Final Exam Review
Part 2

15-462 [15-662 Computer Graphics

Numerical Integration

In rendering (global illumination), what are we integrating, i.e., what integral
do we want to evaluate?

How do we use the trapezoid rule to integrate a function?

How does work increase with dimensionality of our function?
- This is why we typically use Monte Carlo integration in graphics!

Give a high level overview of the process of Monte Carlo integration

What is a probability density function (PDF)?

What is a Cumulative Distribution Function (CDF)?

The Inversion Method can be used to correctly draw a sample from a PDF.
- Sketch the overall step by step process for using the Inversion Method

What is rejection sampling? Show how to use rejection sampling to sample
area of a circle, volume of a sphere, directions on a sphere, and solid angles
from a hemisphere.

(MU 15-462/662

Monte Carlo Rendering

B What is Expected Value? .. Variance? ..Bias?

B What is Importance Sampling? How is it used in cosine-weighted sampling of
the hemisphere?

B Whatis the Monte Carlo method (in general)?

B Explain how a Monte Carlo method can be used to solve the Rendering
Equation.

B What is Russian Roulette and why do we need it?

B How can we use Russian Roulette and still have an unbiased estimator?

Variance Reduction

Be familiar with the following expression for Monte Carlo integration. What is the role of each

term? 1
[= lim V(Q)EZ]"(X,;)
i=1

n—oo

Give an example of how we can reduce variance in our rendered results in a path tracing
algorithm without increasing the number of samples.

What does it mean for an estimator to be consistent?
What does it mean for an estimator to be unbiased?

Give a concrete example of how a renderer could give a biased estimate of animage. Is the
renderer in your example consistent? Explain your answer.

Give five examples of how you can reweight samples in a pathtracing algorithm in order to do
importance sampling.

What are the main ideas behind bidirectional path tracing?
How would you enumerate all possible paths in a scene?
How does Metropolis-Hastings sampling work?

Assume you have code to generate random paths and code to mutate existing paths. Write
pseudocode for Metropolis-Hastings path tracing.

(MU 15-462/662

More Variance Reduction

What is Stratified Sampling?
Why is it preferred to random sampling?

Hammersley and Haltmwmints are pseudo random sampling techniques to Igenerate points
with Ilow7 discrepancy. What is discrepancy? Why do we want to generate low discrepancy
samples?

Give a concise one sentence description of each of the following rendering algorithms that
mabkes it clear the differences between them. Use a diagram to illustrate your description:

m Rasterization

Ray casting

Ray tracing

Path tracing

Bidirectional path tracing
Metropolis Light Transport
Photon Mapping

m Radiosity

Which of these algorithms are best for capturing reflective surfaces? caustics? color
bleeding? subsurface scattering? refraction?...

(MU 15-462/662

Intro to Animation

How were the first animations created? How were the first films
created? Give some examples.

Describe some of the first computer generated animations, giving the
developer / artist and timeframe.

Animations are created from keyframes. How do we interpolate
between those keyframes?

Why do we avoid splines of degree higher than three in computer
graphics?

Write a cubic polynomial P(t) in parameter t, which may describe a
cubic spline.

What are the constraints for P(t) to interpolate endpoints p1 at time
t=0 and p2 at time t=1?

What are the constraints for P(t) to have tangent vector rl at time t=0
and r2 at time t=1?

Intro to Animation

= This pair of constraints describes a Hermite spline. Derive the
polynomial coefficients for the Hermite spline and write the cubic
polynomial in terms of p1, p2, rl, and r2.

= Put your result in matrix form.

= Give properties of the Hermite spline in terms of continuity (C1, C2,
etc..), interpolation, and local control.

= What type of spline has C2 continuity and interpolation, but not local
control?

= What type of spline has C2 continuity and local control, but does not
interpolate its key points?

= What are Catmull-Rom splines? How are tangents computed for
Catmull-Rom splines?

= What are blend shapes and where are they used? What exactly is
interpolated when using blend shapes for animation?

Intro to Animation

m Bezier, Hermite, and Catmull-Rom splines are really all the same
thing. Any one representation can be converted to any of the
others. Explain the differences between them.

m Beable to express a Hermite spline in different ways — as a cubic
polynomial, in matrix form, or derive it from its control
parameters.

m How do we ensure con_tinyity between cubicspline sgglmgnts? o
contmul!'ty? .. (1 continuity? ..1is (2 continuity possible in
general’?

Dynamics and Time Integration

= Whatis the “animation equation”?

= Whatis the difference between an ODE and a PDE? Give some
examples of systems we can simulate by integrating an ODE.

= Sketch an overall system for simulating an ODE using a block
diagram. Be clear about what is the state, how you advance the
state forward in time, and what integrator you are choosing.

= When is the Euler-Lagrange equation useful?

= Be able to work through a simple example of obtaining dynamic
equations of motion using Lagrangian mechanics.

. Dle%ﬁribe how to put together a mass-spring system to simulate
cloth.

= What are the forces on each cloth “particle”?

= What is Forward Euler integration and what is its disadvantage?
Can you show a simple example where it fails?

. Wha’% is Backward Euler integration and what are its pros and
cons:

= Whatis Symplectic Euler integration?

Kinematics

m Beable to describe an optimization problem in standard form (parameters,
objective, and constraints) and give a couple of simple examples.

m How do you know you have a minimum of an objective function in an
optimization problem without constraints? What must be true?

m Whatis the difference hetween forward and inverse kinematics?

m |sforward kinematics an optimization problem? Is inverse kinematics an
optimization problem?

_ WLitci an expression for the forward kinematics of a simple character or
robot.

m Wll;ai is the Jacobian? Compute the Jacobian for a simple character or
robot.

m What is the Jacobian Transpose technique for inverse kinematics? Isit
guaranteed to converge? What does that mean in J)ractlce? Does it give
a locally optimal solution or a globally optimal one? Why?

Ph

ysically Based Animation and PDEs

What is the difference between a PDE and an ODE? Give
examples of when you might use each one and why.

Interpret this sentence using an equation and a diagram: Solvin
a PDE looks like “use neighbor information to get velocity (...an
then add a little velocityeach time)

Burger’s equation is first order in time and second order in space.
What does that mean? What are the orders of the La%Iace
equation? The heat equation? The wave equation? Be able to
figure out the order of an equation from an expression of the
equation itself.

