C++: A Programmer’s Perspective

* Introduction To C++
* C++ Concepts

* Closing Message

15-362/662 | Computer Graphics

C++

C++ was developed by Bell Labs in
1979 as an extension of the C language
» Goal was to add object-oriented
programming into the C language
« Still wanted to maintain low-level
functionality of C

LEARN C++
IN ONE VIDEO

Called “C with Classes”
 Changedto C++in 1983

Every few years a new C++ standard
comes out

o C++11

« C++14

e C++17

> »l o) 2:52/35040.04 °

Why C++ For Graphics

“‘l want a fast language, not a safe
language” -- max slater

Computer graphics requires quick
access of large data

» Pixel buffers

« Geometry buffers

« Textures

« Offscreen buffers

« C++is very efficient at handling
large data

Many graphics APls already exist in, or
work closely with C++

 OpenGL

* Vulkan

* Direct3D

C++ is faster
than Python

is YOUR C++ code
faster than Python?

\

Why C++ For Graphics

"C makes it easy to shoot yourself in the
foot; C++ makes it harder, but when you
do it blows your whole leg off” -- Bjarne
Stroustrup (1986) creator of C++

You are responsible for dealing with
your own memory
« Some safety features in C++, but
since we're working with large
amounts of memory, easy run out of
application memory

With a lot of memory, easy to end up in
the wrong place/index

mcc

In C++ we don't say "Missing asterisk" we say
"error C2664: 'void
std::vector<block,std::allocator<_Ty>>::push_
back(const block &)': cannot convert
argument 1 from
'std::_Vector_iterator<std::_Vector_val<std::_Si
mple_types<block>>>"to 'block &&" and i
think that's beautiful

292 petweets 926likes WP PP OO DO

D 20 171 292 ¥ 926

Why C++ For Graphics

For many, this will be your first time
using C++
» This course is designed to teach
you BOTH graphics and C++

C++ is ubiquitous in graphics
academics, research, and industry
« Having a working knowledge of C++
is essential if continuing graphics

Another language you can add to your , ‘
resume :) WALL-E (2008) Pixar

» IntroductionFo-C++
* C++ Concepts

* Closing Message

15-362/662 | Computer Graphics

Classes in C++ are defined with a
class name and function/variable
definitions

public: values are accessible
outside the class

private: values are not accessible
outside classes and can only be
accessed inside class functions

protected: values are private
except to other classes that are
derived from the class

Classes

class A {

public:
int x;

private:
int y;

protected:
int z:

) 7

class B: public A {
vold testl () {

return x + z;
}
vold test2 () {

return y;

testl () can execute because
public and protected values of the
base class A are visible to the
derived class B

test2 () fails because a derived
class does not have access to
private values of a base class.
* To fix this, we can declare B as
a friend class of A

Classes trust friends with their
private values!

Classes

class A {

public:
int x;

private:
int y;

friend class B
protected:
int z:
}i
class B: public A {
volid testl () {

return x + z;

}
vold test2 () {

return y;

In Scotty3D, the vertex constructor is
a private field
 We do not want just anyone
creating vertex objects

We declare the constructor as
private and give only certain classes
access to create vertex objects using
the friend class specifier

Classes

class Vertex {
public:

HalfedgeRef& halfedge ()
HalfedgeCRef halfedge()

bool on boundary () const;

unsigned int degree() const;
Vec3 normal () const;
Vec3 center () const;

Vec3 neighborhood center () const;

unsigned int 1d() const {return 1id;}
Vec3 pos;

private:
Vertex (unsigned int id) id(id) {}

7

Vec3 new pos;

bool is new = false;
unsigned int id = 0;
HalfedgeRef halfedge;
friend class Halfedge Mesh;

{return halfedge;}
const {return halfedge;}

Classes

class Vertex {
public:

HalfedgeRef& halfedge() {return halfedge;}

* Some features we can edit dlreCtly HalfedgeCRef halfedge() const {return halfedge;}

without using a class function, but
other features are private and bool on boundary() const;

cannot be edited unsigned int degree () const;

Vec3 normal () const;

Vec3 center () const;

Vec3 neighborhood center () const;
unsigned int 1d() const {return 1id;}

* How do we edit new pos ?

