
Final Exam Review 
Part 2

15-462 / 15-662 Computer Graphics



 CMU 15-462/662

Numerical Integration
▪ In rendering (global illumination), what are we integrating, i.e., what integral 

do we want to evaluate? 

▪ How do we use the trapezoid rule to integrate a function? 

▪ How does work increase with dimensionality of our function?    

- This is why we typically use Monte Carlo integration in graphics! 

▪ Give a high level overview of the process of Monte Carlo integration 

▪ What is a probability density function (PDF)?    

▪ What is a Cumulative Distribution Function (CDF)? 

▪ The Inversion Method can be used to correctly draw a sample from a PDF.     

- Sketch the overall step by step process for using the Inversion Method 

▪ What is rejection sampling?   Show how to use rejection sampling to sample 
area of a circle, volume of a sphere, directions on a sphere, and solid angles 
from a hemisphere.



Monte Carlo Rendering
▪ What is Expected Value?  .. Variance?   .. Bias? 

▪ What is Importance Sampling?     How is it used in cosine-weighted sampling of 
the hemisphere? 

▪ What is the Monte Carlo method (in general)? 

▪ Explain how a Monte Carlo method can be used to solve the Rendering 
Equation. 

▪ What is Russian Roulette and why do we need it? 

▪ How can we use Russian Roulette and still have an unbiased estimator?



 CMU 15-462/662

Be familiar with the following expression for Monte Carlo integration.   What is the role of each 
term? 

Give an example of how we can reduce variance in our rendered results in a path tracing 
algorithm without increasing the number of samples. 

What does it mean for an estimator to be consistent? 

What does it mean for an estimator to be unbiased? 

Give a concrete example of how a renderer could give a biased estimate of an image.     Is the 
renderer in your example consistent?   Explain your answer. 

Give five examples of how you can reweight samples in a pathtracing algorithm in order to do 
importance sampling. 

What are the main ideas behind bidirectional path tracing? 

How would you enumerate all possible paths in a scene? 

How does Metropolis-Hastings sampling work? 

Assume you have code to generate random paths and code to mutate existing paths.   Write 
pseudocode for Metropolis-Hastings path tracing.

Variance Reduction



 CMU 15-462/662

What is Stratified Sampling? 

Why is it preferred to random sampling? 

Hammersley and Halton points are pseudo random sampling techniques to generate points 
with low discrepancy.    What is discrepancy?    Why do we want to generate low discrepancy 
samples? 

Give a concise one sentence description of each of the following rendering algorithms that 
makes it clear the differences between them.    Use a diagram to illustrate your description: 

Rasterization 
Ray casting 
Ray tracing 
Path tracing 
Bidirectional path tracing 
Metropolis Light Transport 
Photon Mapping 
Radiosity 

Which of these algorithms are best for capturing reflective surfaces?    caustics?     color 
bleeding?    subsurface scattering?   refraction? …

More Variance Reduction



What	you	should	know	(Part	1	of	2):	
  How	were	the	first	anima<ons	created?					How	were	the	first	films	

created?				Give	some	examples.	

  Describe	some	of	the	first	computer	generated	anima<ons,	giving	the	
developer	/	ar<st	and	<meframe.	

  Anima<ons	are	created	from	keyframes.				How	do	we	interpolate	
between	those	keyframes?	

  Why	do	we	avoid	splines	of	degree	higher	than	three	in	computer	
graphics?	

  Write	a	cubic	polynomial	P(t)	in	parameter	t,	which	may	describe	a	
cubic	spline.	

  What	are	the	constraints	for	P(t)	to	interpolate	endpoints	p1	at	<me	
t=0	and	p2	at	<me	t=1?	

  What	are	the	constraints	for	P(t)	to	have	tangent	vector	r1	at	<me	t=0	
and	r2	at	<me	t=1?	

Intro to Animation



What	you	should	know	(Part	2	of	2):	
  This	pair	of	constraints	describes	a	Hermite	spline.				Derive	the	

polynomial	coefficients	for	the	Hermite	spline	and	write	the	cubic	
polynomial	in	terms	of	p1,	p2,	r1,	and	r2.	

  Put	your	result	in	matrix	form.	

  Give	properFes	of	the	Hermite	spline	in	terms	of	conFnuity	(C1,	C2,	
etc..),	interpolaFon,	and	local	control.	

  What	type	of	spline	has	C2	conFnuity	and	interpolaFon,	but	not	local	
control?	

  What	type	of	spline	has	C2	conFnuity	and	local	control,	but	does	not	
interpolate	its	key	points?	

  What	are	Catmull-Rom	splines?				How	are	tangents	computed	for	
Catmull-Rom	splines?	

  What	are	blend	shapes	and	where	are	they	used?				What	exactly	is	
interpolated	when	using	blend	shapes	for	animaFon?	

Intro to Animation



Bezier, Hermite, and Catmull-Rom splines are really all the same 
thing.   Any one representation can be converted to any of the 
others.   Explain the differences between them. 

Be able to express a Hermite spline in different ways — as a cubic 
polynomial, in matrix form, or derive it from its control 
parameters. 

How do we ensure continuity between cubic spline segments?   C0 
continuity?   .. C1 continuity?   .. is C2 continuity possible in 
general?