What are examples of questions we can answer using the Laplace
equation, the heat equation, and the wave equation
respectively?

Outline the basic strategy for solving a PDE.

What is the Laplace operator? Write it out as a sum of partial
derivatives.

Copy down the heat equation from the slides. Write out the
process of solving this equation using Forward Euler integration.

Copy down the wave equation from the slides. Write out the
process of solving this equation using Forward Euler integration.

Physically Based Animation and PDEs

m Beable to use the grid version of the Laplacian to do smoothing on a grid.

You may find these slides from last
semester’s review helpful

* Al: Rasterization
* A2: Geometry
* A3: Rendering

* A4: Animation

15-462/662 | Computer Graphics Lecture R0O2 | Final Review

Pixel Pushing

e Shaders
* Vertex Shader
* Fragment Shader

* Texturing
* Nearest Neighbor
e Bilinear Filtering
e Trilinear Filtering

* Perspective Transform

* Scene Graphs

15-462/662 | Computer Graphics Lecture RO2 | Final Review

The Graphics Pipeline

Ventex/index buffer

l 9 * Sometimes called the:
e 1A2 3D Graphics Pipeline
! - * Rasterization Pipeline
e | | <] + GPU Pipeline
v 0 * GPU was designed specifically to run this pipeline fast
Tessellation 1-%2
* Entire pipeline was fixed-function.
Geomet:;shader 4@73 * You provide the data, a vertex shader, and a
N fragment shader, and the GPU does the rest.
v L e Fixed-function == fast!
Rasterization e o * By limiting what an architecture can do, that
HHH makes the architecture really good at what it
v T can do.
Fragment shader E_::::: - * |n graphics, we need to run the same

operations over millions of datapoints.

\ 4

Color blending

l Graphics Pipeline Tutorial (2019) Vulkan

Framebuffer

15-462/662 | Computer Graphics

Nearest Neighbor Sampling

* Idea: Grab texel nearest to requested location in
texture x" « round(x), y' « round(y)

* Requires: t « tex.lookup(x',y’)
* 1 memory lookup
* O linear interpolations

15-462/662 | Computer Graphics

Bilinear Interpolation Sampling

* |dea: Grab nearest 4 texels and blend them

together based on their inverse distance from x" « floor(x), y' « floor(y)
the requested location
» Blend two sets of pixels along one axis, Ax < x —x'
then blend the remaining pixels Ay «y =y
« Requires: txy) < tex.lookup(x',y")
* 4 memory lookup tx+1,y) < tex.lookup(x' +1,y")
* 3linear interpolations Lix,y+1) < tex. lookup(x',y" + 1)

tx+1,y+1) < tex.lookup(x’,+1y’ + 1)

Lerp 1&2 Lerp 3 t, < (1 —Ax) * t(x,y) + Ax * t(x+1,y)
. . oo o e ty « (1 - AX) * t(x,y+1) + Ax * t(x+1»3’+1)
o . ; -)
. . oo o — l t(_(l_Ay)*tx-l_Ay*ty

15-462/662 | Computer Graphics

Trilinear Interpolation Sampling

* ldea: Perform bilinear interpolation on two
layers of the mip-map that represents proper
minification/magnification, blending the results

together

* Requires:
8 memory lookup
e 7 linear interpolations

Level ceil(d)

Bilerp (3 Lerps)

Level floor(d)

—> (] ([]

15-462/662 | Computer Graphics

Bilerp (3 Lerps)

(1 Lerp)
—

[2 du® N dv*
x dx dx
) du? N dv*
P —— —_—

Y ody dy

L « \/maX(sz,Lyz)
d < log, L

d' < floor(d)
Ad «d —d

ty < tex[d']. bilinear(x,y)
tg+q1 < tex[d + 1].bilinear(x,y)
t—(1—Ad)*ty;+Ad *ty,q

Perspective Projection

- parallelline
converge at
the horizon

15-462/662 | Computer Graphics

Perspective Projection

: (1,1,1)

L

i

(_11_11_1) ::

Original description Object relative to camera. Everything visible to camera
of object. Camera at origin looking down —z axis. mapped to a cube.

wh v

(1,1)
[Rasterization Stage] ‘— 4—
(O, 0) (_11_1)
Coordinates stretched to image dims. Everything visible to camera
Image flipped upside down. mapped to a cube.

15-462/662 | Computer Graphics

Scene Graph Ao

e Suppose we want to build a skeleton out of cubes

* Idea: transform cubes in world space
e Store transform of each cube

left
upper leg
right
upper leg
left
lower leg

right
lower leg

head

Gghtam

* Problem: If we rotate the left upper leg, the lower left
leg won’t track with it
* Better Idea: store a hierarchy of transforms
 Known as a scene graph
* Each edge (+root) stores a linear
transformation
* Composition of transformations gets applied

left arm body right arm

to nodes :
_ right left
* Keep transformations on a stack to upper leg upper leg
reduce redundant multiplication
: left
right lower leg

* Lower left leg transform: A, A4, lower leg

15-462/662 | Computer Graphics

Instancing

* What if we want many copies of the same objectin a
scene?

e Rather than have many copies of the geometry,
scene graph, we can just put a “pointer” node in
our scene graph

e Saves a reference to a shared geometry
* Specify a transform for each reference
e Careful: Modifying the geometry will
modify all references to it

Realistic modeling and rendering of plant ecosystems
(1998) Deussen et al

.- S~

---------------------------- ’

. dandelion

~
~

-
~

- S~

-
~

15-462/662 | Computer Graphics

* A2: Geometry
* A3: Rendering

* A4: Animation

15-462/662 | Computer Graphics Lecture R0O2 | Final Review

Meshes

e Types of Geometric Representations
e Algebraic Surfaces
* (CSG
e Blobby
e Level Set
* Fractals
* Point Cloud
* Meshes

e Global Mesh Operations
e Subdivision
* Isotropic Remeshing

e Spatial Data Structures
e BVH

e KD-Tree
* Uniform Grid
 Quadtree/Octree

15-462/662 | Computer Graphics

Algebraic Surfaces [Implicit]

Assume a spherical cow of uniform density.