Vec3 pos;

private:

Vertex *c = vertexList([i]; Vertex (unsigned int id) : id(id) {}

Vec3 new pos;

bool is new = false;
C—>pos = Vec3(1.£,0.£,0.f); unsj_gned int _j_d = 0;

HalfedgeRef halfedge;

friend class Halfedge Mesh;
c->new_pos = Vec3(1l.£,0.£,0.1£); }; B

Classes

class Vertex {

» Classes can inherit attributes from private:
other classes, gaining access to
public and private values in those

classes
friend class Halfedge Mesh;

: : bi
* The Halfedge Mesh class is built

using Vertex, Edge, Face, class Halfedge Mesh {
and Halfedge components public:
« We can declare Halfedge Mesh lacs Vert
, : [ertex;
as a friend class inthe vertex class Edge;

class class Face;
class Halfedge;

std: :optional<FaceRef> bevel vertex(VertexRef v);
std: :optional<FaceRef> bevel edge (EdgeRef e);
std: :optional<FaceRef> bevel face(FaceRef f);

Classes

class Vertex {

 Now in our Halfedge Mesh class, we
can write functions that access these
private values from the vertex class ISFEaLYEIEEE

 \We chose to make variables in
classes private in order to ensure friend class Halfedge Mesh;
classes that we don't want modifying
these variables will never have access
to it

——

.
14

class Halfedge Mesh
public:

class Vertex;
class Edge;
class Face;
class Halfedge;

auto halfedge Mesh::bevel (VertexRef v) ({

veopes = veed Lok, Uk, oty std: :optional<FaceRef> bevel vertex(VertexRef v);

std: :optional<FaceRef> bevel edge (EdgeRef e);

vesmen pos = Weed (Lo, Wod, B L)) std: :optional<FaceRef> bevel face(FaceRef f);

Templates

class Cache {

public: o
Cache (int N) {
data = calloc (N, sizeof(datatype)) ;
freq = calloc(N, sizeof(int));
size = N;
}
datatype get (int idx) {
freg[idx]++;
return datal[idx];

}

private:

datatype *data;
int *freg;
int size;

Templates help define a generic
datatype that you can use to write
versatile code without explicitly
defining the interface for each type
* Your compiler writes the template
code only if it is called, otherwise
the compiler avoids it
« Think of it as getting the compiler
to write the code for you

Say we'd like to create a new set of
classes that will track query usage per
element to help for analytics. We can
call this class our cache

Templates

class CacheInt {
public:

CacheInt (int N) {
data = calloc(N, sizeof (int));
freq = calloc (N, sizeof(int));
size = N;

int get (int idx) { Here is our class for ints
freg[idx]++;

return datal[idx];
private:
int *data;

int *freg;
int size;

15-362/662 | Computer Graphics

Templates

class CacheFloat {
public:

CacheFloat (int N) {
data = calloc (N, sizeof(float)):
freq = calloc (N, sizeof(float));
size = N;

} .
float get (int idx) { * Here is our class for floats

freg[idx]++;
return datal[idx];

private:
float *data;

int *freqg;
int size;

15-362/662 | Computer Graphics

Templates

class CacheDouble {
public:

CacheDouble (int N) {
data = calloc (N, sizeof (double))
freq = calloc (N, sizeof (double)):;
size = N;

} .
double get (int idx) { * Here is our class for doubles

freq[idx]++; « This is getting to be a lot of code...
return datal[idx];

}

private:
double *data;

int *freqg;
int size;

15-362/662 | Computer Graphics

Templates

Template<typename T>

class Cache { « We can use Template<typename T>

public: to create a generic datatype and bind

it on compile time
Cache (int N) {

data = calloc(N, sizeof(T)); « Then we can create instances of int,
freq = calloc(N, sizeof(int));

. float and double caches easily
slize = Ny

}

T get(int idx) {
freg[idx]++;
return datal[idx];

private:

T *data;
int *freqg;

: int size; Cache<float> b = Cache<float>(10);

Cache<int> a = Cache<int>(10);

Cache<double> ¢ = Cache<double>(10);

Template<typename T>
class Cache {

public:

Cache (int N) {
data = calloc (N,
freqg = calloc (N,
size = N;

}

T get(int 1idx) {
freg[idx]++;

return datal[idx];

}

private:

T *data;
int *freqg;
int size;

sizeof (T));

sizeof (int));

Templates

« Every time we create a new template
datatype for the cache class, it makes a copy
of the string defining the class and swaps out
every instance of the typename T before
inserting it into the file and compiling it

» |f we never make a call to cache with type T,
then the template is ignored and we never
compile it

* Yet another optimization on the
compiler's part!

Cache<int> a = Cache<int>(10);

Cache<float> b = Cache<float>(10);

Templates

« We use templates a lot in Scotty3D, and you'll even work to implement some template classes
in the Animation unit. For example:

Template<typename T>
class Spline {
public:

T at (float time) const;

void set (float time, T value) { control points[time] value; }

void erase (float time) { control points.erase(time); }

bool has (float t) const { return control points.count(t); }
bool any () const { return !control points.empty(); }

void clear () { control points.clear(); }

private:

std: ::map<float, T> control points;
I

Templates

Spline<int> S;
S.add(0.f, 0); « The program will copy the below string of code,

S.add(1.£f, 61848); replacing typename T with int, making a strong-

, typed class interface for the type int
printf ("$d\n", S.at (0.25))

Template<typename T>
class Spline {
public:

T at (float time) const;

void set (float time, T value) { control points[time] = value; }
void erase (float time) { control points.erase(time); }

bool has (float t) const { return control points.count(t); }

bool any () const { return !control points.empty(); }
void clear () { control points.clear(); }
private:

std: ::map<float, T> control points;
I

Templates

« Many other library classes and data structures
also use templates to exploit generic types.
C++ classes like the ones below use templates
to avoid redundant coding:

std: :map<T1l, T2> A; // list of key-value pairs

std: :unordered map<T1l, T2> B; // unordered list of key-value pairs

std: :set<T> C; // list without duplicates

std: :unordered set<T> D; // unordered list without duplicates

std: :1ist<T> E; // dumb list

std: :vector<T> F; // fancy list

std: :deque<T> G; // list with multi-side insertion/deletion
std: :pair<Tl, T2> H; // two-element list

15-362/662 | Computer Graphics

lterators

. class HalfedgeMesh
 |terators allow you to iterate J {

through ordered and unordered

structs (like sets and unordered
maps) using the ::iterator list<Vertex> vertices;
attribute

public:

typedef list<Vertex>::iterator VertexIter;

y VVGCEH]§eethatmesh.v§rtices VertexIter verticesBegin() { return vertices.begin(); }
holds a list of vertex ObjeCtS. VertexIter verticesEnd() { return vertices.end(); }
vertices.begin () returns the first

iterator in our list, and we
increment that until we reach the
last iterator vertices.end () (noOn-
inclusive)
* We typedef
list<Vertex>::iterator as
VertexIter for easy notation

lterators

. lass HalfedgeMesh
« Our normal approach in C would class HalfedgeMesh |

be to determine the number of public:
vertices in the list and use a for
loop with indexing to query for list<Vertex> vertices;
each vertex and update its e , ,
. typedef list<Vertex>::iterator VertexIter;
properties
* We can instead use iterators VertexIter verticesBegin () { return vertices.begin(); }
in our for-loop to simplify the VertexIter verticesEnd() { return vertices.end(); }
code and speed up the
process \
HalfedgeMesh& mesh;
for (VertexIter v = mesh.verticesBegin(); v != mesh.verticesEnd(),; v++) {

v->position = v->newPosition;

lterators

An easy way to think about iterators are as pointers. We can
iterate through our vector of ints and dereference the iterator we
are on to get the value it points to. By incrementing our iterator,

we are jJumping sizeof (datatype) bytes in memory to get a
pointer to the next value

vector<int> a = { 1, 5, 4, 6, 2 };
printf ("I love ");

for (vector<int>::iterator ptr =

a.begin(); ptr !'= a.end(); ptr++) {
printf ("%d", *ptr);