Intro to Animation



What	you	should	know:	
  What	is	the	“anima4on	equa4on”?	
  What	is	the	difference	between	an	ODE	and	a	PDE?			Give	some	

examples	of	systems	we	can	simulate	by	integra4ng	an	ODE.	
  Sketch	an	overall	system	for	simula4ng	an	ODE	using	a	block	

diagram.			Be	clear	about	what	is	the	state,	how	you	advance	the	
state	forward	in	4me,	and	what	integrator	you	are	choosing.	

  When	is	the	Euler-Lagrange	equa4on	useful?	
  Be	able	to	work	through	a	simple	example	of	obtaining	dynamic	

equa4ons	of	mo4on	using	Lagrangian	mechanics.	
  Describe	how	to	put	together	a	mass-spring	system	to	simulate	

cloth.	
  What	are	the	forces	on	each	cloth	“par4cle”?	
  What	is	Forward	Euler	integra4on	and	what	is	its	disadvantage?			

Can	you	show	a	simple	example	where	it	fails?	
  What	is	Backward	Euler	integra4on	and	what	are	its	pros	and	

cons?	
  What	is	Symplec4c	Euler	integra4on?	

Dynamics and Time Integration 



Kinematics 

Be able to describe an optimization problem in standard form (parameters, 
objective, and constraints) and give a couple of simple examples. 

How do you know you have a minimum of an objective function in an 
optimization problem without constraints?   What must be true? 

What is the difference between forward and inverse kinematics? 

Is forward kinematics an optimization problem?    Is inverse kinematics an 
optimization problem? 

Write an expression for the forward kinematics of a simple character or 
robot. 

What is the Jacobian?   Compute the Jacobian for a simple character or 
robot. 

What is the Jacobian Transpose technique for inverse kinematics?   Is it 
guaranteed to converge?    What does that mean in practice?     Does it give 
a locally optimal solution or a globally optimal one?   Why?



What	you	should	know:		
  What	is	the	difference	between	a	PDE	and	an	ODE?			Give	

examples	of	when	you	might	use	each	one	and	why.	
  Interpret	this	sentence	using	an	equa+on	and	a	diagram:		Solving	

a	PDE	looks	like	“use	neighbor	informa'on	to	get	velocity	(...and	
then	add	a	li9le	velocity	each	'me)”	

  Burger’s	equa+on	is	first	order	in	+me	and	second	order	in	space.			
What	does	that	mean?			What	are	the	orders	of	the	Laplace	
equa+on?			The	heat	equa+on?		The	wave	equa+on?			Be	able	to	
figure	out	the	order	of	an	equa+on	from	an	expression	of	the	
equa+on	itself.	

  What	are	examples	of	ques+ons	we	can	answer	using	the	Laplace	
equa+on,	the	heat	equa+on,	and	the	wave	equa+on	
respec+vely?	

  Outline	the	basic	strategy	for	solving	a	PDE.	
  What	is	the	Laplace	operator?			Write	it	out	as	a	sum	of	par+al	

deriva+ves.	
  Copy	down	the	heat	equa+on	from	the	slides.			Write	out	the	

process	of	solving	this	equa+on	using	Forward	Euler	integra+on.	
  Copy	down	the	wave	equa+on	from	the	slides.			Write	out	the	

process	of	solving	this	equa+on	using	Forward	Euler	integra+on.	

Physically Based Animation and PDEs



Physically Based Animation and PDEs
Be able to use the grid version of the Laplacian to do smoothing on a grid.



You may find these slides from last 
semester’s review helpful



15-462/662 | Computer Graphics

• A1: Rasterization

• A2: Geometry

• A3: Rendering

• A4: Animation

Lecture R02 | Final Review



15-462/662 | Computer Graphics Lecture R02 | Final Review

Pixel Pushing

• Shaders
• Vertex Shader
• Fragment Shader

• Texturing
• Nearest Neighbor
• Bilinear Filtering
• Trilinear Filtering

• Perspective Transform

• Scene Graphs



15-462/662 | Computer Graphics Lecture 01 | Introduction

The Graphics Pipeline

• Sometimes called the:
• 3D Graphics Pipeline
• Rasterization Pipeline
• GPU Pipeline

• GPU was designed specifically to run this pipeline fast

• Entire pipeline was fixed-function.
• You provide the data, a vertex shader, and a 

fragment shader, and the GPU does the rest.
• Fixed-function == fast!

• By limiting what an architecture can do, that 
makes the architecture really good at what it 
can do.
• In graphics, we need to run the same 

operations over millions of datapoints. 

Graphics Pipeline Tutorial (2019) Vulkan



15-462/662 | Computer Graphics

Nearest Neighbor Sampling

• Idea: Grab texel nearest to requested location in 
texture

• Requires: 
• 1 memory lookup
• 0 linear interpolations

Lecture 05 | Texturing

𝑥! ← 𝑟𝑜𝑢𝑛𝑑 𝑥 , 	 𝑦′ ← 𝑟𝑜𝑢𝑛𝑑 𝑦

𝑡 ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥!, 𝑦!



