halfedge_Mesh;

};

class Halfedge_Mesh {

public:

 // access to public & private values in Vertex class

 class Vertex;

 class Edge;

 class Face;

 class Halfedge;

 std::optional<FaceRef> bevel_vertex(VertexRef v);

 std::optional<FaceRef> bevel_edge(EdgeRef e);

 std::optional<FaceRef> bevel_face(FaceRef f);

}

auto halfedge_Mesh::bevel(VertexRef v) {

 // works: public variable

 v->pos = Vec3(1.f,0.f,0.f);

 // works: Halfedge_Mesh is friend

 v->new_pos = Vec3(1.f,0.f,0.f);

}

• Now in our Halfedge_Mesh class, we

can write functions that access these
private values from the Vertex class

• We chose to make variables in
classes private in order to ensure

classes that we don't want modifying

these variables will never have access

to it

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Templates

class Cache {

public:

 Cache(int N) {

 data = calloc(N, sizeof(datatype));

 freq = calloc(N, sizeof(int));

 size = N;

 }

 datatype get(int idx) {

 freq[idx]++;

 return data[idx];

 }

private:

 datatype *data;

 int *freq;

 int size;

}

• Templates help define a generic
datatype that you can use to write

versatile code without explicitly

defining the interface for each type

• Your compiler writes the template

code only if it is called, otherwise

the compiler avoids it

• Think of it as getting the compiler

to write the code for you

• Say we'd like to create a new set of

classes that will track query usage per

element to help for analytics. We can
call this class our cache

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Templates

class CacheInt {

public:

 CacheInt(int N) {

 data = calloc(N, sizeof(int));

 freq = calloc(N, sizeof(int));

 size = N;

 }

 int get(int idx) {

 freq[idx]++;

 return data[idx];

 }

private:

 int *data;

 int *freq;

 int size;

}

• Here is our class for ints

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Templates

class CacheFloat {

public:

 CacheFloat (int N) {

 data = calloc(N, sizeof(float));

 freq = calloc(N, sizeof(float));

 size = N;

 }

 float get(int idx) {

 freq[idx]++;

 return data[idx];

 }

private:

 float *data;

 int *freq;

 int size;

}

• Here is our class for floats

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Templates

class CacheDouble {

public:

 CacheDouble (int N) {

 data = calloc(N, sizeof(double));

 freq = calloc(N, sizeof(double));

 size = N;

 }

 double get(int idx) {

 freq[idx]++;

 return data[idx];

 }

private:

 double *data;

 int *freq;

 int size;

}

• Here is our class for doubles

• This is getting to be a lot of code…

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Templates

Template<typename T>

class Cache {

public:

 Cache(int N) {

 data = calloc(N, sizeof(T));

 freq = calloc(N, sizeof(int));

 size = N;

 }

 T get(int idx) {

 freq[idx]++;

 return data[idx];

 }

private:

 T *data;

 int *freq;

 int size;

}

• We can use Template<typename T>

to create a generic datatype and bind

it on compile time

• Then we can create instances of int,

float and double caches easily

// creates int class

Cache<int> a = Cache<int>(10);

// creates float class

Cache<float> b = Cache<float>(10);

// creates double class

Cache<double> c = Cache<double>(10);

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Templates

Template<typename T>

class Cache {

public:

 Cache(int N) {

 data = calloc(N, sizeof(T));

 freq = calloc(N, sizeof(int));

 size = N;

 }

 T get(int idx) {

 freq[idx]++;

 return data[idx];

 }

private:

 T *data;

 int *freq;

 int size;

}

• Every time we create a new template
datatype for the Cache class, it makes a copy

of the string defining the class and swaps out
every instance of the typename T before

inserting it into the file and compiling it

• If we never make a call to Cache with type T,

then the template is ignored and we never

compile it

• Yet another optimization on the

compiler's part!

// creates int class

Cache<int> a = Cache<int>(10);

// creates float class

Cache<float> b = Cache<float>(10);

// double class never created!