* Simple way to think of it: a surface built with algebra [math]
* Generally thought of as a surface where points are some radius
r away from another point/line/surface

* Easy to generate smooth/symmetric surfaces
 Difficult to generate impurities/deformations

OOV

ety 22 =1 — V22 +y2)? 4 2% =1 (22 +T+Z

9y? 23

2.3
x°zw + 30

15-462/662 | Computer Graphics Lecture 06 | Geometry

Constructive Solid Geometry [Implicit]

* Build more complicated shapes via Boolean operations
* Basic operations:

* Can be used to form complex shapes!

15-462/662 | Computer Graphics Lecture 06 | Geometry

Blobby Surfaces [Implicit]

* Instead of Booleans, gradually blend surfaces together:

28000006

. 2
* Easier to understand in2D: ¢, (z):=e 2=PI" " (Gaussian centered at p)

f = ¢p + ¢q (Sum of Gaussians centered at different points)

o, o

15-462/662 | Computer Graphics Lecture 06 | Geometry

Level Set Methods [Implicit]

* Implicit surfaces have some nice features (e.g., merging/splitting)
* But, hard to describe complex shapes in closed form
* Alternative: store a grid of values approximating function

The aerodynamics of a cow:

e Surface is found where interpolated values equal zero
* Provides much more explicit control over shape (like a texture)
* Unlike closed-form expressions, runs into problems of aliasing!

15-462/662 | Computer Graphics

Fractals [Implicit]

* No precise definition; exhibit self-similarity, detail at all scales
* New “language” for describing natural phenomena
* Hard to control shape!

15-462/662 | Computer Graphics

Point Cloud [Explicit]

* Easiest representation: list of points (x, y, z)
* Often augmented with normal

* Easily represent any kind of geometry
* Easy to draw dense cloud (>>1 point/pixel)
e Easy for simulation
e Large lookup time
e Large memory overhead
* Hard to interpolate undersampled regions

* Hard to do processing / simulation /
* Resultis just as good as the scan

15-462/662 | Computer Graphics

Triangle Mesh [Explicit]

3
e Large memory overhead
» Store vertices as triples of coordinates (x,y,z) [VERTICES] [TRIANGLES]
» Store triangles as triples of indices (i,j, k) X y z i j k
0O: -1 -1 -1 0O 2 1 ”
e Easy interpolation with good approximation 1: 1 -1 1 0 3 2 0
* Use barycentric interpolation to define points 2: 1 1 -1 3 0 1
inside triangles 3: -1 1 1 3 1 2 |
1
* Polygonal Mesh: shapes do not need to be qb] P+ i+ = 1
. 1] -
triangles i, iy o > 0 P,
* Ex: quads J
; A " P
L i — b .
¢ p = ¢ip; + iP; + PxPx

Pk

15-462/662 | Computer Graphics

Loop Subdivision

Step 1:
Split triangle
into 4 triangles

Step 2:

Assign new coords

1/8

3/8

1/8

3/8

Step 3:
Assign old coords

n - vertex degree
u-3/16if n=3
3/(8n) otherwise

1-nu

15-462/662 | Computer Graphics

Loop Subdivision Using Local Ops

Step 1:
Split all edges in any order

split VANV
N
Step 2:

Flip new edges until they touch two new vertices

sy AW v flip T A Yy v,
VOAN VDAVAAN

15-462/662 | Computer Graphics

Isotropic Remeshing

Step 1: Step 2:
flip average
Step 3: Step 4.
split collapse
— —

15-462/662 | Computer Graphics Lecture 07 | Geometry Processing

BVH Example

VARRAN

_MA

Bounding boxes will sometimes intersect!

15-462/662 | Computer Graphics

K-D Trees

e Recursively partition space via axis-aligned
partitioning planes
* Interior nodes correspond to spatial splits
* Node traversal proceeds in front-to-back order
* Unlike BVH, can terminate search after first hit
is found
 Still O(log(N)) performance

A

15-462/662 | Computer Graphics Lecture 08 | Spatial Structures

Uniform Grid

* Partition space into equal sized volumes (volume-
elements or “voxels”)
* Each grid cell contains primitives that overlap voxel.
(very cheap to construct acceleration structure)
* Walk ray through volume in order
* Very efficient implementation possible (think: 3D
line rasterization)
* Only consider intersection with primitives in
voxels the ray intersects

 What is a good number of voxels?
e Should be proportional to total number of
primitives N
* Number of cells traversed is proportional to
0(VN)
* Aline going through a cube is a cubed root
* Still not as good as O (log(N))

15-462/662 | Computer Graphics

Quad-Tree/Octree

e Like uniform grid, easy to build
* Has greater ability to adapt to location of scene
geometry than uniform grid
» Still not as good adaptability as K-D tree

* Quad-tree: nodes have 4 children
* Partitions 2D space

* Octree: nodes have 8 children
* Partitions 3D space

15-462/662 | Computer Graphics

o f Gogeetry
* A3: Rendering

* A4: Animation

15-462/662 | Computer Graphics Lecture R0O2 | Final Review

Color & Radiometry

e Absorption vs Emission

* Eyes vs Cameras
* Pupil
* Lens
* Rods
* Cones

e Radiance
e Radiant Energy
e Radiant Energy Density
e Radiant Flux
* Irradiance

e Lambert’s Law

15-462/662 | Computer Graphics

Emission Spectrum Examples

sun-like

Daylight N g

energy efficient

500 600 500 400 7 . 500 00
wavelength [nm) -'cwe ergth r| we ength (nm)
Halogen Cool White LED
! 105-
A0
=3 % 60-
o o
< T 404
204

- 500 600 a d me sy

5 400 S0 :
500 , tln.'.') 500 400 ADVANCED MEASUREMENT SYSTEMS
waveength (nm)| wavelengtnh [nm) wavelength [rm)

15-462/662 | Computer Graphics

100

Absorption Spectrum Examples

50—

Percent Absorption

Absorption Spectrum of
Chlorophyll a

/),/5

4

|
650 700

plants are green because they do not absorb green light

15-462/662 | Computer Graphics

‘Eye’ See What You Mean

Ciliary body

Sclera
Choroid

Retina

* Eyes are biological cameras
* Light passes through the pupil [black dot in the eye]

