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Model Equations
Fundamental behavior of many important PDEs is well-
captured by three model linear equations:

LAPLACE EQUATION (“ELLIPTIC”)

HEAT EQUATION (“PARABOLIC”)

WAVE EQUATION (“HYPERBOLIC”)

E A S I E R

INTERMEDIATE

ADVANCED

[ NONLINEAR + HYPERBOLIC + HIGH-ORDER ]
EXPERTS ONLY

“what’s the smoothest function 
interpolating the given boundary data”

“how does an initial distribution 
of heat spread out over time?”

“if you throw a rock into a pond, how 
does the wavefront evolve over time?”

“Laplacian” (more later!)
Solve numerically?
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Elliptic PDEs / Laplace Equation
“What’s the smoothest function interpolating the given 
boundary data?”

Conceptually: each value is at the average of its “neighbors” 
Roughly speaking, why is it easier to solve? 
Very robust to errors: just keep averaging with neighbors!

Image from Solomon, Crane, Vouga, “Laplace-Beltrami: The Swiss Army Knife of Geometry Processing”



4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1

h2 = 0
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Numerically Solving the Laplace Equation
Want to solve  

Plug in one of our discretizations, e.g.,

Δu = 0

If  is a solution, then each value must be the average of the 
neighboring values (  is a “harmonic function”) 

How do we solve this? 
One idea: keep averaging with neighbors! (“Jacobi method”) 
Correct, but slow. Much better to use modern linear solver

u
u

⟺ ui,j = 1
4 (ui−1,j + ui+1,j + ui,j−1 + ui,j+1)
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Aside: PDEs and Linear Equations
How can we turn our Laplace equation into a linear solve? 
Have a bunch of equations of the form

   
On a 4x4 grid, assign each cell  a unique index 1, …, 16 
Can then write equations as a 16x16 matrix equation*

4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1 = 0
ui,j

*assuming neighbors wrap around left/right and top/bottom

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Compute solution by calling sparse linear solver (SuiteSparse, Eigen, …) 
Q: By the way, what’s wrong with our problem setup here? :-)
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Solving the Heat Equation
Back to our three model equations, want to solve heat eqn.

Just saw how to discretize Laplacian 
Also know how to do time (forward Euler, backward Euler, ...) 
E.g., forward Euler:

Q: On a grid, what’s our overall update now at ui,j?

Not hard to implement!  Loop over grid, add up some neighbors.
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Solving the Wave Equation
Finally, wave equation:

Not much different; now have 2nd derivative in time 
By now we’ve learned two different techniques: 
- Convert to two 1st order (in time) equations: 

- Or, use centered difference (like Laplace) in time:

Plus all our choices about how to discretize Laplacian. 
So many choices! And many, many (many) more we didn’t 
discuss.
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Wave Equation on a Grid, Triangle Mesh

Fish credit: Alec Jacobson (http://www.alecjacobson.com/weblog/?p=4363)

http://www.alecjacobson.com/weblog/?p=4363


Fun with wave-like equations…

Technique: low-res thin shell simulation (via “position-based dynamics”) + Loop subdivision

author: David Lihttps://www.adultswim.com/etcetera/elastic-man/
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Wait, what about all that other cool stuff? 
(Fluids, hair, cloth, …)
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Want to Know More?
There are some good books: 
And papers:

http://www.physicsbasedanimation.com/

Also, what did the folks who wrote these books & papers read?

http://www.physicsbasedanimation.com/
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And that is the end of the official course 
material on PDEs! 

(but watch for a guest appearance of the 
Heat Equation in the next section :)



Contact Edit: Artist Tools for 
Intuitive Modeling of Hand-

Object Interactions
Arjun S. Lakshmipathy, Nicole Feng, Yu Xi Lee, Moshe Mahler, 

Nancy S. Pollard 





Area Contacts

Kamakura N, Matsuo M, Ishii H, Mitsuboshi F, Miura Y. Patterns of static 
prehension in normal hands. American Journal of Occupational Therapy. 1980

Kamakura, Noriko. Postures and Movement 
Patterns of the Human Hand: A Framework 

for Understanding Hand Activity for Clinicians 
and Engineers. Universal-Publishers, 2022.