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Templates

Template<typename T>

class Spline {

public:

 T at(float time) const;

 void set(float time, T value) { control_points[time] = value; }

 void erase(float time) { control_points.erase(time); }

 bool has(float t) const { return control_points.count(t); }

 bool any() const { return !control_points.empty(); }

 void clear() { control_points.clear(); }

private:

 // records keyframe values at specific times

 std::map<float, T> control_points;

};

• We use templates a lot in Scotty3D, and you'll even work to implement some template classes

in the Animation unit. For example:

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Templates
Spline<int> S;

S.add(0.f, 0);

S.add(1.f, 61848);

// prints 15462

printf("%d\n", S.at(0.25))

• The program will copy the below string of code,
replacing typename T with int, making a strong-

typed class interface for the type int

Template<typename T>

class Spline {

public:

 T at(float time) const;

 void set(float time, T value) { control_points[time] = value; }

 void erase(float time) { control_points.erase(time); }

 bool has(float t) const { return control_points.count(t); }

 bool any() const { return !control_points.empty(); }

 void clear() { control_points.clear(); }

private:

 // records keyframe values at specific times

 std::map<float, T> control_points;

};

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Templates

• Many other library classes and data structures

also use templates to exploit generic types.

C++ classes like the ones below use templates

to avoid redundant coding:

std::map<T1, T2> A; // list of key-value pairs

std::unordered_map<T1, T2> B; // unordered list of key-value pairs

std::set<T> C; // list without duplicates

std::unordered_set<T> D; // unordered list without duplicates

std::list<T> E; // dumb list

std::vector<T> F; // fancy list

std::deque<T> G; // list with multi-side insertion/deletion

std::pair<T1, T2> H; // two-element list

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Iterators

class HalfedgeMesh {

public:

 list<Vertex> vertices;

 ...

 typedef list<Vertex>::iterator VertexIter;

 ...

 VertexIter verticesBegin() { return vertices.begin(); }

 VertexIter verticesEnd() { return vertices.end(); }

 ...

};

• Iterators allow you to iterate

through ordered and unordered
structs (like sets and unordered

maps) using the ::iterator

attribute

• We can see that mesh.vertices

holds a list of Vertex objects.

vertices.begin() returns the first

iterator in our list, and we

increment that until we reach the
last iterator vertices.end() (non-

inclusive)

• We typedef
list<Vertex>::iterator as

VertexIter for easy notation

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Iterators

class HalfedgeMesh {

public:

 list<Vertex> vertices;

 ...

 typedef list<Vertex>::iterator VertexIter;

 ...

 VertexIter verticesBegin() { return vertices.begin(); }

 VertexIter verticesEnd() { return vertices.end(); }

 ...

};

• Our normal approach in C would

be to determine the number of

vertices in the list and use a for

loop with indexing to query for

each vertex and update its

properties

• We can instead use iterators

in our for-loop to simplify the

code and speed up the

process

HalfedgeMesh& mesh;

// iterate over list<Vertex> elements

for(VertexIter v = mesh.verticesBegin(); v != mesh.verticesEnd(); v++) {

 v->position = v->newPosition;

}

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Iterators

An easy way to think about iterators are as pointers. We can

iterate through our vector of ints and dereference the iterator we

are on to get the value it points to. By incrementing our iterator,
we are jumping sizeof(datatype) bytes in memory to get a

pointer to the next value

vector<int> a = { 1, 5, 4, 6, 2 };

printf("I love ");

for(vector<int>::iterator ptr = a.begin(); ptr != a.end(); ptr++) {

 printf("%d", *ptr);

}

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Auto

Sometimes (especially in graphics) datatypes in C++ can be

very long. A good programmer will recognize when a datatype

should be obvious and instead will alias the original datatype
using the auto keyword. Consider the following example:

const std::vector<Mesh::Index>& Mesh::indices() const {

 return _idxs;

}

// long, annoying, hard to type

Mesh& mesh;

const std::vector<Mesh::Index>& idx = mesh.indices();

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Auto

const std::vector<Mesh::Index>& Mesh::indices() const {

 return _idxs;

}

// long, annoying, hard to type

Mesh& mesh;

const std::vector<Mesh::Index>& idx = mesh.indices();