* Iris controls how much light enters eye [colored ring
around pupil]
* Eyes are sensitive to too much light
* lris protects the eyes
* Lens behind the eye converges light rays to back of
the eye
e Ciliary muscles around the lens allow the lens Cornea
to be bent to change focus on nearby/far

objects

Fovea centralis

Optic disc
(bI|nd spot)

Blood vessels

Optic nerve

Suspensory
ligamgnt

e 130+ million retina cells at the back of the eye

e Cells pick up light and convert it to electrical signal as'
* Electric signal passes through optic nerve to reach o™, \(\»vs\d

the brain oe 2pP* ApS
ol

15-462/662 | Computer Graphics

The Biological Camera

* Pupil is the camera opening
e Allows light through

Shutter Button
Flash

Mirrors e lrisis the aperture ring
ﬁ(’% i * Controls aperture

* Lensis the...well, lens

Uikt -. @ Screen e (Can change focus
/ // * Retinais the sensor

/ % Sensor Plate * Converts light into electrical signal
Aperture Ring Mirror Shutter

* Brainis the CPU
* Performs additional compute to correct
raw image signal

15-462/662 | Computer Graphics

Rods & Cones

Ciliary body

Sclera

180 - cones
Choroid ROdS o
Retina _A i o After @sterberg 1935
Iris b
4 £ 140 4 '
—» £ ¥
i . > 2 - ¥
ovea centralis g < 32
— 2 100 4 i
) " v (I
Pupil Optic disc —. g 80 5 s
(blind spot) : e &
- *g_ 60 i3
Blood vessels] ‘ . @ o
_— 8 40 L) g
(" x s
Cornea . CO nes 20 - ..g;
'0_“_#
Lens (three types) 0 +— —
X 70 60 50 40 30 20 10 0 10 30 40 50 60 70 80 90
Optic nerve Temporal Retina Eccentrici | Nasal Retina
Suspensory

ligament

Best Visio
e Cones are primary receptors near fovea used under high-light viewing conditions at Cente,
* Approx. 6-7 million cones in the human eye OfConeS,
* Capture color '
e Rods are primary receptors far from fovea used under low-light viewing conditions
e Approx. 120 million rods in human eye
* Capture intensity

15-462/662 | Computer Graphics

Spectral Response of Cones

* Long, Medium, and Small cones pick up Long,
Medium, and Small wavelengths respectively
e Each cone picks up a range of colors given by their
response functions
* Not much different than absorption spectrum

* Each cone integrates the emission & response to
produce a single signal to transmit to the brain

Normalized cone response (linear energy)

PRV AT

= A B(N)S(A)dA
v
-

* Uneven distribution of cone types in eye
* ~64% L cones, ~ 32% M cones ~“4% S cones

200 A0 500 55 600 650 700
Wavelength (nm)
DN M(N)dX
lot of
8.
(A)L(A)dA een Plckeq),

15-462/662 | Computer Graphics

Radiant Energy
(total number of hits)

Radiant Recap

Radiant Energy Density
(hits per unit area)

Joules (J) Joules per sq meter (J/m?)
Radiant Flux Radiant Flux Pensﬂy
, a.k.a. Irradiance
(total hits per second) (hits per second per unit area)
Watts (W) P P

15-462/662 | Computer Graphics

Watts per sq meter(W/m?)

Lambert’s Law

* Irradiance (E) at surface is proportional to the flux (®) and A
the cosine of angle (@) between light direction and surface
normal:

b B ® cos

A A

E

* Consider rotating a plane away from light rays
* Plane will darken until it is perpendicular to light rays,

then it will be completely black

A= Acosb

15-462/662 | Computer Graphics

The Rendering Equation

* The Rendering Equation

* Rendering Methods
* Forwards Path-Tracing
e Backwards Path-Tracing
e Bi-Directional Path-Tracing
* Metropolis Light Transport

 Variance Reduction
e Sampling Rate
e Ray Depth

* BRDFs
* Lambertian
* Mirror
* Glass

15-462/662 | Computer Graphics

The Rendering Equation

Lo(p, wo) Le(p, wo)+ /Hz fr(p,wi = w,)Li(p, w;) cos O dw;

outgoing radiance at point p in outgoing direction w,

L, (P/ Wo

scattering function at point p from incoming direction w; to outgoing direction w,

)
Le(p,wo) emitted radiance at point p in outgoing direction w,
fr(p,wi = wo)

)

incoming radiance to point p from direction w;

Li(p, w;

15-462/662 | Computer Graphics

Example Of A Simple Renderer

* Yellow light ray generated from light source

e Ray hits orange specular surface
e Emits a ray in reflected direction
* Mixes yellow and orange color

* Ray hits blue specular surface Pinhole

e Emits a ray in reflected direction o
* Mixes blue and yellow and orange

e Ray passes through pinhole camera
e Light recorded on photoelectric cell
* Incident pixel will be brown in final image

15-462/662 | Computer Graphics

Hemholtz Reciprocity

C()O “)i
* Reversing the order of incoming and \ /
outgoing light does not affect the BRDF .
p

evaluation
* fT‘(pr (l)i - wo) =f1‘(pl wo - wi)

e Critical to reverse pathtracing algorithms

w;j w
e Allows us to trace rays backwards and
still get the same BRDF affect \ /
@
p

o

15-462/662 | Computer Graphics

Lo(p, wo)

* Intersect /\ , no emission []
* Intersect /\ , no emission [] 4 Pinhole, p
* Ray terminate, emission o

Example Of A Simple Backwards Renderer
[ray depth 2]

= Le(p,wo)+ /Hz fr(p,wi = wo)Li(p, w;) cos 6 dw;

_'-—
—__
—-—
—-—

L(pixel) = Le(ray1) + f(obj1)[Le(rayz) + fr-(0bjz)[Le (rays)]]

L(pixel) = O +£(A)[O +£CA)[7 1]

—

15-462/662 | Computer Graphics

—

-

Bidirectional Path Tracing

e If path tracing is so great, why not do it twice? * Unbiased algorithm
* Main idea of bidirectional! * No longer trying to connect rays through
non-volume sources
* Trace a ray from the camera into the scene
* Trace aray from the light into the scene e (Can set different lengths per ray
e Connect the rays at the end Example: Forward m = 2, Backward m=1

15-462/662 | Computer Graphics

Metropolis Light Transport

e Similar idea: mutate good paths Q

* Water causes paths to refract a lot
 Small mutations allows renderer to find —
contributions faster

e Path Tracing and MLT rendered in the same time

| [Path Tracing] [Metrpolis Light Transport]

