PDEs Wrapup AND

 Special Topic in Animation

 Special Topic in Animation}Computer Graphics

CMU 15-462/15-662

Model Equations

■ Fundamental behavior of many important PDEs is wellcaptured by three model linear equations:

"Laplacian" (more later!)
 LAPLACE EQUATION ("ELLIPTIC") $\Delta u=0$

"what's the smoothest function interpolating the given boundary data"

HEAT EQUATION ("PARABOLIC") $\quad \dot{u}=\Delta u$

"how does an initial distribution
Solve numerically?
 of heat spread out over time?"

WAVE EQUATION ("HYPERBOLIC") $\ddot{u}=\Delta u$
"if you throw a rock into a pond, how does the wavefront evolve over time?"
[NONLINEAR + HYPERBOLIC + HIGH-ORDER]

Elliptic PDEs / Laplace Equation

- "What's the smoothest function interpolating the given boundary data?"

■ Conceptually: each value is at the average of its "neighbors"
■ Roughly speaking, why is it easier to solve?

- Very robust to errors: just keep averaging with neighbors!

Numerically Solving the Laplace Equation

- Want to solve $\Delta u=0$
- Plug in one of our discretizations, e.g.,

	$u_{i, j+1}$	
$u_{i-1, j}$	$u_{i, j}$	$u_{i+1, j}$
	$u_{i, j-1}$	

- If u is a solution, then each value must be the average of the neighboring values (u is a "harmonic function")

■ How do we solve this?
■ One idea: keep averaging with neighbors! ("Jacobi method")

- Correct, but slow. Much better to use modern linear solver

Aside: PDEs and Linear Equations

- How can we turn our Laplace equation into a linear solve?
- Have a bunch of equations of the form

$$
4 u_{i, j}-u_{i-1, j}-u_{i+1, j}-u_{i, j-1}-u_{i, j+1}=0
$$

■ On a 4×4 grid, assign each cell $u_{i, j}$ a unique index $1, \ldots, 16$

- Can then write equations as a 16x16 matrix equation*

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

$\left[\begin{array}{cccccccccccccccc}-4 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & -4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & -4 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & -4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -4 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & -4 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -4 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & -4\end{array}\right]\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3} \\ u_{4} \\ u_{5} \\ u_{6} \\ u_{7} \\ u_{8} \\ u_{9} \\ u_{10} \\ u_{11} \\ u_{12} \\ u_{13} \\ u_{14} \\ u_{15} \\ u_{16}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$

- Compute solution by calling sparse linear solver (SuiteSparse, Eigen, ...)

■ Q: By the way, what's wrong with our problem setup here? :-)

Solving the Heat Equation

- Back to our three model equations, want to solve heat eqn.

$$
\dot{u}=\Delta u
$$

- Just saw how to discretize Laplacian
- Also know how to do time (forward Euler, backward Euler, ...)
- E.g., forward Euler:

$$
u^{k+1}=u^{k}+\tau \Delta u^{k}
$$

- Q: On a grid, what's our overall update now at $u_{i, j}$?

$$
u_{i, j}^{k+1}=u^{k}+\frac{\tau}{h^{2}}\left(4 u_{i, j}^{k}-u_{i+1, j}^{k}-u_{i-1, j}^{k}-u_{i, j+1}^{k}-u_{i, j-1}^{k}\right)
$$

- Not hard to implement! Loop over grid, add up some neighbors.

Solving the Wave Equation

- Finally, wave equation:

$$
\ddot{u}=\Delta u
$$

- Not much different; now have 2nd derivative in time
- By now we've learned two different techniques:
- Convert to two 1st order (in time) equations:

$$
\dot{u}=v, \quad \dot{v}=\Delta u
$$

- Or, use centered difference (like Laplace) in time:

$$
\frac{u^{k+1}-2 u^{k}+u^{k-1}}{\tau^{2}}=\Delta u^{k}
$$

- Plus all our choices about how to discretize Laplacian.
- So many choices! And many, many (many) more we didn't discuss.

Wave Equation on a Grid, Triangle Mesh

Wait, what about all that other cool stuff? (Fluids, hair, cloth, ...)

Want to Know More?

- There are some good books:
- And papers:
http://www.physicsbasedanimation.com/
Physics-Based
Animation
The science of simulating physics for human visual

Biomechanical Simulation and Control of Hands and Tendinous Systems

Search.
Contact
This it is managed by
Chistophe

- Also, what did the folks who wrote these books \& papers read?

And that is the end of the official course material on PDEs!