15-462/662 | Computer Graphics

Bilinear Interpolation Sampling

• Idea: Grab nearest 4 texels and blend them 
together based on their inverse distance from 
the requested location
• Blend two sets of pixels along one axis, 

then blend the remaining pixels

• Requires: 
• 4 memory lookup
• 3 linear interpolations

Lecture 05 | Texturing

𝑥! ← 𝑓𝑙𝑜𝑜𝑟 𝑥 , 	 𝑦′ ← 𝑓𝑙𝑜𝑜𝑟 𝑦

∆𝑥 ← 𝑥 − 𝑥′
∆𝑦 ← 𝑦 − 𝑦′

𝑡(#,%) ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥!, 𝑦!

𝑡(#'(,%) ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥! + 1, 𝑦!
𝑡(#,%'() ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥!, 𝑦! + 1
𝑡(#'(,%'() ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥!, +1	𝑦! + 1

𝑡# ← 1 − ∆𝑥 ∗ 𝑡(#,%) + ∆𝑥 ∗ 𝑡(#'(,%)
𝑡% ← 1 − ∆𝑥 ∗ 𝑡(#,%'() + ∆𝑥 ∗ 𝑡(#'(,%'()

𝑡 ← 1 − ∆𝑦 ∗ 𝑡#	 + ∆𝑦 ∗ 𝑡%

Lerp 1 & 2 Lerp 3



15-462/662 | Computer Graphics

Trilinear Interpolation Sampling

• Idea: Perform bilinear interpolation on two 
layers of the mip-map that represents proper 
minification/magnification, blending the results 
together

• Requires: 
• 8 memory lookup
• 7 linear interpolations

Lecture 05 | Texturing

𝐿#* ←
𝑑𝑢
𝑑𝑥

*

+
𝑑𝑣
𝑑𝑥

*

𝐿%* ←
𝑑𝑢
𝑑𝑦

*

+
𝑑𝑣
𝑑𝑦

*

𝐿 ← max(𝐿#*, 𝐿%*)

𝑑 ← 𝑙𝑜𝑔*	𝐿

𝑑′ ← 𝑓𝑙𝑜𝑜𝑟(𝑑)
∆𝑑 ← 𝑑	 − 𝑑′

𝑡+ ← 𝑡𝑒𝑥[𝑑!]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡+'( ← 𝑡𝑒𝑥[𝑑! + 1]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡 ← 1 − ∆𝑑 ∗ 𝑡+ + ∆𝑑 ∗ 𝑡+'(

Level ceil(d)

Level floor(d)

Bilerp (3 Lerps)

Bilerp (3 Lerps)

(1 Lerp)



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Perspective Projection

distant objects
appear smaller

parallel lines
converge at
the horizon



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Perspective Projection

z
x

y

(-1,-1,-1)

(1,1,1)

(w, h)

(-1,-1)

(1,1)

Original description
of object.

[ Rasterization Stage ]

Object relative to camera.
Camera at origin looking down –z axis.

Everything visible to camera
mapped to a cube.

Everything visible to camera
mapped to a cube.

(0, 0)
Coordinates stretched to image dims.

Image flipped upside down.



15-462/662 | Computer Graphics Lecture 03 | Transformations

Scene Graph

• Suppose we want to build a skeleton out of cubes

• Idea: transform cubes in world space
• Store transform of each cube

• Problem: If we rotate the left upper leg, the lower left 
leg won’t track with it
• Better Idea: store a hierarchy of transforms

• Known as a scene graph
• Each edge (+root) stores a linear 

transformation
• Composition of transformations gets applied 

to nodes
• Keep transformations on a stack to 

reduce redundant multiplication

• Lower left leg transform: 𝐴*𝐴(𝐴,

𝐴F

𝐴G

𝐴H



15-462/662 | Computer Graphics Lecture 03 | Transformations

Instancing

• What if we want many copies of the same object in a 
scene?
• Rather than have many copies of the geometry, 

scene graph, we can just put a “pointer” node in 
our scene graph
• Saves a reference to a shared geometry
• Specify a transform for each reference

• Careful: Modifying the geometry will 
modify all references to it Realistic modeling and rendering of plant ecosystems 

(1998) Deussen et al



15-462/662 | Computer Graphics

• A1: Rasterization

• A2: Geometry

• A3: Rendering

• A4: Animation

Lecture R02 | Final Review



15-462/662 | Computer Graphics Lecture R02 | Final Review

Meshes

• Types of Geometric Representations
• Algebraic Surfaces
• CSG
• Blobby 
• Level Set
• Fractals
• Point Cloud
• Meshes

• Global Mesh Operations
• Subdivision
• Isotropic Remeshing

• Spatial Data Structures
• BVH
• KD-Tree
• Uniform Grid
• Quadtree/Octree



15-462/662 | Computer Graphics Lecture 06 | Geometry

Algebraic Surfaces [Implicit]

• Simple way to think of it: a surface built with algebra [math]
• Generally thought of as a surface where points are some radius 
𝑟 away from another point/line/surface

• Easy to generate smooth/symmetric surfaces
• Difficult to generate impurities/deformations



15-462/662 | Computer Graphics Lecture 06 | Geometry

Constructive Solid Geometry [Implicit]

• Build more complicated shapes via Boolean operations
• Basic operations:

• Can be used to form complex shapes!