15-462/662 | Computer Graphics

Number Of Ray Samples

* Number of Rays
 How many rays we trace into the scene

* Measured as samples (rays) per pixel [spp]

* Increasing the number of rays increases the quality

of the image
* Anti-aliasing
* Reduces black spots from terminating emission
occlusion

[dds o7 |

15-462/662 | Computer Graphics

Number Of Ray Bounces

 Number of Ray Bounces
« How many times a ray bounces before it
terminates
 Measured as ray bounce or depth

* Increasing the number of ray bounces increases the
guality of the image
» Better color blending around images
* More details reflected in specular images

Lambertian Material

 Also known as diffuse

* Lightis equally likely to be reflected in each output
direction | |
* BRDF is a constant, relying on albedo (p)

* BRDF can be pulled out of the integral

Lo(w,) = fr Li(w;) cos8; dw;
H2

=, / L;(w;) cosB; dw;
H2
—fE

Minions (2015) Illumination Entertainment

e Easy! Pick any outgoing ray w,,

15-462/662 | Computer Graphics

[side view]

=]

[top view]

/.

/

Do

— i

Reflective Material

* Reflectance equation described as:

—

Wo = —w; + 2(w; -)M

* Why is the ray w; pointing away from the surface?
* Just syntax. Incoming and outgoing rays share
same origin point p

* BRDF represented by dirac delta () function:
d(cosf; — cosb,)

cos 0;

fT(9i7¢i;907¢0) - 5(¢Z—¢o:l:7'(')

* 1 when ray is perfect reflection, 0 everywhere else
* All radiance gets reflected, nothing absorbed

* In practice, no hope of finding reflected direction via
random sampling
* Simply pick the reflected direction!

Refractive Material

[side view]

—
1

* Refractive equation described as:
n; sin 6; = m; sin 6,

* Also known as Snell’s Law

* 1n; and n, describe the index of refraction of the incoming
and outgoing mediums

0.\ w * Example: n; is air, n; is water
[top view] Medium i
Vacuum 1.0
Air (sea level) 1.00029
ﬂbo Water (20°C) 1.333
| Glass 1.5-1.6

¢V Diamond 2.42

* 7 isthe ratio of the speed of light in a vacuum to that
¢ . _¢_ in a second medium of greater density
o ¢ « The larger the 1, the denser the material

15-462/662 | Computer Graphics

Refractive Material

[side view]

—
1

* Refractive equation described as:
n; sin 6; = m; sin 6,

* Also known as Snell’s Law

e Can rewrite the equation as:

\/]. — SiIl2 Ht
[top view]

0\ wi cos 0y

2
— /11— ("—) sin? 6
Ur:
| /%, =
(py =4/1— (%) (1 — cos? 6;)

¢o — _¢i
15-462/662 | Computer Graphics

Types of Reflectance Functions

Ideal Specular

* Perfect mirror

\I/}
7« Ideal Diffuse
W}

|
[! Uniform in all directions
|

Glossy Specular

* Majority of light in reflected direction

Retroreflective
- » Reflects light back towards source

15-462/662 | Computer Graphics

* A4: Animation

15-462/662 | Computer Graphics Lecture R0O2 | Final Review

Principles Of Animation

e 12 Principles
* Easing
* Arcs
* Timing

* Motion Graphs
e Displacement
e Velocity
e Acceleration

e Splines
* Natural Splines
 Hermite/Bezier Curves
e B-Splines

15-462/662 | Computer Graphics

Onion Skinning

Onion-Skinning is a tool that lets you see previous and
future frames at a lower opacity
* Helps when you have two keyframes and want to add
an in-between frame
* Based off translucency of cel paper

Can also help visualize the spatial trajectory and motion of
objects
 Good debugging tool to make sure trajectories are arc
like and maintain proportions

Easing

* Easing is a strategy where objects accelerate into and out
of their motion

e Derived from physics |
* Objects with inertia have to feel a force in order to 7

ease their way into a new momentum "‘”@ ’W

* Visualized in a 1D chart with tick marks with equal time

separation but varying spatial separation (' -!5" {6 Z %?
* The closer the tick marks, the smaller the spatial I T
separation, and the slower the motion. ‘Oww@. ”\:CY“‘
Meme Sut eAoNG N il
* Draw a frame in the middle of frames 1 and 9 (call it 5), o custian it

then a frame between 1 and 5 (call it 4), then 1 and 4 (call
it 3), and then 1 and 3 (call it 2)
e Referred to as subdivision

» Easy strategy to guarantee appropriate easing

[llusion of Life, 1999

15-462/662 | Computer Graphics

Straight Ahead vs. Pose To Pose

* Straight Ahead is the process of drawing in every frame
sequentially
* Easier to create more realistic movements this way,
but harder to keep proportions constant
e Characters end up being less dynamic and less
exaggerated

CONTACT

* Pose to Pose is the process of drawing in key frames
first, and then going back to draw in-betweens
e Allows for more controlled and dynamic posing
e Adopted more in animation settings where
computers are able to help out with the in-
between stages

’
CONTACT

The Animator’s Survival Kit (2001) Richard Williams

* With Pose to Pose, senior artists draw keyframes, junior
artists draw in-betweens

15-462/662 | Computer Graphics

Timing

* Timing is how the motions play out, and at what time intervals
* Used to determine how fast an object should be moving
* How many frames should be used for the motion?
* The more frames, the slower

* Temporal linear interpolation: velocity never changes
* Temporal non-linear interpolation: velocity changes

p—1 Second ———

O—+++D

—-23 Seconds -

L]
“w

15-462/662 | Computer Graphics Lecture 14 | Animation Principles

Arc Motions

(" ARN bﬂi . /\iéNTS‘) whitg The SHOWDER RISES WP
\N:M MOYE — M Tle PASSING POS mioN
Tl HAND 18 AT Tt LOWEST PART of e AC

* Arc Motions guarantee that spatial trajectories are arc-like
* Helps to build fluidity in the motion

