Physically-Based Animation and PDEs

Computer Graphics
CMU 15-462/15-662

Last time: Optimization

- Modern graphics uses optimization!

■ Many complex criteria/constraints
■ Basic technique: numerical descent

- pick initial guess
- ski downhill
- keep fingers crossed!

■ Gradient descent important example of ordinary differential equation (ODE)

- Today: return to differential equations
- saw ODEs-derivatives in time
- now PDEs—also have derivatives in space
- describe many natural phenomena (water, smoke, cloth, ...)
- recent revolution in CG/visual effects

Partial Differential Equations (PDEs)

- ODE: Implicitly describe function in terms of its time derivatives
- PDE: Also include spatial derivatives in implicit description
- Like any implicit description, have to solve for actual function

ODE—rock flies through air
PDE—rock lands in pond

To make a long story short...

- Solving ODE looks like "add a little velocity each time"

$$
q_{k+1}=q_{k}+\tau f(q)
$$

- Solving a PDE looks like"take weighted combination of neighbors to get velocity (...and add a little velocity each time)"

	1	
1	-4	1
	1	
$f(q)$		

$$
q_{k+1}=q_{k}+\tau f(q)
$$

Solving a PDE in Code

Don't be intimidated—very simple code can give rise to beautiful behavior!

```
void simulateWaves2D() {
    const int N = 128; // grid size
    double u[N][N]; // height
    double v[N][N]; // velocity (time derivative of height)
    const double tau = 0.2; // time step size
    const double alpha = 0.985; // damping factor
    for( int frame = 0; true; frame++ ) { // loop forever
        // drop random "stones"
        if( frame % 100 == 0 ) u[rand()%N][rand()%N] = -1;
        // update velocity
        for( int i = 0; i < N; i++ )
        for( int j = 0; j < N; j++ ) {
        int iO = (i + N-1) % N; // left
        int il = (i + N+1) % N; // right
        int j0 = (j + N-1) % N; // down
        int j1 = (j + N+1) % N; // up
        v[i][j] += tau * (u[i0][j] + u[i1][j] + u[i][j0] + u[i][j1] - 4*u[i][j])
        v[i][j] *= alpha; // damping
    }
    // update height
    for( int i = 0; i < N; i++ )
    for( int j = 0; j < N; j++ ) {
        u[i][j] += tau * v[i][j];
    }
    display( u );
    }

\section*{Liquid Simulation in Graphics}


Losasso, F., Shinar, T. Selle, A. and Fedkiw, R., "Multiple Interacting Liquids"

\section*{Smoke Simulation in Graphics}
S. Weißmann, U. Pinkall. "Filament-based smoke with vortex shedding and variational reconnection"

\section*{Cloth Simulation in Graphics}

Zhili Chen, Renguo Feng and Huamin Wang, "Modeling friction and air effects between cloth and deformable bodies"

\section*{Elasticity in Graphics}


Irving, G., Schroeder, C. and Fedkiw, R., "Volume Conserving Finite Element Simulation of Deformable Models"

\section*{Hair Simulation in Graphics}


Danny M. Kaufman, Rasmus Tamstorf, Breannan Smith, Jean-Marie Aubry, Eitan Grinspun, "Adaptive Nonlinearity for Collisions in Complex Rod Assemblies"

\section*{Fracture in Graphics}


James F. O'Brien, Adam Bargteil, Jessica Hodgins, "Graphical Modeling and Animation of Ductile Fracture"

\section*{Viscoelasticity in Graphics}


Chris Wojtan, Greg Turk, "Fast Viscoelastic Behavior with Thin Features"

\section*{Snow Simulation in Graphics}


\section*{Definition of a PDE}
- Want to solve for a function of time and space
\[
u(\underset{\substack{\uparrow \\ \text { time }}}{t}, \underset{\substack{\uparrow p a c e}}{x})
\]
- Function given implicitly in terms of derivatives:
\(\dot{u}, \ddot{u}, \frac{d^{3} u}{d t^{3}}, \frac{d^{4} u}{d t^{4}}, \ldots\)
any combination of time derivatives
\(\frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}}, \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}}, \frac{\partial^{m+n} u}{\partial x_{i}^{m} \partial x_{j}^{n}}, \ldots\)

plus any combination of space derivatives


\section*{Anatomy of a PDE}

■ Linear vs. nonlinear: how are derivatives combined?
nonlinear!
\[
\begin{aligned}
& \dot{u}+u u^{\prime}=a u^{\prime \prime} \\
& \dot{u}=a u^{\prime \prime}
\end{aligned}
\]
(Burgers' equation)
(diffusion equation)
- Order: how many derivatives in space \& time?

1st order in time
2nd order in space

(Burgers' equation)
2nd order in time

(wave equation)
Rule of thumb: nonlinear / higher order \(\Rightarrow\) HARDER TO SOLVE!

\section*{Model Equations}
- Fundamental behavior of many important PDEs is wellcaptured by three model linear equations:


\section*{HEAT EQUATION ("PARABOLIC") \(\dot{u}=\Delta u\)}
"how does an initial distribution

Solve numerically?


\section*{Elliptic PDEs / Laplace Equation}
"What's the smoothest function interpolating the given boundary data?"

- Conceptually: each value is at the average of its "neighbors"

■ Roughly speaking, why is it easier to solve?
■ Very robust to errors: just keep averaging with neighbors!

\section*{Parabolic PDEs / Heat Equation}

■ "How does an initial distribution of heat spread out over time?"

- After a long time, solution is same as Laplace equation!
- Models damping / viscosity in many physical systems

\section*{Hyperbolic PDEs / Wave Equation}
- "If you throw a rock into a pond, how does the wavefront evolve over time?"

- Errors made at the beginning will persist for a long time! (hard)

\title{
PDEs give an implicit description of solution.
}

\section*{How do we compute solutions explicitly?}

\section*{Numerical Solution of PDEs—Overview}
\(■\) Like ODEs, most PDEs are difficult/impossible to solve analytically—especially if we want to incorporate data!

■ Must instead use numerical time integration


■ Basic strategy:
-pick a time discretization (forward Euler, backward Euler...)
-pick a spatial discretization (TODAY)
-as with ODEs, perform time-stepping to advance solution
■ Historically, very expensive—only for "hero shots" in movies
■ Computers are ever faster...
■ More \& more use of PDEs
- games, interactive tools, ...


\section*{Real Time PDE-Based Simulation (Fire)}

GAMEWDRKS

\section*{Real Time PDE-Based Simulation (Water)}

\section*{Lagrangian vs. Eulerian}
- Two basic ways to discretize space: Lagrangian \& Eulerian
- E.g., suppose we want to encode the motion of a fluid

track position \& velocity of moving particles

EULERIAN

track velocity (or flux) at fixed grid locations

\section*{Lagrangian vs. Eulerian—Trade-Offs}

\section*{- Lagrangian}
- conceptually easy (like polygon soup!)
- resolution/domain not limited by grid
- good particle distribution can be tough
- finding neighbors can be expensive
- Eulerian
- fast, regular computation
- easy to represent, e.g., smooth surfaces
- simulation "trapped" in grid
- grid causes "numerical diffusion" (blur)
- need to understand PDEs (but you will!)


\section*{Mixing Lagrangian \& Eulerian}
- Of course, no reason you have to choose just one!
- Many modern methods mix Lagrangian \& Eulerian:
- PIC/FLIP, material point methods, particle level sets, meshbased surface tracking, Voronoi-based ...
■ Pick the right tool for the job!

\section*{Aside: Which Quantity Do We Solve For?}
- Many PDEs have mathematically equivalent formulations in terms of different quantities
- E.g., incompressible fluids:
- velocity—how fast is each particle moving?
- vorticity—how fast is fluid "spinning" at each point?
- Computationally, can make a big difference

■ Pick the right tool for the job!


\title{
Ok, but we're getting way ahead of ourselves. How do we solve easy PDEs?
}

\section*{Numerical PDEs—Basic Strategy}
- Pick PDE formulation
- Which quantity do we want to solve for?
- E.g., velocity or vorticity?

■ Pick spatial discretization


Richard Courant
- How do we approximate derivatives in space?

■ Pick time discretization
- How do we approximate derivatives in time?
- When do we evaluate forces?
- Forward Euler, backward Euler, symplectic Euler, ...
- Finally, we have an update rule
- Repeatedly solve to generate an animation

\section*{The Laplace Operator}
- All of our model equations used the Laplace operator
- Different conventions for symbol:

- Unbelievably important object showing up everywhere across physics, geometry, signal processing, ...
- Ok, but what does it mean?
- Differential operator: eats a function, spits out its "2nd derivative"
- What does that mean for a function \(u: \mathbb{R}^{n} \rightarrow \mathbb{R}\) ?
-divergence of gradient
-sum of second derivatives
-deviation from local average \(\quad \Delta u=\frac{\partial u^{2}}{\partial x_{1}^{2}}+\cdots+\frac{\partial u^{2}}{\partial x_{n}^{2}}\)

\section*{Discretizing the First Derivative}

■ To solve any PDE, need to approximate spatial derivatives (e.g., Laplacian)
- Suppose we know a function \(u(x)\) only at regular intervals \(h\)

- Q: How can we approximate the first derivative of \(u\) ?

■ A: Recall definition of a derivative in terms of limits:
\[
u^{\prime}(x)=\lim _{\varepsilon \rightarrow 0} \frac{f(x+\varepsilon)-f(x)}{\varepsilon}