Existing Work on Hands and Contacts

https://mlatgt.blog/2019/06/06/contactdb-analyzing-and-predicting-grasp-contact-via-thermal-imaging/

ContactDB



Existing Work on Hands and Contacts

https://grab.is.tue.mpg.de/

GRAB

https://www.youtube.com/watch?v=s5syYMxmNHA


Existing Work on Hands and Contacts

https://arctic.is.tue.mpg.de/

ARCTIC

https://www.youtube.com/watch?v=bvMm8gfFbZ8


Existing Work on Hands and Contacts

[Brahmbhatt et. al, 2019]

ContactDB GRAB

[Taheri et. al, 2020]

ARTIC

[Fan et. al, 2023]

Grasp’d

[Turpin et. al, 2022]

ContactGrasp

[Brahmbhatt et. al, 2019]



Challenges in Existing Posing Techniques

• Hierarchy-Induced Reconfigurations

• Gap Closure Difficulties

• Challenging for early-career animators



Common Solutions
Option 1: Make Complex Rig

Story-
boarding

Asset 
Creation

Scene 
Layout Animation Lighting 

& FX

Made Here You Are Here

The

Requirement ! You

Option 2: Inverse Kinematics



• We wanted to give artists tools to work with contact areas 
as an alternative design tool



Contact areas can improve IK

Ok… Good



• Realtime 
Performance


• Predictable


• Easy to Understand

Understanding Contact Areas

[Brahmbhatt et. 
al, 2019]

Relocation

(Translation)

Correspondance

(Transfer)

Reorientation

(Rotation)

Bending

(Deformation)

?



Complexities of Surfaces

No Global Coordinate System Large Path Discontinuities



The Axis Model

expq(p) := Tq(rp,𝜃p)
Exponential map 
coordinates of p 


in tangent basis of q

{a0,….,aM} 𝝐 A(xis)
aj+1 = aj + (dj,𝜙j)

dj := distance 
𝜙j := turning angle

q = aj*
*



Contact Area Initialization
The Vector Heat Method
NICHOLAS SHARP, YOUSUF SOLIMAN, and KEENAN CRANE, Carnegie Mellon University

This paper describes a method for e�ciently computing parallel transport
of tangent vectors on curved surfaces, or more generally, any vector-valued
data on a curved manifold. More precisely, it extends a vector �eld de�ned
over any region to the rest of the domain via parallel transport along shortest
geodesics. This basic operation enables fast, robust algorithms for extrapolat-
ing level set velocities, inverting the exponential map, computing geometric
medians and Karcher/Fréchet means of arbitrary distributions, constructing
centroidal Voronoi diagrams, and �nding consistently ordered landmarks.
Rather than evaluate parallel transport by explicitly tracing geodesics, we
show that it can be computed via a short-time heat �ow involving the con-
nection Laplacian. As a result, transport can be achieved by solving three
prefactored linear systems, each akin to a standard Poisson problem. To
implement the method we need only a discrete connection Laplacian, which
we describe for a variety of geometric data structures (point clouds, polygon
meshes, etc.). We also study the numerical behavior of our method, showing
empirically that it converges under re�nement, and augment the construc-
tion of intrinsic Delaunay triangulations (iDT) so that they can be used in
the context of tangent vector �eld processing.

CCS: •Mathematics of computing→ Discretization; Partial di�eren-
tial equations; • Computing methodologies → Shape analysis;

Additional Key Words and Phrases: discrete di�erential geometry, parallel
transport, velocity extrapolation, logarithmic map, exponential map, Karcher
mean, geometric median

ACM Reference Format:
Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019. The Vector Heat
Method. ACM Trans. Graph. 38, 3, Article 00 (June 2019), 19 pages. https:
//doi.org/00.0000/0000000.0000000