* Joints rotate instead of translating
* Allows for arc-like movements

* Walk cycles are a combination of many arc movements

15-462/662 | Computer Graphics

Natural Splines

* Can build a spline out of piecewise cubic polynomials p;
e Each polynomial extends from range t = [0,1]
e Polynomials should connect on boundary
* Keyframes agree at endpoints [CO continuity]:

pi(t:) = fi, Pi(tiv1) = fivr Vi=0,..,n—-1 P1-
* Tangents agree at endpoints [C1 continuity]:
P'i(tiv1) = D'iv1(tiv1), Vi=0,..,n—2

e Curvature agrees at endpoints [C2 continuity]:

p”i(ti+1) = p”i+1(ti+1), Vi=0,..,n—2 Po -

* Total equations:
e 2n+(n-1)+(n-1)=4n-2
e Total DOFs:
* 2n+n+n=4n
e Set curvature at endpoints to 0 and solve

p'o(te) =0, p"o(tiv1) =0

15-462/662 | Computer Graphics

Hermite/Bézier Splines

e Each cubic “piece” specified by endpoints and tangents
* Keyframes set at endpoints:

(t;) = [i (tiv1) = fi Vi=0,..,.n—1
pl(l) fl, pl(L+1) fl+1’ S File Edit Object Type Select Effect View Window Help

b TangentS Set at endp0|nt: Anchor Point Convert: T M Handles: & m Anchors: " ;

Untitled-1* @ 100% (CMYK/GPU Preview) X

p'i(t) =u; pi(tiz1) =Uit1, vVi=0,..,n—1

N

* Natural splines specify just keyframes :
e Bezier splines specify keyframes and tangents *

e (Can get continuity if tangents are set equal 2
: .i'o“

e Total equations: -
* 2n+2n=4n /
O,

e Commonly used in vector art programs
e Illustrator
* Inkscape
* SVGs

15-462/662 | Computer Graphics

B-Splines

* Compute a weighted average of nearby keyframes when
interpolating

* B-spline basis defined recursively, with base condition:

1, ift; <t< tit1

0, otherwise

Bi71(t) —

e And inductive condition:

Bz,k(t) — tz‘+i:ii—tq; Bi,k—l(t) + tzj—l:it_zj-l Bi—l—l,k—l(t) L

* B-spline is a linear combination of bases:

f(t):

degree

e
> .. aiB; 4

15-462/662 | Computer Graphics

Splines Review

[Interpolation] [Continuity] [Locality]
Linear v X 4
Natural v v X
Hermite v X v
Bezier v X v
Catmull-Rom v X v
B-Spline X v v

15-462/662 | Computer Graphics

Simulations

* ODE vs PDE

* Time Integration
e Forwards Euler
e Symplectic Euler

* Lagrangian
« 2nd Derivative

* Boundary Conditions

e Dirichlet
* Neumann

15-462/662 | Computer Graphics Lecture RO2 | Final Review

ODEs vs. PDEs

Em—

ect (rock) in time .ﬁ-.:{_»Miﬂiohs of objects (droplets) in time

[ODE] yeeting a rock [PDE] yeeted rock lands in pond

15-462/662 | Computer Graphics Lecture 16 | Simulations

Explicit Euler Methods

[Forward] [RK2]

Vk+1 = Vg + T * a(qx) Vi1 = T * a(qy) ,
_ v
Qre+1 = Qe T T* Vg V' =T*a(qy + ’;1)

v = v, +v"
[Symplectic] fet1 k fet1
B Qie+1 = Qi T T * Vieyq
Vi+1 = Vg + T * a(qg)
Qr+1 = q T T * Vg1
[RK4]
! J—
[Verlet] Vi1 = T *a(qr) ’
UV k+1
T 7 _
. v =Tx*xqQ +
Viet1 = Vi+os 5 * a(qx) fet1 (G 2)

144
UV k+1

Qr+1 = qx T T * Vgyq V" 41 = Txa(qy + z)

T
. 1 _ 27,
Vi+1.5 = Vg1 T 7 * a(qx) V' ks =T*xa(qr V" k1)

— 1 4 144 1444 rrrr
A1 = Qi + 7 (Vw1 + 20 1+ 20

k+1t UV k1)

15-462/662 | Computer Graphics

The Laplacian Operator

e All of our model equations used the Laplace operator
e Laplace Equation Au =10
* Heat Equation u=Au
* Wave Equation u=Au

* Unbelievably important object showing up everywhere across physics,
geometry, signal processing, and more

 What does the Laplacian mean?
« Differential operator: eats a function, spits out its 2nd derivative
* What does that mean for a function: u: R™® —» R?
e Divergence of gradient

Au =YV - -Vu
 Sum of second derivatives

_ ou? Ou?
AU—8—$%+"°—|—@

e Deviation from local average

15-462/662 | Computer Graphics

Dirichlet Boundary Conditions

Dirichlet: boundary data always set to fixed values

Example: ¢(0) = a, (1) =b

Many possible functions interpolate values in between

15-462/662 | Computer Graphics Lecture 16 | Simulations

Neumann Boundary Conditions

Neumann: specify derivatives across boundary

Example: ¢'(0) = u, ¢'(1) =v

Again, many possible functions

15-462/662 | Computer Graphics Lecture 16 | Simulations

Good Luck!

Woosh. You will pass
your exams.

15-462/662 | Computer Graphics

Course Wrapup

15-462 [15-662 Computer Graphics

Upcoming Courses

Fall 2024

15-327/15-627 Monte Carlo Methods and Applications Keenan Crane, Gautam lyer
15-362/15-662 Computer Graphics Oscar Dadfar, Minchen Li
15-463/15-663/15-862 Computational Photography loannis Gkioulekas
15-466/15-666 Computer Game Programming Jim McCann
15-473/15-673 Visual Computing Systems Oscar Dadfar
15-472/15-672/15-772 Real-Time Graphics Jim McCann

Spring 2025

15-367/15-867 Algorithmic Textiles Design Jim McCann

15-458/15-858 Discrete Differential Geometry Keenan Crane
15-362/15-662 Computer Graphics Nancy Pollard
15-464/15-664 Technical Animation Nancy Pollard
15-468/15-668/15-868 Physics-based Rendering loannis Gkioulekas

15-769 Physics-based Animation of Solids and Fluids Minchen Li

16-726 Learning-based Image Synthesis Jun-Yan Zhu

Monte Carlo Methods and Applications
CMU 21-387 | 15-327 | 15-627 | 15-860 FALL 2023

geometry.cs.cmu.edu/montecarlo

LR B AN B e)l
v By« Sgues e g-ﬁ- “:q—;q
LR R e RoENEe o

gt BN b e
i o

s 4
e

T

Home — Course Info — Schedule — Assignments — Resources — Course Policies

Instructors: Keenan Crane (CSD/RI) and Gautam Iyer (MSC)

Course Info

The Monte Carlo method uses random sampling to solve computational problems that would otherwise be
intractable, and enables computers to model complex systems in nature that are otherwise too difficult to
simulate. This course provides a first introduction to Monte Carlo methods from complementary theoretical and
applied points of view, and will include implementation of practical algorithms. Topics include random number
generation, sampling, Markov chains, Monte Carlo integration, stochastic processes, and applications in
computational science. Students need a basic background in probability, multivariable calculus, and some coding
experience in any language. Coding assignments will be done in Python Z,.