15-462/662 | Computer Graphics Lecture 06 | Geometry

Blobby Surfaces [Implicit]

• Instead of Booleans, gradually blend surfaces together:

• Easier to understand in 2D:

f=.5 f=.4 f=.3

(Gaussian centered at p)

(Sum of Gaussians centered at different points)



15-462/662 | Computer Graphics Lecture 06 | Geometry

Level Set Methods [Implicit]

• Implicit surfaces have some nice features (e.g., merging/splitting)
• But, hard to describe complex shapes in closed form
• Alternative: store a grid of values approximating function

• Surface is found where interpolated values equal zero
• Provides much more explicit control over shape (like a texture)
• Unlike closed-form expressions, runs into problems of aliasing!



15-462/662 | Computer Graphics Lecture 06 | Geometry

Fractals [Implicit]

• No precise definition; exhibit self-similarity, detail at all scales
• New “language” for describing natural phenomena
• Hard to control shape!



15-462/662 | Computer Graphics Lecture 06 | Geometry

Point Cloud [Explicit]

• Easiest representation: list of points	(𝑥, 𝑦, 𝑧)
• Often augmented with normal

• Easily represent any kind of geometry

• Easy to draw dense cloud (>>1 point/pixel)

• Easy for simulation

• Large lookup time

• Large memory overhead
• Hard to interpolate undersampled regions
• Hard to do processing / simulation /
• Result is just as good as the scan



15-462/662 | Computer Graphics Lecture 06 | Geometry

Triangle Mesh [Explicit]

• Large memory overhead
• Store vertices as triples of coordinates (x,y,z)
• Store triangles as triples of indices (i,j,k)

• Easy interpolation with good approximation
• Use barycentric interpolation to define points 

inside triangles

• Polygonal Mesh: shapes do not need to be 
triangles
• Ex: quads

0

1

2

3

x  y  z
0: -1 -1 -1
1:  1 -1  1
2:  1  1 -1
3: -1  1  1

[ VERTICES ]
i j k
0  2  1
0  3  2
3  0  1
3  1  2

[ TRIANGLES ]



15-462/662 | Computer Graphics Lecture 07 | Geometry Processing

Loop Subdivision

Step 1: 

Step 2: Step 3: 

Split triangle 
into 4 triangles

Assign new coords Assign old coords
1/8

1/8

3/8 3/8

u u

u

uu

u

1 - nu

n - vertex degree
u - 3/16 if n=3
      3/(8n) otherwise



15-462/662 | Computer Graphics Lecture 07 | Geometry Processing

Loop Subdivision Using Local Ops

Step 1: 

Step 2: 
Flip new edges until they touch two new vertices

Split all edges in any order

flip

split



15-462/662 | Computer Graphics Lecture 07 | Geometry Processing

Isotropic Remeshing

Step 1: Step 2: 

Step 3: Step 4: 

collapsesplit

flip average



15-462/662 | Computer Graphics Lecture 08 | Spatial Structures

BVH Example

Bounding boxes will sometimes intersect!



15-462/662 | Computer Graphics Lecture 08 | Spatial Structures

K-D Trees

B

A

A

B C

C

D

E F

D E

F

• Recursively partition space via axis-aligned 
partitioning planes
• Interior nodes correspond to spatial splits
• Node traversal proceeds in front-to-back order
• Unlike BVH, can terminate search after first hit 

is found 
• Still 𝑂(log(𝑁)) performance



15-462/662 | Computer Graphics Lecture 08 | Spatial Structures

Uniform Grid

• Partition space into equal sized volumes (volume-
elements or “voxels”)

• Each grid cell contains primitives that overlap voxel. 
(very cheap to construct acceleration structure)

• Walk ray through volume in order
• Very efficient implementation possible (think: 3D 

line rasterization)
• Only consider intersection with primitives in 

voxels the ray intersects

• What is a good number of voxels?
• Should be proportional to total number of 

primitives 𝑁
• Number of cells traversed is proportional to 
𝑂(! 𝑁)
• A line going through a cube is a cubed root
• Still not as good as 𝑂(log(𝑁))



15-462/662 | Computer Graphics Lecture 08 | Spatial Structures

Quad-Tree/Octree

• Like uniform grid, easy to build
• Has greater ability to adapt to location of scene 

geometry than uniform grid
• Still not as good adaptability as K-D tree

• Quad-tree: nodes have 4 children
• Partitions 2D space

• Octree: nodes have 8 children 
• Partitions 3D space



15-462/662 | Computer Graphics

• A1: Rasterization

• A2: Geometry

• A3: Rendering

• A4: Animation

Lecture R02 | Final Review



15-462/662 | Computer Graphics Lecture R02 | Final Review

Color & Radiometry

• Absorption vs Emission

• Eyes vs Cameras
• Pupil
• Lens
• Rods
• Cones

• Radiance
• Radiant Energy
• Radiant Energy Density
• Radiant Flux
• Irradiance

• Lambert’s Law



15-462/662 | Computer Graphics Lecture 09 | Color

Emission Spectrum Examples

energy efficient

sun-like



15-462/662 | Computer Graphics Lecture 09 | Color

Absorption Spectrum Examples

plants are green because they do not absorb green light



15-462/662 | Computer Graphics Lecture 09 | Color

‘Eye’ See What You Mean

• Eyes are biological cameras
• Light passes through the pupil [black dot in the eye]
• Iris controls how much light enters eye [colored ring 

around pupil]
• Eyes are sensitive to too much light
• Iris protects the eyes

• Lens behind the eye converges light rays to back of 
the eye
• Ciliary muscles around the lens allow the lens 

to be bent to change focus on nearby/far 
objects

• 130+ million retina cells at the back of the eye
• Cells pick up light and convert it to electrical signal
• Electric signal passes through optic nerve to reach 

the brain
Image appears backwards!