}

Auto

Sometimes (especially in graphics) datatypes in C++ can be
very long. A good programmer will recognize when a datatype
should be obvious and instead will alias the original datatype
using the auto keyword. Consider the following example:

const std::vector<Mesh::Index>& Mesh::indices () const {
return 1dxs;

}

Mesh& mesh;
const std::vector<Mesh::Index>& i1dx = mesh.indices () ;

Auto

Sometimes (especially in graphics) datatypes in C++ can be

very long. A good programmer will recognize when a dataype
should be obvious and instead will alias the original datatype
using the auto keyword. Consider the following example:

const std::vector<Mesh::Index>& Mesh::indices () const {
return idxs;

Mesh& mesh;
const std::vector<Mesh::Index>& idx = mesh.indices () ;

Mesh& mesh;
const auto& idx = mesh.indices () ;

const prevents us from modifying the
state of an object or variable.
» Declaring a variable as const means
we cannot update it
» Declaring a member function as
const means we cannot modify any of
the properties of the class

This helps optimize our code (telling the
compiler that we don't need write access
to the variable) and also helps create safer
code by ensuring class variables won't be
overwritten

The following function starts by reading the
_halfedge of the Face class and iterates
through each halfedge to get the degree of
the face. During the process we only read
from but do not write to any class values

Const

unsigned int Halfedge Mesh::Face::degree ()

unsigned int d = 0;
HalfedgeCRef h = halfedge;

do {
d++;
h = h->next ();
} while (h != halfedge);

return d;

const {

Const

unsigned int Halfedge Mesh::Face::degree () const ({
) , unsigned int d = 0;
But Wa|t! What S HalfedgeCRef?? HalfedgeCRef h = _halfedge;
It's a const iterator! But wait! how are do {
we able to update h if it's a AN
: o h = h->next();
s ¢ } while (h != halfedge);

» Let's look at a quick example

return d;

using HalfedgeCRef = list<Halfedge>::const iterator;

Const

int valA = 15462;
int valB = 15418;

int *a = &valA; // normal int pointer

a = &valB; // success! we can modify what a points too

*a = 15213; // success! we can modify the value at the address a points to
const int *b = &valA; // pointer to const int

b = &valB; // success! we can modify what b points too

*b = 15213; // fails: can't change value of const int

int const *c = &valhA; // const pointer to int

c = &valB; // fails: can't change pointer

*c = 15213; // success! we can modify the value at the address c points to
const int const *d = &valA; // const pointer to a const int

d = &valB; // fails: can't change pointer

*d = 15213; // fails: can't change value of const int

« We normally define an int pointer as int* and can put the const symbol before the int datatype
(const int *ptr)orafterit (int const *ptr). Yet these lead to different behaviors as seen above

15-362/662 | Computer Graphics

Const

unsigned int Halfedge Mesh::Face::degree () const ({
 Where we place the const keyword

matters as to whether we can change the unsigned int d = 0;
HalfedgeCRef h = halfedge;

address of the pointer or the value at the
location of the pointer. do |
d++;
 With HalfedgeCRef, since itis a h = h->next();
const iterator, that means thatitis an } while (h != _halfedge);

iterator to a const value in the list. Thus,
we can change the address that h points
to, and we never end up changing the)
actual values in the halfedge list
* Prevents us from accidentally
changing values in the halfedge lists, using HalfedgeCRef = list<Halfedge>::const iterator;
giving us read-only access to the data
in order to compute the degree of the
face via halfedge traversal

return d;

Vec3 t

static
static

static
static
static
static
static
static
static
static
static

struct Matéd {

const Mat4d I;
const Mat4d Zero;