// easy, breezy, beautiful

Mesh& mesh;

const auto& idx = mesh.indices();

Lecture 02.5 | C++

Sometimes (especially in graphics) datatypes in C++ can be

very long. A good programmer will recognize when a dataype

should be obvious and instead will alias the original datatype
using the auto keyword. Consider the following example:

15-362/662 | Computer Graphics

Const

unsigned int Halfedge_Mesh::Face::degree() const {

 unsigned int d = 0;

 HalfedgeCRef h = _halfedge;

 do {

 d++;

 h = h->next();

 } while (h != _halfedge);

 return d;

}

• const prevents us from modifying the

state of an object or variable.
• Declaring a variable as const means

we cannot update it

• Declaring a member function as
const means we cannot modify any of

the properties of the class

• This helps optimize our code (telling the

compiler that we don't need write access

to the variable) and also helps create safer

code by ensuring class variables won't be

overwritten

• The following function starts by reading the
_halfedge of the Face class and iterates

through each halfedge to get the degree of

the face. During the process we only read

from but do not write to any class values

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Const

unsigned int Halfedge_Mesh::Face::degree() const {

 unsigned int d = 0;

 HalfedgeCRef h = _halfedge;

 do {

 d++;

 h = h->next();

 } while (h != _halfedge);

 return d;

}

• But wait! what’s HalfedgeCRef??

• It's a const_iterator! But wait! how are

we able to update h if it's a

const_iterator?

• Let's look at a quick example

using HalfedgeCRef = list<Halfedge>::const_iterator;

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Const

int valA = 15462;

int valB = 15418;

int *a = &valA; // normal int pointer

a = &valB; // success! we can modify what a points too

*a = 15213; // success! we can modify the value at the address a points to

const int *b = &valA; // pointer to const int

b = &valB; // success! we can modify what b points too

*b = 15213; // fails: can't change value of const int

int const *c = &valA; // const pointer to int

c = &valB; // fails: can't change pointer

*c = 15213; // success! we can modify the value at the address c points to

const int const *d = &valA; // const pointer to a const int

d = &valB; // fails: can't change pointer

*d = 15213; // fails: can't change value of const int

• We normally define an int pointer as int* and can put the const symbol before the int datatype

(const int *ptr) or after it (int const *ptr). Yet these lead to different behaviors as seen above

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Const

unsigned int Halfedge_Mesh::Face::degree() const {

 unsigned int d = 0;

 HalfedgeCRef h = _halfedge;

 do {

 d++;

 h = h->next();

 } while (h != _halfedge);

 return d;

}

• Where we place the const keyword

matters as to whether we can change the

address of the pointer or the value at the

location of the pointer.

• With HalfedgeCRef, since it is a

const_iterator, that means that it is an

iterator to a const value in the list. Thus,
we can change the address that h points

to, and we never end up changing the

actual values in the halfedge list

• Prevents us from accidentally

changing values in the halfedge lists,

giving us read-only access to the data

in order to compute the degree of the

face via halfedge traversal

using HalfedgeCRef = list<Halfedge>::const_iterator;

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Static

struct Mat4 {

 static const Mat4 I;

 static const Mat4 Zero;

 static Mat4 transpose(const Mat4& m);

 static Mat4 inverse(const Mat4& m);

 static Mat4 translate(Vec3 t);

 static Mat4 rotate(float t, Vec3 axis);

 static Mat4 euler(Vec3 angles);

 static Mat4 rotate_to(Vec3 dir);

 static Mat4 rotate_z_to(Vec3 dir);

 static Mat4 scale(Vec3 s);

 static Mat4 axes(Vec3 x, Vec3 y, Vec3 z);

 ...

}

• The static keyword can be used in

different contexts to mean different things.
In general, we use static to help define

that a resource is shared/accessible in a

larger scope than it actually is

• Inside of a class, we can define both
functions and variables as static

• For static functions, we can call them

without creating an instance of the class by

reference the Mat4:: class-name before

calling the class function.