Don’t worry, brain flips it rig
ht-side up



15-462/662 | Computer Graphics Lecture 09 | Color

The Biological Camera

• Pupil is the camera opening
• Allows light through

• Iris is the aperture ring
• Controls aperture

• Lens is the…well, lens
• Can change focus

• Retina is the sensor
• Converts light into electrical signal

• Brain is the CPU
• Performs additional compute to correct 

raw image signal



15-462/662 | Computer Graphics Lecture 09 | Color

Rods & Cones

Rods

Cones
(three types)

• Cones are primary receptors near fovea used under high-light viewing conditions
• Approx. 6-7 million cones in the human eye
• Capture color

• Rods are primary receptors far from fovea used under low-light viewing conditions 
• Approx. 120 million rods in human eye
• Capture intensity

Best vision at center of cones!

Human blind spot



15-462/662 | Computer Graphics Lecture 09 | Color

Spectral Response of Cones

• Long, Medium, and Small cones pick up Long, 
Medium, and Small wavelengths respectively

• Each cone picks up a range of colors given by their 
response functions
• Not much different than absorption spectrum

• Each cone integrates the emission & response to 
produce a single signal to transmit to the brain 

• Uneven distribution of cone types in eye
• ~64% L cones, ~ 32% M cones ~4% S cones

A lot of green picked up!



15-462/662 | Computer Graphics

Radiant Recap

Radiant Energy
(total number of hits)

Joules (J)

Radiant Energy Density
(hits per unit area)

Joules per sq meter (J/𝑚$)

Radiant Flux
(total hits per second)

Watts (W)

Radiant Flux Density
a.k.a. Irradiance

(hits per second per unit area)
Watts per sq meter(W/𝑚$)

Lecture 10 | Radiometry



15-462/662 | Computer Graphics

Lambert’s Law

• Irradiance (𝐸) at surface is proportional to the flux (Φ) and 
the cosine of angle (𝜃) between light direction and surface 
normal:

• Consider rotating a plane away from light rays
• Plane will darken until it is perpendicular to light rays, 

then it will be completely black

Lecture 10 | Radiometry



15-462/662 | Computer Graphics Lecture R02 | Final Review

The Rendering Equation

• The Rendering Equation

• Rendering Methods
• Forwards Path-Tracing
• Backwards Path-Tracing
• Bi-Directional Path-Tracing
• Metropolis Light Transport

• Variance Reduction
• Sampling Rate
• Ray Depth

• BRDFs
• Lambertian
• Mirror
• Glass



15-462/662 | Computer Graphics Lecture 11 | Rendering Equation

The Rendering Equation

outgoing radiance at point 𝐩 in outgoing direction 𝜔-

emitted radiance at point 𝐩 in outgoing direction 𝜔-

scattering function at point 𝐩 from incoming direction 𝜔.  to outgoing direction 𝜔-

incoming radiance to point 𝐩 from direction 𝜔.  



15-462/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Renderer

Pinhole

• Yellow light ray generated from light source

• Ray hits orange specular surface
• Emits a ray in reflected direction
• Mixes yellow and orange color

• Ray hits blue specular surface 
• Emits a ray in reflected direction
• Mixes blue and yellow and orange

• Ray passes through pinhole camera
• Light recorded on photoelectric cell
• Incident pixel will be brown in final image



15-462/662 | Computer Graphics Lecture 11 | Rendering Equation

Hemholtz Reciprocity

• Reversing the order of incoming and 
outgoing light does not affect the BRDF 
evaluation
• 𝑓/ p, 𝜔. → 𝜔-  = 𝑓/ p, 𝜔- → 𝜔.

• Critical to reverse pathtracing algorithms
• Allows us to trace rays backwards and 

still get the same BRDF affect

𝐩

𝜔.  𝜔, 

𝐩

𝜔- 𝜔.  



15-462/662 | Computer Graphics Lecture 11 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿0 𝑟𝑎𝑦( + 𝑓/(𝑜𝑏𝑗()[𝐿0 𝑟𝑎𝑦* + 𝑓/(𝑜𝑏𝑗*)[𝐿0 𝑟𝑎𝑦1 ]]

𝐿 𝑝𝑖𝑥𝑒𝑙	 = 	 +𝑓/ 	 [	 +𝑓/ 	 [	 ]]

• Intersect       , no emission 
• Intersect       , no emission 
• Ray terminate, emission

[ ray depth 2 ]



15-462/662 | Computer Graphics

Bidirectional Path Tracing

Lecture 13 | Variance Reduction

• If path tracing is so great, why not do it twice?
• Main idea of bidirectional!