Mat4
Mat4
Mat4
Mat4
Mat4
Mat4
Mat4
Mat4
Mat4

Static

transpose (const Mat4& m) ;
inverse (const Mat4& m) ;

translate (Vec3 t);
rotate (float t, Vec3 axis);
euler (Vec3 angles) ;

rotate to(Vec3 dir);

rotate z to(Vec3 dir);
scale (Vec3 s);

axes (Vec3 x,

Vec3(1l.£f,2.£,3.1f);

Matd4d m = Mat4d::axes(t,t,t);

Vec3 vy,

Vec3 z);

The static keyword can be used in
different contexts to mean different things.
In general, we use static to help define
that a resource is shared/accessible in a
larger scope than it actually is
* |nside of a class, we can define both
functions and variables as static

For static functions, we can call them
without creating an instance of the class by
reference the mat4:: class-name before
calling the class function.

Static

- static variables are shared among all copies of object instances. In
this case, regardless of how many Mat4 objects we create, they will
always share the same 1 (identity) and zero (zero matrix) values

« A program can also define the static variables and call functions without
ever needing to create an instance. It does so by defining 1 and Zero
as globally accessible parameters under the Mat4 struct namespace

* Once we define a static value, we cannot redefine it, thus making it

constant

const inline Mat4 Mat4::1I =
Vecd{0.0f, 1
Vecd4 {0.0£f, O
Vecd4{0.0£f, O

const inline Mat4 Mat4d::Zero
Vecd {0.0£, O

Vecd4 {0.0£f, O

Matd {Vecd{1.0f,
.0f,
.0f,
.0f,

.0f,
Vecd4 {0.0£f, O.
.0f,

0.0£, O.
0.0f},

0.0f},
1.0£} 1}

0f, 0.0f},
0.0f,
1.0f,

0.0f,

= Mat4{Vecd{0.0f, O
0.0£, 0.0f},
0.0f£, 0.0f},
0.0f£, 0.0f}};

.0f, 0.0f, 0.0f},

0f,

Static

———————————— main.cpp ——————-———--— --——--———----- library.h --——=——-----
#include "library.h" int numCores = 1;

int numCores = 8;

———————————— main.cpp ——-—————----— --—-———--—----- library.h --——————--——-
#include "library.h" static int numCores = 1;

int numCores = 8;

» Another instance of static variables (although not as commonly
used) is declaring static global variables. The effect of this is to
limit the scope of the variable to the current file only

* Your compiler will give you a warning when linking 1ibrary.h that
numCores has been redefined. To resolve this issue, we can use
the static keyword to bind the variables to a file-only scope

Namespace

namespace PT {

class Tri Mesh ({
+ Namespace helps us encapsulate data

public: and types into a group for easier
Tri Mesh () = default; f . It | hel id
Tri Mesh (const GL: :Mesh& mesh) ; 2 er_enCI_ng' celn &l SO. Y B Ehiel
conflicts if we have variables and
BBox bbox () const; functions of the same name.

Trace hit(const Ray& ray) const;

* |In Scotty3D we use namespace to
group together different pieces of the

void build(const GL::Meshs& mesh) ; graphics pipeline.
 For example, one namespace
private: you will be seeing a lotin A3 is PT
std: :vector<Tri Mesh Verté> verts; (PathTracer)

BVH&1tTriangleé> triangles;

b7

Namespace

namespace PT {

class Tri Mesh ({
* Here, we've enclosed the Tri Mesh

public: .
class in the namespace pT

Tri Mesh () = default;
Tri Mesh (const GL: :Mesh& mesh) ;
* If we'd like to reference an instance of

BBox bbox () const; this class, we can do so using the
Trace hit(const Ray& ray) const; b7 - - format

vold build (const GL: :Meshé& mesh) ;

private:
std: :vector<Tri Mesh Vert> verts;

BVH&1tTriangle> triangles;

class Rig {

private:

b7
} PT::Tri Mesh mesh bvh;
b

Namespace

namespace PT {

class Tri Mesh ({

 We can also un-enclose namespaces

public: : _
Tri Mesh() = default: if the name is too long and/or we
Tri Mesh (const GL::Mesh& mesh) ; know we will be using objects from
that namespace a lot in a given file
BRox bbox () const;

Lzacs hit(Const Rave ray) eomsts « This can be done with the using

keyword
void build(const GL: :Mesh& mesh) ;
private: using namespace PT;
std: :vector<Tri Mesh Vert> verts; class Rig {
BVH&1tTriangle> triangles;
private:

b7

} Tri Mesh mesh bvh;
i

class A {

virtual void undo ()

void redo() {...};
I
class B : public A {

void undo () {...};
void redo() {...};
};
B b;
A *a = &b;
a—->undo ()

{...