Vec3 t = Vec3(1.f,2.f,3.f);

// calling a Mat4 static function

// without using an instance to call it

Mat4 m = Mat4::axes(t,t,t);

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Static

const inline Mat4 Mat4::I = Mat4{Vec4{1.0f, 0.0f, 0.0f, 0.0f},

 Vec4{0.0f, 1.0f, 0.0f, 0.0f},

 Vec4{0.0f, 0.0f, 1.0f, 0.0f},

 Vec4{0.0f, 0.0f, 0.0f, 1.0f}};

const inline Mat4 Mat4::Zero = Mat4{Vec4{0.0f, 0.0f, 0.0f, 0.0f},

 Vec4{0.0f, 0.0f, 0.0f, 0.0f},

 Vec4{0.0f, 0.0f, 0.0f, 0.0f},

 Vec4{0.0f, 0.0f, 0.0f, 0.0f}};

• static variables are shared among all copies of object instances. In

this case, regardless of how many Mat4 objects we create, they will

always share the same I (identity) and Zero (zero matrix) values

• A program can also define the static variables and call functions without
ever needing to create an instance. It does so by defining I and Zero

as globally accessible parameters under the Mat4 struct namespace

• Once we define a static value, we cannot redefine it, thus making it

constant

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Static

------------ main.cpp ------------

#include "library.h"

int numCores = 8;

------------ library.h ------------

int numCores = 1;

• Another instance of static variables (although not as commonly

used) is declaring static global variables. The effect of this is to

limit the scope of the variable to the current file only

• Your compiler will give you a warning when linking library.h that

numCores has been redefined. To resolve this issue, we can use

the static keyword to bind the variables to a file-only scope

------------ main.cpp ------------

#include "library.h"

int numCores = 8;

------------ library.h ------------

static int numCores = 1;

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Namespace

• Namespace helps us encapsulate data

and types into a group for easier

referencing. It can also help us avoid

conflicts if we have variables and

functions of the same name.

• In Scotty3D we use namespace to

group together different pieces of the

graphics pipeline.

• For example, one namespace
you will be seeing a lot in A3 is PT

(PathTracer).

namespace PT {

 class Tri_Mesh {

 public:

 Tri_Mesh() = default;

 Tri_Mesh(const GL::Mesh& mesh);

 BBox bbox() const;

 Trace hit(const Ray& ray) const;

 ...

 void build(const GL::Mesh& mesh);

 private:

 std::vector<Tri_Mesh_Vert> verts;

 BVH<Triangle> triangles;

 };

}

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Namespace

• Here, we've enclosed the Tri_Mesh

class in the namespace PT

• If we'd like to reference an instance of

this class, we can do so using the
PT:: format

namespace PT {

 class Tri_Mesh {

 public:

 Tri_Mesh() = default;

 Tri_Mesh(const GL::Mesh& mesh);

 BBox bbox() const;

 Trace hit(const Ray& ray) const;

 ...

 void build(const GL::Mesh& mesh);

 private:

 std::vector<Tri_Mesh_Vert> verts;

 BVH<Triangle> triangles;

 };

}

class Rig {

...

private:

 ...

 // Tri_Mesh defined in PT namespace

 PT::Tri_Mesh mesh_bvh;

};

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Namespace

• We can also un-enclose namespaces

if the name is too long and/or we

know we will be using objects from

that namespace a lot in a given file

• This can be done with the using

keyword

namespace PT {

 class Tri_Mesh {

 public:

 Tri_Mesh() = default;

 Tri_Mesh(const GL::Mesh& mesh);

 BBox bbox() const;

 Trace hit(const Ray& ray) const;

 ...

 void build(const GL::Mesh& mesh);

 private:

 std::vector<Tri_Mesh_Vert> verts;

 BVH<Triangle> triangles;

 };

}

using namespace PT;

class Rig {

...

private:

 ...

 // access Tri_Mesh without PT

 Tri_Mesh mesh_bvh;

};

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Virtual

• virtual functions allow the program

to call a function from a derived class

using a base-class pointer of a

derived class object

• Does that not make sense?