• Trace a ray from the camera into the scene
• Trace a ray from the light into the scene

• Connect the rays at the end

• Unbiased algorithm
• No longer trying to connect rays through 

non-volume sources

• Can set different lengths per ray
• Example: Forward m = 2, Backward m = 1



15-462/662 | Computer Graphics

Metropolis Light Transport

Lecture 13 | Variance Reduction

[ Path Tracing ] [ Metropolis Light Transport ]

• Similar idea: mutate good paths

• Water causes paths to refract a lot
• Small mutations allows renderer to find 

contributions faster

• Path Tracing and MLT rendered in the same time



15-462/662 | Computer Graphics

Number Of Ray Samples

• Number of Rays
• How many rays we trace into the scene

• Measured as samples (rays) per pixel [spp]

• Increasing the number of rays increases the quality 
of the image
• Anti-aliasing
• Reduces black spots from terminating emission 

occlusion [ 16 spp ]
[ 1 spp ]

Lecture 13 | Variance Reduction



15-462/662 | Computer Graphics

Number Of Ray Bounces

• Number of Ray Bounces
• How many times a ray bounces before it 

terminates
• Measured as ray bounce or depth

• Increasing the number of ray bounces increases the 
quality of the image
• Better color blending around images
• More details reflected in specular images

[ 8 depth ]
[ 2 depth ]

Lecture 13 | Variance Reduction



15-462/662 | Computer Graphics Lecture 12 | BRDFs

Lambertian Material

• Also known as diffuse

• Light is equally likely to be reflected in each output 
direction
• BRDF is a constant, relying on albedo (𝜌)

• BRDF can be pulled out of the integral

• Easy! Pick any outgoing ray 𝑤- 
Minions (2015) Illumination Entertainment



15-462/662 | Computer Graphics Lecture 12 | BRDFs

Reflective Material
[ side view ]

[ top view ]

• Reflectance equation described as:

• Why is the ray 𝜔.  pointing away from the surface?
• Just syntax. Incoming and outgoing rays share 

same origin point p

• BRDF represented by dirac delta (𝛿) function:

• 1 when ray is perfect reflection, 0 everywhere else
• All radiance gets reflected, nothing absorbed

• In practice, no hope of finding reflected direction via 
random sampling
• Simply pick the reflected direction!



15-462/662 | Computer Graphics Lecture 12 | BRDFs

Refractive Material
[ side view ]

[ top view ]

• Refractive equation described as:

• Also known as Snell’s Law

• 𝜂.  and 𝜂2 describe the index of refraction of the incoming 
and outgoing mediums
• Example: 𝜂.  is air, 𝜂2 is water 

• 𝜂 is the ratio of the speed of light in a vacuum to that 
in a second medium of greater density
• The larger the 𝜂, the denser the material

Vacuum
Air (sea level)
Water (20°C)
Glass
Diamond

1.0
1.00029
1.333
1.5-1.6
2.42

Medium 𝜼



15-462/662 | Computer Graphics Lecture 12 | BRDFs

Refractive Material
[ side view ]

[ top view ]

• Refractive equation described as:

• Also known as Snell’s Law

• Can rewrite the equation as:



15-462/662 | Computer Graphics Lecture 12 | BRDFs

Types of Reflectance Functions

Ideal Specular

• Perfect mirror

Ideal Diffuse

• Uniform in all directions

Glossy Specular

• Majority of light in reflected direction

Retroreflective

• Reflects light back towards source



15-462/662 | Computer Graphics

• A1: Rasterization

• A2: Geometry

• A3: Rendering

• A4: Animation

Lecture R02 | Final Review



15-462/662 | Computer Graphics Lecture R02 | Final Review

Principles Of Animation

• 12 Principles
• Easing
• Arcs
• Timing

• Motion Graphs
• Displacement
• Velocity
• Acceleration

• Splines
• Natural Splines
• Hermite/Bezier Curves
• B-Splines



15-462/662 | Computer Graphics Lecture 14 | Animation Principles

• Onion-Skinning is a tool that lets you see previous and 
future frames at a lower opacity
• Helps when you have two keyframes and want to add 

an in-between frame
• Based off translucency of cel paper

• Can also help visualize the spatial trajectory and motion of 
objects
• Good debugging tool to make sure trajectories are arc 

like and maintain proportions

Onion Skinning



Illusion of Life, 1999

15-462/662 | Computer Graphics Lecture 14 | Animation Principles

Easing

• Easing is a strategy where objects accelerate into and out 
of their motion
• Derived from physics 
• Objects with inertia have to feel a force in order to 

ease their way into a new momentum

• Visualized in a 1D chart with tick marks with equal time 
separation but varying spatial separation
• The closer the tick marks, the smaller the spatial 

separation, and the slower the motion.