¥

Virtual

virtual functions allow the program
to call a function from a derived class
using a base-class pointer of a
derived class object

* Does that not make sense?

« Good. It shouldn't have

Say | have two classes A and B. B is
publicly derived from a, alongside
sharing some similar function names

class A {

virtual void undo ()

void redo () {...};

b P

class B : public A {
void undo () {...};
void redo() {...};

i

B b;

A *a = &b;

a—->undo ()

a->redo ()

{...

¥

Virtual

We know that a->undo () calls the
derived instance and a->redo () calls
the base instance

Defining virtual functions is a handy tool
for runtime polymorphism where we
want to override a base function
definition in a derived class
« We can also define virtual functions
in base classes as templates for
derived classes

Virtual

class Action Base {

virtual void undo () = 0;
virtual void redo() = 0;
friend class Undo;
public:
virtual ~Action Base () = default;

Iy

class MeshOp public Action Base {
void undo () {

Scene Objecté& ob]

obj.set mesh (mesh) ;

scene.get obj (id);

}

void redo() {
Scene Objecté& obj = scene.get obj(id);
auto sel = obj.set mesh(mesh, eid);

op (obj.get mesh(), sel);

In Scotty3D, we use virtual functions
in the Action Base class to give us a
template for our Meshop class.

Datatypes

« (C++ comes with many handy datatypes used
for storing and parsing data. Choosing the
correct datatype depends on the task (what std: :vector<T> v;
kinds of data access patterns you will have).
std: :1ist<T> v;
* The vector class is one of the most common
classes in C++ meant to handle random-
access iterators well.
« vector elements are always held in
order, meaning that insertions at the end
of the listis O (1) but insertions in the
middle of the list are o (n) since we need
to shift elements over. The amortized
insertion costis 0 (1)

Datatypes

// continuous memory layout

« An application of the vector std: :vector<T> v;
// doubly-linked list

class includes: std::1ist<T> v;

#include <vector>

Vector<int> a(50); // create int vector of size 50

Vector<int> b (10, 15462); // create int vector of size 10 initialized as 15462
a.size(); // returns 50

a.push back(15462) ; // adds 15462 to back of list

a.pop back() ; // removes last element

Vector<int>::iterator p = a.begin() // get iterator to first element

while(p < a.end()) { // get iterator to last element

(void)alp]: // supports random access patterns well

p += randint (0,5); }

15-362/662 | Computer Graphics

Memory Management

class Joint {

public: | o o e In C++, you'll need to manage your
Joint (unsigned int 1d) : 1id(id) {} That N d
Joint (unsigned int id, Joint* parent, Vec3 extent) ... own memory. at means you'll nee
~Joint () { for (Joint* j : children) delete j; } to allocate memory when needed and
free memory when done.
private:
std: :unordered set<Joint*> children; « As an example, the Joint class stores
friend class Skeleton: ?h1€QOIQered_set<Joint*>»Ofa"the
joint's children. When a Joint is

friend class Scene;
deleted, the deconstructor ~Joint ()

iterates through each child joint and
deletes it.