(MU 15-462/662

15-463, 15-663, 15-862 Computational photography
Fall 2023

* Time: Mondays, Wednesdays 11:00 am - 12:20 pm ET
¥ Location: GHC 4303

19 Instructor: loannis (Yannis) Gkioulekas

2 Teaching assistants: Tanli Su

— Platforms: Canvas, Slack

Computational photography brings together graphics, vision, optics, and imaging. In this course you will learn all about: (top, left to right) photographic optics and
image processing pipeline; exposure, high-dynamic-range imaging, and noise; color and image editing; focus, lightfields, and coded photography; (bottom, left to
right) radiometry and photometric stereo; projective geometry, stereo, and structured light; time-of-flight imaging and computational light transport.

15-463, 15-663, 15-862 Computational photography
Fall 2023

* Time: Mondays, Wednesdays 11:00 am - 12:20 pm ET
¥ Location: GHC 4303

I Instructor: loannis (Yannis) Gkioulekas

2 Teaching assistants: Tanli Su

— Platforms: Canvas, Slack

Course description

Computational photography is the convergence of computer graphics, computer vision, optics, and imaging. Its role is to overcome the
limitations of traditional cameras, by combining imaging and computation to enable new and enhanced ways of capturing, representing,
and interacting with the physical world.

This course provides an overview of the state of the art in computational photography. At the start of the course, we will study modern
image processing pipelines, including those encountered on mobile phone and DSLR cameras, and advanced image and video editing
algorithms. Then we will continue to learn about the physical and computational aspects of tasks such as 3D scanning, coded
photography, lightfield imaging, time-of-flight imaging, VR/AR displays, and computational light transport. Near the end of the course, we
will discuss active research topics, such as creating cameras that capture video at the speed of light, cameras that look around walls, or
cameras that can see below skin.

The course has a strong hands-on component, in the form of seven homework assignments and a final project. In the homework
assignments, students will have the opportunity to implement many of the techniques covered in the class, by both acquiring their own
images of indoor and outdoor scenes and developing the computational tools needed to extract information from them. Example
homework includes building end-to-end HDR imaging pipelines and structured light scanners. For their final projects, students will have
the choice to use modern sensors and other optical instrumentation provided by the instructor (lightfield cameras, time-of-flight
sensors, projectors, laser sources, and so on).

Cross-listing: This is both an advanced undergraduate and introductory graduate course, and it is cross-listed as 15-463 (for
undergraduate students), 15-663 (for Master's students), and 15-862 (for PhD students). Please make sure to register for the section of
the class that matches your current enrollment status.

15-466/15-666 Computer Game Programming

http://graphics.cs.cmu.edu/courses/15-466-f21/

(MU 15-462/662

Computer Game Programming (Fall, 2023)
.ll | J C |..|||I '- l | - | .*E

In this class, we made a bunch of small games, as well as five final games. These games were
launch|ed] live and in person on Friday, December 8th at 4-7pm in Tepper Simmons B.

e Ultimate Pillow Fight

e Assemble Monsters

o Tech Wiz

e Swordmaster

e Help, I'm Trapped in the Psychedelic Time Dimension Again (Second Time This Week)

(MU 15-462/662

15-469/669: Visual Computing Systems reset | | I |

Fall 2023
Instructor: Oscar Dadfar | OH Fri 3pm - 5pm Graphics Lounge

TA: Daniel Zheng | OH Mon. + Wed. 1pm - 2pm Graphics Lounge
Tues/Thurs 3:30pm - 4:50pm | WEH 8427
12 Units

Visual computing tasks such as computational imaging, image/video understanding, and real-time graphics are key responsibilities of
modern computer systems ranging from sensor-rich smart phones to large datacenters. These workloads demand exceptional system
efficiency and this course examines the key ideas, techniques, and challenges associated with the design of parallel, heterogeneous
systems that accelerate visual computing applications. This course is intended for graduate and advanced undergraduate-level
students interested in architecting efficient graphics, image processing, and computer vision platforms.

Description | Visual computing tasks such as computational imaging, image/video understanding, and
real-time graphics are key responsibilities of modern computer systems ranging from
sensor-rich smart phones to large datacenters. These workloads demand exceptional
system efficiency, and this course examines the key ideas, techniques, and challenges
associated with the design of parallel, heterogeneous systems that accelerate visual
computing applications. This course is intended for graduate and advanced
undergraduate-level students interested in architecting efficient graphics, image
processing, and computer vision platforms.

(MU 15-462/662

7) /4
1C ()77t A
¢ %/

IA!’«/A IJ-

-
\,

Jim McCann

Real-time computer graphics is about building systems that Ieverage modern CPUs and GPUs to
produce detailed, interactive, immersive, and high-frame-rate imagery. Students will build a
state-of-the-art renderer using C++ and the Vulkan API. Topics explored will include efficient
data handling strategies; culling and scene traversal; multi-threaded rendering; post-
processing, depth of field, screen-space reflections; volumetric rendering; sample distribution,
spatial and temporal sharing, and anti-aliasing; stereo view synthesis; physical simulation and
collision detection; dynamic lights and shadows; global illumination, accelerated raytracing;
dynamic resolution, "HI" upsampling; compute shaders; parallax occlusion mapping;
tessellation, displacement; skinning, transform feedback; and debugging, profiling, and
accelerating graphics algorithms.