• Good. It shouldn't have

• Say I have two classes A and B. B is

publicly derived from A, alongside

sharing some similar function names

class A {

 virtual void undo() {...};

 void redo() {...};

};

class B : public A {

 void undo() {...};

 void redo() {...};

};

B b;

A *a = &b;

a->undo() // which undo do I call?

a->redo() // which redo do I call?

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Virtual

• We know that a->undo() calls the

derived instance and a->redo() calls

the base instance

• Defining virtual functions is a handy tool

for runtime polymorphism where we

want to override a base function

definition in a derived class

• We can also define virtual functions

in base classes as templates for

derived classes

class A {

 // virtual tells us to go to the derived class

 virtual void undo() {...};

 // program doesn't know of another existence

 // runs this instance

 void redo() {...};

};

class B : public A {

 // program runs this version

 void undo() {...};

 // program doesn't run this version

 void redo() {...};

};

B b;

A *a = &b;

a->undo() // calls derived instance

a->redo() // calls base instance

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Virtual

• In Scotty3D, we use virtual functions

in the Action_Base class to give us a

template for our MeshOp class.

class Action_Base {

 virtual void undo() = 0;

 virtual void redo() = 0;

 friend class Undo;

public:

 virtual ~Action_Base() = default;

};

class MeshOp : public Action_Base {

 void undo() {

 Scene_Object& obj = scene.get_obj(id);

 obj.set_mesh(mesh);

 }

 void redo() {

 Scene_Object& obj = scene.get_obj(id);

 auto sel = obj.set_mesh(mesh, eid);

 op(obj.get_mesh(), sel);

}

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Datatypes

• C++ comes with many handy datatypes used

for storing and parsing data. Choosing the

correct datatype depends on the task (what

kinds of data access patterns you will have).

• The vector class is one of the most common

classes in C++ meant to handle random-

access iterators well.
• vector elements are always held in

order, meaning that insertions at the end
of the list is O(1) but insertions in the

middle of the list are O(n) since we need

to shift elements over. The amortized
insertion cost is O(1)

// continuous memory layout

std::vector<T> v;

// doubly-linked list

std::list<T> v;

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Datatypes

• An application of the vector

class includes:

// continuous memory layout

std::vector<T> v;

// doubly-linked list

std::list<T> v;

#include <vector>

Vector<int> a(50); // create int vector of size 50

Vector<int> b(10, 15462); // create int vector of size 10 initialized as 15462

a.size(); // returns 50

a.push_back(15462); // adds 15462 to back of list

a.pop_back(); // removes last element

Vector<int>::iterator p = a.begin() // get iterator to first element

while(p < a.end()) { // get iterator to last element

(void)a[p]; // supports random access patterns well

p += randint(0,5); }

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Memory Management

class Joint {

public:

 Joint(unsigned int id) : _id(id) {}

 Joint(unsigned int id, Joint* parent, Vec3 extent) ...

 ~Joint() { for(Joint* j : children) delete j; }

 ...

private:

 std::unordered_set<Joint*> children;

 ...

 friend class Skeleton;

 friend class Scene;

};

• In C++, you’ll need to manage your

own memory. That means you’ll need

to allocate memory when needed and

free memory when done.

• As an example, the Joint class stores

an unordered_set<Joint*> of all the

joint's children. When a Joint is

deleted, the deconstructor ~Joint()

iterates through each child joint and

deletes it.

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Memory Management

class Joint {

public:

 Joint(unsigned int id) : _id(id) {}

 Joint(unsigned int id, Joint* parent, Vec3 extent) ...

 ~Joint() { for(Joint* j : children) delete j; }

 ...

private:

 std::unordered_set<Joint*> children;

 ...

 friend class Skeleton;

 friend class Scene;

};

• When we go to add a child joint to our
skeleton, we call the Joint(unsigned
int id, Joint* parent, Vec3

extent) constructor using the new

keyword.

Joint* Skeleton::add_child(Joint* j, Vec3 e) {

 Joint* c = new Joint(next_id++, j, e); // use the new keyword when allocating

 for(float f : keys()) {

 c->anim.set(f, Quat{});

 }

 j->children.insert(c);

 return c;

}

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Memory Management

class Joint {

public:

 Joint(unsigned int id) : _id(id) {}

 Joint(unsigned int id, Joint* parent, Vec3 extent) ...