5

Memory Management

class Joint {

public: Wh (g
. en we go to add a child joint to our
Joint (unsigned int id) : id(id) {} @l 9 Il th . J .
Joint (unsigned int id, Joint* parent, Vec3 extent) ... S e elon’ Wel ca € Joint (unsigned
~Joint () { for (Joint* j : children) delete j; } int 1d, Joint* pare@t, Vec3
. extent) constructor using the new
private: keyword.

std: :unordered set<Joint*> children;

friend class Skeleton;
friend class Scene;

5

Joint* Skeleton::add child(Joint* j, Vec3 e) {
Joint* ¢ = new Joint (next id++, Jj, e);
for(float £ : keys()) {

c—>anim.set (f, Quat{});
}
j—>children.insert (c);
return c;

Memory Management

class Joint {

pLlbldec | - - « When we want to delete our joint in
Joint (unsigned int id) : id(id) {} T, tati dd th
Joint (unsigned int id, Joint* parent, Vec3 extent) . Our I L IOI’I., wiE el =l €
~Joint () { for (Joint* j : children) delete j; } Jowﬂ1x>an erased list

private:

std: :unordered set<Joint*> children;

friend class Skeleton;
friend class Scene;

5

void Skeleton::erase (Joint* j) {
if (J->parent) {
J—->parent->children.erase(]) ;
} else {
roots.erase(]) ;

}

erased.insert (j) ;

Memory Management

class Joint {

pLlbldec | - - « Then when we call delete on our
Joint (unsigned 1nt 1id) : id(id) {} . .
Joint (unsigned int 1id, Joint* parent, Vec3 extent) .S]?eleton object, we iterate over the
~Joint () { for (Joint* j : children) delete j; } joints from both the roots and erased
lists and delete the joints
private:

std: :unordered set<Joint*> children; « Our deconstructor deletes both the

friend class Skeleton: reference to the skeleton object and

friend class Scene; any other objects that it held
}:
void Skeleton::erase (Joint* j) { Skeleton::~Skeleton () {
if (J->parent) {
J—->parent->children.erase(j); for (Joint* 3 : roots)
} else { delete j;
roots.insert (J);
} for (Joint* 7 : erased)

erased.insert (j); delete 7j;

References

« Pass-by-value creates a copy of the
variable so that any modifications to the , , ,
. . bool hit (Line line, Vec3& pt) const {
variable are binded to a local-scope of that v _ ,
. ec3 n = p.xXyz();
function alone. float d = dot(line.dir, n);
float t = (p.w - dot(line.point, n)) / d
« Pass-by-reference gets the address of the
variable in memory, allowing the function to ,
dify the variable such that the pt = line.atit);
e y _ _ return t >= 0.0f;
modification will be present even after the)
function returns.

* Inhit () we passin 1line as a value and pt as a reference
« line is passed as a value: any modifications will be local in scope to the function
« pt is passed as a reference: any modifications will be saved outside the function

« Useful when we want to return multiple data: if a hit occurs, and the hit location in pt

References

class Vertex {

« We can declare functions that automatically public:
cast variables to ref on input and return HalfedgeRefs& halfedge() {return halfedge;}
private:

* This does not mean that the variable
accepting the return must also be a ﬁéifedgeRef halfedge;
reference. Consider how h is being s .
assigned a reference even though it is not a

reference type itself
float totalArea = 0.0f;

« Sothen wh_y bother .returnlng a ref? FalfAdeeRef b = vert—shelfedaa(): do I
« Sometimes we just want reassurance if (!h->face()->is boundary()) {
that we're always returning a reference totalArea += h->face()->area();

to the same vertex halfedge in our call }

to vert->halfedge (), and that no

duplicates are being created |
while(h !'= vert->halfedge())

h = h->twin () ->next();

ot Coneepts

* Closing Message

15-362/662 | Computer Graphics

Good Luck!

« Did anyone ever tell you what openGL stands for?

* Open Graphics Library? —
 Open GPU Lists? & B Computer Facts
* Open Generative Language? = @computerfact

« None of the above! opencL stands for Open Good the GL in OpenGL stands for "Good
Luck! That's because despite how hard graphics can Luck” because youre going to need it
be, and how frustrated you might get, you're never
alone. We're all here to support you in the graphics
community. So take a chance, have fun, and get your
hands dirty with some graphics code

« We can't wait to see the things you'll go on to create :)
-- 15462 Staff

	Slide 1: C++: A Programmer’s Perspective
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50