1 INTRODUCTION
Given a vector at a point of a curved domain, how do we �nd the
most parallel vector at all other points (as shown in Fig. 1)? This
“most parallel” vector �eld—not typically considered in numerical
algorithms—provides a surprisingly valuable starting point for a
wide variety of tasks across geometric and scienti�c computing,
from extrapolating level set velocity to computing centers of distri-
butions. To compute this �eld, one idea is to transport the vector
along explicit paths from the source x to all other points �, but even
just constructing these paths is already quite expensive (Sec. 2). We
instead leverage a little-used relationship between parallel trans-
port and the vector heat equation, which describes the di�usion of a
given vector �eld over a time t . As t goes to zero, the di�used �eld
is related to the original one via parallel transport along minimal
geodesics, i.e., shortest paths along the curved domain (Sec. 3.4).

Authors’ address: Nicholas Sharp; Yousuf Soliman; Keenan Crane, Carnegie Mellon
University, 5000 Forbes Ave, Pittsburgh, PA, 15213.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2019 Copyright held by the owner/author(s).
0730-0301/2019/6-ART00
https://doi.org/00.0000/0000000.0000000

Fig. 1. Given a vector at a point, the vector heat method computes the most
parallel vector at every other point. The method easily generalizes to other
data (such as a velocity field along a curve), providing a novel and e�icient
way to implement fundamental algorithms across geometry and simulation.

The same principle applies not only to point sources, but also
to vector �elds over curves or other subsets of the domain. Since
di�usion equations are expressed in terms of standard Laplace-like
operators, we e�ectively reduce parallel transport tasks to sparse lin-
ear systems that are extremely well-studied in scienti�c computing—
and can hence immediately bene�t from mature, high-performance
solvers. Moreover, since discrete Laplacians are available for a wide
variety of shape representations (polygon meshes, point clouds, etc.),
and generalize to many kinds of vector data (symmetric direction
�elds, di�erential forms, etc.), we can apply this same strategy to
numerous applications. In particular, this paper introduces
• a fast method for computing parallel transport from a given
source set (Sec. 4)
• an augmented intrinsic Delaunay algorithm for vector �eld
processing (Sec. 5.4)
• the �rst method for computing a logarithmic map over the
entire surface, rather than in a local patch (Sec. 8.2), and
• the �rst method for computing true Karcher/Fréchet means
and geometric medians on general surfaces (Sec. 8.3).

We also describe how to discretize the connection Laplacian on
several di�erent geometric data structures and types of vector data
(Sec. 6), and consider a variety of other applications including
distance-preserving velocity extrapolation for level set methods,
computing geodesic centroidal Voronoi tessellations (GCVT), and
�nding consistently ordered intrinsic landmarks (Sec. 8).

ACM Trans. Graph., Vol. 38, No. 3, Article 00. Publication date: June 2019.

[Sharp & Crane, 2019]



Axis Model Revisited

Exception



Contact Area Rotation



Contact Area Deformation



Contact Area Translation



An Important Caveat with Translation



Actual Contact Area Translation

33



Contact Area Transfer

2

3

1



“Chaining” Areas Together

One-Shot

Transfer



Hand Pose Computation𝚺 ( λd𝚪(𝞱)D,i + λn𝚪(𝞱)N,i ) + 𝚺 λp𝚪(𝞱)P,j

N

i=1

arg max
𝞱 j=7

J

N: Total # of Discrete Contacts

J: Total # of DOFs


λd, λn, λp: Weighting Coefficients
𝞱: DOF Vector

s.t.  0 ≤ 𝞱 < 2𝛑
𝚪(𝞱)D: Contact Distance Error
𝚪(𝞱)N: Contact Normal Error
𝚪(𝞱)P: Regularization Error

λp >> λd, λn since N >> J







Does it Actually Work?



Drawbacks Minor Degradation

Severe Degradation

Contact

Boundary

Axis

Transfer

Transfer

Solve

Good!

Solve

…Fired?



Summary

Allows areas to serve as first class primitives

Real time editing operations


Simple IK solver

Intuitive and useful to animators  

New tools and algorithms for contact areas in traditional animation workflows 



Thank You!

Interested in Trying it Out? 

Email: aslakshm@andrew.cmu.edu