 ~Joint() { for(Joint* j : children) delete j; }

 ...

private:

 std::unordered_set<Joint*> children;

 ...

 friend class Skeleton;

 friend class Scene;

};

• When we want to delete our joint in

our implementation, we can add the
joint to an erased list

void Skeleton::erase(Joint* j) {

 if(j->parent) {

 j->parent->children.erase(j);

 } else {

 roots.erase(j);

 }

 erased.insert(j);

}

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Memory Management

class Joint {

public:

 Joint(unsigned int id) : _id(id) {}

 Joint(unsigned int id, Joint* parent, Vec3 extent) ...

 ~Joint() { for(Joint* j : children) delete j; }

 ...

private:

 std::unordered_set<Joint*> children;

 ...

 friend class Skeleton;

 friend class Scene;

};

• Then when we call delete on our

Skeleton object, we iterate over the

joints from both the roots and erased

lists and delete the joints

• Our deconstructor deletes both the
reference to the Skeleton object and

any other objects that it held

void Skeleton::erase(Joint* j) {

 if(j->parent) {

 j->parent->children.erase(j);

 } else {

 roots.insert(j);

 }

 erased.insert(j);

}

Skeleton::~Skeleton() {

 for(Joint* j : roots)

 delete j;

 for(Joint* j : erased)

 delete j;

}

Lecture 02.5 | C++

15-362/662 | Computer Graphics

References

bool hit(Line line, Vec3& pt) const {

 Vec3 n = p.xyz();

 float d = dot(line.dir, n);

 float t = (p.w - dot(line.point, n)) / d

 // can assign to pt

 // value persists after function returns

 pt = line.at(t);

 return t >= 0.0f;

}

• Pass-by-value creates a copy of the

variable so that any modifications to the

variable are binded to a local-scope of that

function alone.

• Pass-by-reference gets the address of the

variable in memory, allowing the function to

modify the variable such that the

modification will be present even after the

function returns.

• In hit() we pass in line as a value and pt as a reference

• line is passed as a value: any modifications will be local in scope to the function

• pt is passed as a reference: any modifications will be saved outside the function

• Useful when we want to return multiple data: if a hit occurs, and the hit location in pt

Lecture 02.5 | C++

15-362/662 | Computer Graphics

References

class Vertex {

public:

 HalfedgeRef& halfedge() {return _halfedge;}

 ...

private:

 ...

 HalfedgeRef _halfedge;

};

• We can declare functions that automatically

cast variables to ref on input and return

• This does not mean that the variable

accepting the return must also be a
reference. Consider how h is being

assigned a reference even though it is not a

reference type itself

• So then why bother returning a ref?

• Sometimes we just want reassurance

that we're always returning a reference

to the same vertex halfedge in our call
to vert->halfedge(), and that no

duplicates are being created

float totalArea = 0.0f;

// HalfedgeRef type accepts HalfedgeRef&

HalfEdgeRef h = vert->halfedge(); do {

 if(!h->face()->is_boundary()) {

 totalArea += h->face()->area();

 }

 // because it isn't a ref, we can keep updating it

 h = h->twin()->next();

}

while(h != vert->halfedge());

Lecture 02.5 | C++

15-362/662 | Computer Graphics

• Introduction To C++

• C++ Concepts

• Closing Message

Lecture 02.5 | C++

15-362/662 | Computer Graphics

Good Luck!

• Did anyone ever tell you what OpenGL stands for?

• Open Graphics Library?

• Open GPU Lists?

• Open Generative Language?

• None of the above! OpenGL stands for Open Good

Luck! That's because despite how hard graphics can

be, and how frustrated you might get, you're never

alone. We're all here to support you in the graphics

community. So take a chance, have fun, and get your

hands dirty with some graphics code

• We can't wait to see the things you'll go on to create :)

-- 15462 Staff

Lecture 02.5 | C++

	Slide 1: C++: A Programmer’s Perspective
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