• Draw a frame in the middle of frames 1 and 9 (call it 5), 
then a frame between 1 and 5 (call it 4), then 1 and 4 (call 
it 3), and then 1 and 3 (call it 2)
• Referred to as subdivision 
• Easy strategy to guarantee appropriate easing



• Straight Ahead is the process of drawing in every frame 
sequentially
• Easier to create more realistic movements this way, 

but harder to keep proportions constant 
• Characters end up being less dynamic and less 

exaggerated

• Pose to Pose is the process of drawing in key frames 
first, and then going back to draw in-betweens
• Allows for more controlled and dynamic posing
• Adopted more in animation settings where 

computers are able to help out with the in-
between stages

• With Pose to Pose, senior artists draw keyframes, junior 
artists draw in-betweens

The Animator’s Survival Kit (2001) Richard Williams

15-462/662 | Computer Graphics Lecture 14 | Animation Principles

Straight Ahead vs. Pose To Pose



• Timing is how the motions play out, and at what time intervals
• Used to determine how fast an object should be moving

• How many frames should be used for the motion?
• The more frames, the slower

• Temporal linear interpolation: velocity never changes
• Temporal non-linear interpolation: velocity changes

15-462/662 | Computer Graphics Lecture 14 | Animation Principles

Timing



• Arc Motions guarantee that spatial trajectories are arc-like
• Helps to build fluidity in the motion

• Joints rotate instead of translating
• Allows for arc-like movements

• Walk cycles are a combination of many arc movements

15-462/662 | Computer Graphics Lecture 14 | Animation Principles

Arc Motions



15-462/662 | Computer Graphics Lecture 15 | Kinematics

Natural Splines

• Can build a spline out of piecewise cubic polynomials 𝑝.
• Each polynomial extends from range 𝑡 = [0,1]
• Polynomials should connect on boundary 

• Keyframes agree at endpoints [C0 continuity]:

• Tangents agree at endpoints [C1 continuity]:

• Curvature agrees at endpoints [C2 continuity]:

• Total equations:
• 2n + (n-1) + (n-1) = 4n – 2

• Total DOFs:
• 2n + n + n = 4n

• Set curvature at endpoints to 0 and solve

𝑝.(𝑡.) = 𝑓. , 𝑝.(𝑡.'() = 𝑓.'(, ∀𝑖 = 0, … , 𝑛 − 1

𝑝′. 𝑡.'( = 𝑝′.'( 𝑡.'( , ∀𝑖 = 0, … , 𝑛 − 2

𝑝′′. 𝑡.'( = 𝑝′′.'( 𝑡.'( , ∀𝑖 = 0, … , 𝑛 − 2

𝑝′, 𝑡, = 0, 𝑝′′, 𝑡.'( = 0



15-462/662 | Computer Graphics Lecture 15 | Kinematics

Hermite/Bézier Splines

• Each cubic “piece” specified by endpoints and tangents
• Keyframes set at endpoints:

• Tangents set at endpoint:

• Natural splines specify just keyframes
• Bezier splines specify keyframes and tangents
• Can get continuity if tangents are set equal

• Total equations:
• 2n + 2n = 4n

• Commonly used in vector art programs
• Illustrator
• Inkscape
• SVGs

𝑝.(𝑡.) = 𝑓. , 𝑝.(𝑡.'() = 𝑓.'(, ∀𝑖 = 0, … , 𝑛 − 1

𝑝′. 𝑡. = 𝑢.,	 𝑝′. 𝑡.'( = 𝑢.,'(	, ∀𝑖 = 0, … , 𝑛 − 1



15-462/662 | Computer Graphics Lecture 15 | Kinematics

B-Splines

• Compute a weighted average of nearby keyframes when 
interpolating

• B-spline basis defined recursively, with base condition:

• And inductive condition:

• B-spline is a linear combination of bases:
degree



15-462/662 | Computer Graphics Lecture 15 | Kinematics

Splines Review

[ Interpolation ] [ Continuity ] [ Locality ]

Linear

Natural

✓

Hermite

B-Spline

Bezier

Catmull-Rom

✓

✓

✓

✓

✗

✓

✗

✓

✓

✓

✓

✗

✓

✗

✗

✗

✓



15-462/662 | Computer Graphics Lecture R02 | Final Review

Simulations

• ODE vs PDE

• Time Integration
• Forwards Euler
• Symplectic Euler

• Lagrangian
• 2nd Derivative

• Boundary Conditions
• Dirichlet
• Neumann



15-462/662 | Computer Graphics

ODEs vs. PDEs

[ PDE ] yeeted rock lands in pond[ ODE ] yeeting a rock

𝑑$

𝑑𝑡$
𝐱(𝑡) = 𝐠

𝑑$

𝑑𝑡$
ℎ(𝑡, 𝑥, 𝑦) = Δℎ(𝑡, 𝑥, 𝑦)

Aren’t both a function of space and time?