This course is based on four principles:

Do Things for Reasons - if you don't understand why you are doing something, look
deeper. (Corr: if you don't understand why someone else is doing something, ask.)

No Magic -- (as much as possible) avoid black boxes and needless helper libraries.

Test and Improve -- make things efficient through real-world testing. (Corr: asymptotic
complexity is not the only factor; constants matter in the real world.)

Go Big -- push systems to their limits.

(MU 15-462/662

?Z‘_tl, O e ,@g};ﬁ'ﬁt

What it means to be real-time and general techniques for
getting there.
Course Overview; Core Principles: Interactive,
Real-Time, and Beyond, Big Ideas, CPU Benchmarking
and Fast Code Intuition

The first bounce of lighting is always the brightest.

sphere, spot, and sun lights lambertian
contribution from a spherical area light, the
"representative point" approximation: light loops

1191 fupnup(‘Appsany,

Tuesday, March 12th

neline
How we get pixels onto the screen quickly. From attributes
to framebuffers.

)) Solving the visibility problem.
i§[eVeBed Vulkan Intro. A Picture of Vulkan Uniforms, .

‘b , . b) shadow maps: cubic shadow maps
Httributes, Vertices, Primitives, Framebuffers. Opening a percentage-closer filtering soft shadows with PCSS

Window Framework Lights
Style Vulkan Debugging Session

Javascript Build systems

Thursday, January 18th
YI¥1 Yoap | ‘Appsinyr,

Iué’tgrute-forcing the lighting.
raytracing extensions: sample sharing

LUBLOI
What you don't render can't slow you down.
G Frustum culling: Portal rendering: Level-of-

detail Occlusion queries: Geometry images
Bottlenecks

Tuesday, March 19th

Fixing the pixels later.

QIITTEXY bokeh lens flares motion blur SSAO. screen-
space refletions

Q@
-
=3
=
=

R
L
F
=)
S

<
w
B
s

Matching the real world, or doing better.

B2 BkY detail with textures RO PEY physical
materials, procedural materials: approximations and

ground truth. material capture, antialiasing: glossy

surfaces: precomputation T Feb 20 Clouds, medical data, and fire.
Interesting Mesh Ideas raymarching smoke and clouds: screen-space

ing for liquids Nub
EUE2) A1 debrief + Code Share surfacing forquids Nubuss

Tuesday, March 26th

382 UDIDIY ADPSINUL,

Gl

Primaries, white points, and encodings oh my.

color spdces; demo: P3 vs sSRGB primaries: demo:
HDR. vulkan formats and color spaces

Making things move without keyframes.
€ulerian vs Lagrangian: shallow-wave
equations; grid-based smoke Final Proje&
particle-based smoke particle-based
fluid; particle-based solids Lights

Tuesday, April 2nd

uesday, February 27th

(MU 15-462/662

15-367/15-867 Algorithmic Textiles Design

Des'cri,btiou

Textile artifacts are -- quite literally -- all around us; from clothing to carpets to car seats. These items are often
produced by sophisticated, computer-controlled fabrication machinery. In this course we will discuss
everywhere code touches textiles fabrication, including design tools, simulators, and machine control
languages. Students will work on a series of multi-week, open-ended projects, where they use code to create
patterns for modern sewing/embroidery, weaving, and knitting machines; and then send these patterns to be
fabricated in the textiles lab. Students in the 800-level version of the course will be required to create a final
project which develops a new algorithm, device, or technique in the realm of textiles fabrication.

http://graphics.cs.cmu.edu/courses/15-869K-s21/

CS 15-458/858: Discrete Differential Geometry

CARNEGIE MELLON UNIVERSITY | SPRING 2022 | TUE/THU 11:50-1:10 | GHC 4215

4 ~ i.—'“""f TH "B i b dm ml n, [w "—7 —'——"
ASSIGNMENTITS _ALEND;

Reading 9—Choose Your Own Adventure (due 4/26)

April 19,
2022

Uncateg

orized

There are way more topics and ideas in Discrete Differential Geometry than we
could ever hope to cover in this course. For this final reading assignment, you can

choose from one of several options that we’ll cover in the remainder of our course:

https://brickisland.net/DDGSpring2022/

Search ...

(MU 15-462/662

CS 15-458/858: Discrete Differential Geometry

CARNEGIE MELLON UNIVERSITY | SPRING 2022 | TUE/THU 11:50-1:10 | GHC 4215
Assignment 4 [Coding]: Conformal Parameterization (due
4/20)

April 6,
2022

Assignm
ents

Leave a
commen

t

For the coding portion of your assignment on conformal parameterization, you

will implement the Spectral Conformal Parameterization (SCP) algorithm as

described in the course notes.Please imvlement the following routines in

15-464/15-664 Technical Animation

Particle_ Diam = 0.005
Compress = 1-19e-2
Stretch = 1+7.5e-3
Hardening = 5.0

Density = 400

http://graphics.cs.cmu.edu/nsp/course/15464-s21/www/

Y Technical award winner
15-468, 15-668, 15-868
Physics-based rendering.
Rendering competition

Y Art award winner Max Slater

http://graphics.cs.cmu.edu/
courses/15-468/2021_spring/

Arpit Agarwal

16-726 Learning-Based Image Synthesis

f Assignment #1 - Colorizing the Prokudin-Gorskii Photo Collection§ Hi
Winner: [Riyaz Panjwani]
Honorable Mentions: [Harry Freeman]

Assignment #2 - Gradient Domain Fusion Rl
Winner: [Riyaz Panjwani]
Honorable Mentions: [Tomas Cabezon Pedroso] [Harry Freeman]

Assignment #4 - Neural Style Transfer
Winner: [Lena Du]
Honorable Mentions: [Yutian Lei] [Riyaz Panjwani] [Sean Chen]

Assignment #5 - GAN Photo Editingli Hi

Final Projectl§

https://learning-image-synthesis.github.io/sp22/

Graphics Concentration

Your projects!

A1l

Livia Lal

Andy Jiang

Ryan Lau

Jack Liu

Angus Koon Yan Yiu

AN

- —

A2

A3

Steven Lee

Xun Zhang

Raymond Luo

Taylor Kynard

Emily Amspoker

s
..

Annie LI

A4

Thanks for being a great class!

(MU 15-462/662

	ReviewPart2
	Fall2023Review
	CourseWrapup