(but watch for a guest appearance of the Heat Equation in the next section :)

Contact Edit: Artist Tools for Intuitive Modeling of HandObject Interactions

Arjun S. Lakshmipathy, Nicole Feng, Yu Xi Lee, Moshe Mahler, Nancy S. Pollard

Carnegie Mellon University

Area Contacts

NORIKO KAMAKURA
NORIKO KAMAKURA

Kamakura N, Matsuo M, Ishii H, Mitsuboshi F, Miura Y. Patterns of static prehension in normal hands. American Journal of Occupational Therapy. 1980

Existing Work on Hands and Contacts

ContactDB

https://mlatgt.blog/2019/06/06/contactdb-analyzing-and-predicting-grasp-contact-via-thermal-imaging/

Existing Work on Hands and Contacts

GRAB

G
 Rasping
 Actions
 Bodies

https://grab.is.tue.mpg.de/

Existing Work on Hands and Contacts

https://arctic.is.tue.mpg.de/

Existing Work on Hands and Contacts

Challenges in Existing Posing Techniques

- Hierarchy-Induced Reconfigurations
- Gap Closure Difficulties
- Challenging for early-career animators

Common Solutions

Option 1: Make Complex Rig

Option 2: Inverse Kinematics

- We wanted to give artists tools to work with contact areas as an alternative design tool

Contact areas can improve IK

Understanding Contact Areas

Complexities of Surfaces

No Global Coordinate System

Large Path Discontinuities

The Axis Model

$\exp _{q}(\mathrm{p}):=T_{\mathrm{q}}\left(\mathrm{r}_{\mathrm{p}}, \theta_{\mathrm{p}}\right)$
Exponential map coordinates of p in tangent basis of q

$$
\left\{a_{0, \ldots,}, a_{M}\right\} \in A(x i s)
$$

$$
a_{j+1}=a_{j}+\left(d_{j}, \phi_{j}\right)
$$

$$
d_{j}:=\text { distance }
$$

$$
\phi_{\mathrm{j}}:=\text { turning angle }
$$

$$
\mathrm{q}=a_{j}^{*}
$$

Contact Area Initialization

The Vector Heat Method
NICHOLAS SHARP, YOUSUF SOLIMAN, and KEENAN CRANE, Carnegie Mellon Universit

 ion of intrinsic Delaunay trianualation (iD)
he contextof t tangent vector fied processing
CcS. \cdot Mathematics of computing \rightarrow Discretization: Partial differen-
tial equations; - Computing methododogies \rightarrow Shape analysiss

CM Reference Format:

introduction
(as)

 diftusion equations are expressed in terms of standard Laplace- like
operators, we effectively reduce parallel transport tasksto sparse in ear systems shat are extremely well-studied in scientific computing-
and can hence immediately beneft trom mature, hishbpertormance
 variet y s shape representations (polygon meshes, point cloud, ete),
and generaize to many kinds of vector datata symmetric direction
 -a fast method for computing parallel transport trom a give
source set (Sec. 4))
anpurings paralied transport from a given
an augented - an aumented intri

- the first metho. for computing a logatithic map over the
 geometric medians on general suffaces Sec. 8.3

[Sharp \& Crane, 2019]

Axis Model Revisited

Contact Area Rotation

Contact Area Deformation

Contact Area Translation

An Important Caveat with Translation

Actual Contact Area Translation

Contact Area Transfer

"Chaining" Areas Together

Hand Pose Computation

$$
\begin{gathered}
\underset{\theta}{\arg \max } \sum_{i=1}^{\mathrm{N}}\left(\lambda_{d} \Gamma(\theta)_{D, i}+\lambda_{n} \Gamma(\theta)_{N, i}\right)+\sum_{\mathrm{j}=7}^{\mathrm{J}} \lambda_{p} \Gamma(\theta)_{P, j} \\
\text { s.t. } \quad 0 \leq \theta<2 \pi \\
\lambda_{p} \gg \lambda_{d}, \lambda_{n} \text { since } \mathrm{N} \gg \mathrm{~J}
\end{gathered}
$$

N : Total \# of Discrete Contacts
J: Total \# of DOFs
$\lambda_{d}, \lambda_{n}, \lambda_{p}$: Weighting Coefficients θ : DOF Vector
$\Gamma(\theta) \mathrm{D}$: Contact Distance Error $\Gamma(\theta)_{\mathrm{N}}$: Contact Normal Error $\boldsymbol{\Gamma} \boldsymbol{\theta})_{\mathrm{p}}$: Regularization Error

Does it Actually Work?

Drawbacks

Minor Degradation

Summary

New tools and algorithms for contact areas in traditional animation workflows

Thank You!

Email: aslakshm@andrew.cmu.edu