A single object (rock) in time Millions of objects (droplets) in time

The region of droplets we want to 
solve over is our spaceNo additional space parameter

Lecture 16 | Simulations



15-462/662 | Computer Graphics

Explicit Euler Methods

𝑞%&' = 𝑞% + 𝜏 ∗ 𝑣%

𝑣%&' = 𝑣% + 𝜏 ∗ 𝑎(𝑞%)

𝑞%&' = 𝑞% + 𝜏 ∗ 𝑣%&'

𝑣%&' = 𝑣% + 𝜏 ∗ 𝑎(𝑞%)
𝑞%&' = 𝑞% + 𝜏 ∗ 𝑣%&'

𝑣′%&' = 𝜏 ∗ 𝑎(𝑞%)

𝑣′′%&' = 𝜏 ∗ 𝑎(𝑞% +
𝑣(%&'
2

)

𝑣%&' = 𝑣% + 𝑣′′%&'

[ Forward ]

[ Symplectic ]

[RK2 ]

[ Verlet ]

𝑞%&' = 𝑞% + 𝜏 ∗ 𝑣%&'

𝑣%&' = 𝑣%&).+ +
𝜏
2 ∗ 𝑎(𝑞%)

𝑣%&'.+ = 𝑣%&' +
𝜏
2
∗ 𝑎(𝑞%)

𝑞%&' = 𝑞% +
'
,
(𝑣(%&' + 2𝑣′′%&'+ 2𝑣′′′%&'+ 𝑣′′′′%&')

𝑣′%&' = 𝜏 ∗ 𝑎(𝑞%)

𝑣′′%&' = 𝜏 ∗ 𝑎(𝑞% +
𝑣(%&'
2 )

[ RK4 ]

𝑣′′′%&' = 𝜏 ∗ 𝑎(𝑞% +
𝑣(′%&'
2

)

𝑣′′′′%&' = 𝜏 ∗ 𝑎(𝑞% + 𝑣(′′%&')

Lecture 16 | Simulations



15-462/662 | Computer Graphics

The Laplacian Operator

• All of our model equations used the Laplace operator
• Laplace Equation   ∆𝑢 = 0
• Heat Equation          𝑢̇ = ∆𝑢
• Wave Equation         𝑢̈ = ∆𝑢

• Unbelievably important object showing up everywhere across physics, 
geometry, signal processing, and more

• What does the Laplacian mean?
• Differential operator: eats a function, spits out its 2nd derivative
• What does that mean for a function: 𝑢:ℝ3 → ℝ?

• Divergence of gradient

• Sum of second derivatives

• Deviation from local average
• …

Lecture 16 | Simulations



15-462/662 | Computer Graphics

Dirichlet Boundary Conditions

Dirichlet: boundary data always set to fixed values

Example: 𝜙(0) = 𝑎, 𝜙(1) = 𝑏

Many possible functions interpolate values in between

Lecture 16 | Simulations



15-462/662 | Computer Graphics

Neumann Boundary Conditions

Neumann: specify derivatives across boundary

Example: 𝜙!(0) = 𝑢, 𝜙!(1) = 𝑣

Again, many possible functions

Lecture 16 | Simulations



15-462/662 | Computer Graphics

Good Luck!

Lecture 16 | Simulations



Course Wrapup
15-462 / 15-662 Computer Graphics



Upcoming Courses
Fall 2024

15-327/15-627        Monte Carlo Methods and Applications    Keenan Crane, Gautam Iyer
15-362/15-662               Computer Graphics                           Oscar Dadfar, Minchen Li
15-463/15-663/15-862 Computational Photography              Ioannis Gkioulekas
15-466/15-666            Computer Game Programming         Jim McCann
15-473/15-673       Visual Computing Systems               Oscar Dadfar
15-472/15-672/15-772 Real-Time Graphics                          Jim McCann

Spring 2025

15-367/15-867       Algorithmic Textiles Design           Jim McCann
15-458/15-858       Discrete Differential Geometry       Keenan Crane 
15-362/15-662         Computer Graphics                       Nancy Pollard  
15-464/15-664      Technical Animation                        Nancy Pollard
15-468/15-668/15-868 Physics-based Rendering              Ioannis Gkioulekas 
15-769                           Physics-based Animation of Solids and Fluids         Minchen Li

16-726            Learning-based Image Synthesis                            Jun-Yan Zhu 



 CMU 15-462/662



 CMU 15-462/662



 CMU 15-462/662



 CMU 15-462/662

15-466/15-666 Computer Game Programming

http://graphics.cs.cmu.edu/courses/15-466-f21/



 CMU 15-462/662



 CMU 15-462/662



 CMU 15-462/662



 CMU 15-462/662



 CMU 15-462/662

15-367/15-867 Algorithmic Textiles Design

http://graphics.cs.cmu.edu/courses/15-869K-s21/



 CMU 15-462/662
https://brickisland.net/DDGSpring2022/



 CMU 15-462/662
https://brickisland.net/DDGSpring2022/



 CMU 15-462/662

15-464/15-664 Technical Animation

http://graphics.cs.cmu.edu/nsp/course/15464-s21/www/



http://graphics.cs.cmu.edu/
courses/15-468/2021_spring/



16-726 Learning-Based Image Synthesis

https://learning-image-synthesis.github.io/sp22/



Graphics Concentration



Your projects!



A1



Livia Lai



Livia Lai



Andy Jiang



Ryan Lau



Jack Liu



Angus Koon Yan Yiu



Dazhou Hou



A2



??



??



??



??



A3



Steven Lee



Xun Zhang



Raymond Luo



Taylor Kynard



Emily Amspoker



Annie Li



A4



 CMU 15-462/662

Thanks for being a great class! 
See you at the final! (study hard, but don’t stress too much)

Credit: Inside Out (Pixar)


	ReviewPart2
	Fall2023Review
	CourseWrapup