\]
- Can hence get an approximation using known values:
\[
u^{\prime}\left(x_{i}\right) \approx \frac{u_{i+1}-u_{i}}{h}
\]
- Approximation gets better for finer grid (smaller \(h\) )

\section*{Discretizing the Second Derivative}
- Q: How can we get an approximation of the second derivative?

■ A: One idea*: approximate the first derivative of the approximate first derivative!
\[
\begin{gathered}
u^{\prime \prime}\left(x_{i}\right) \approx \frac{u_{i}^{\prime}-u_{i-1}^{\prime}}{h} \approx \frac{\left(\frac{u_{i+1}-u_{i}}{h}\right)-\left(\frac{u_{i}-u_{i-1}}{h}\right)}{h}= \\
\frac{u_{i+1}-2 u_{i}+u_{i-1}}{h^{2}}
\end{gathered}
\]
- In general, this approach of approximating derivatives with differences is the "finite difference" approach to PDEs

■ Not the only way! But works well on regular grids.

\section*{Discretizing the Laplacian}
- How do we approximate the Laplacian?
- Depends on discretization (Eulerian, Lagrangian, grid, mesh, ...)
- Two extremely common ways in graphics:

- Also not too hard on point clouds, polygon meshes, ...

\section*{Numerically Solving the Laplace Equation}
- Want to solve \(\Delta u=0\)
- Plug in one of our discretizations, e.g.,
\begin{tabular}{|l|l|l|}
\hline & \(u_{i, j+1}\) & \\
\hline\(u_{i-1, j}\) & \(u_{i, j}\) & \(u_{i+1, j}\) \\
\hline & \(u_{i, j-1}\) & \\
\hline
\end{tabular}
\[
\begin{array}{r}
\frac{4 u_{i, j}-u_{i-1, j}-u_{i+1, j}-u_{i, j-1}-u_{i, j+1}}{h^{2}}=0 \\
\Longleftrightarrow u_{i, j}=\frac{1}{4}\left(u_{i-1, j}+u_{i+1, j}+u_{i, j-1}+u_{i, j+1}\right)
\end{array}
\]
- If \(u\) is a solution, then each value must be the average of the neighboring values ( \(u\) is a "harmonic function")
- How do we solve this?
- One idea: keep averaging with neighbors! ("Jacobi method")

■ Correct, but slow. Much better to use modern linear solver

\section*{Aside: PDEs and Linear Equations}

■ How can we turn our Laplace equation into a linear solve?
- Have a bunch of equations of the form
\[
4 u_{i, j}-u_{i-1, j}-u_{i+1, j}-u_{i, j-1}-u_{i, j+1}=0
\]
- On a \(4 \times 4\) grid, assign each cell \(u_{i, j}\) a unique index \(1, \ldots, 16\)

■ Can then write equations as a \(16 \times 16\) matrix equation*
\begin{tabular}{|c|c|c|c|}
\hline 1 & 2 & 3 & 4 \\
\hline 5 & 6 & 7 & 8 \\
\hline 9 & 10 & 11 & 12 \\
\hline 13 & 14 & 15 & 16 \\
\hline
\end{tabular}
\[
\left[\begin{array}{cccccccccccccccc}
-4 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & -4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & -4 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 0 & 1 & -4 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -4 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & -4 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -4 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & -4 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & -4
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{5} \\
u_{6} \\
u_{7} \\
u_{8} \\
u_{9} \\
u_{10} \\
u_{11} \\
u_{12} \\
u_{13} \\
u_{14} \\
u_{15} \\
u_{16}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
\]
- Compute solution by calling sparse linear solver (SuiteSparse, Eigen, ...)

■ Q: By the way, what's wrong with our problem setup here? :-)

\section*{Boundary Conditions for Discrete Laplace}
- What values do we use to compute averages near the boundary?

\[
a=\frac{1}{4}(b+c+?+e)
\]
- A: We get to choose-this is the data we want to interpolate!
- Two basic boundary conditions:
1. Dirichlet—boundary data always set to fixed values
2. Neumann-specify derivative (difference) across boundary
- Also mixed (Robin) boundary conditions (and more, in general)

\section*{Dirichlet Boundary Conditions}
- Let's go back to smooth setting, function on real line
- Dirichlet means "prescribe values"
- E.g., \(\phi(0)=a, \phi(1)=b\)


■ Many possible functions "in between"!

\section*{Neumann Boundary Conditions}

■ Neumann means "prescribe derivatives"
- E.g., \(\phi^{\prime}(0)=u, \phi^{\prime}(1)=v\)

- Again, many possible functions!

\section*{Both Neumann \& Dirichlet}
- Or: prescribe some values, some derivatives
- E.g., \(\phi^{\prime}(0)=u, \phi(1)=b\)


■ Q: What about \(\phi^{\prime}(1)=v, \phi(1)=b\) ? Does that work?
■ Q: What about \(\phi^{\prime}(0)+\phi(0)=p, \phi^{\prime}(1)+\phi(1)=q\) ? (Robin)

\section*{1D Laplace w/ Dirichlet BCs}
- 1D Laplace: \(\partial^{2} \phi / \partial x^{2}=0\)
- Solutions: \(\phi(x)=c x+d\)

■ Q: Can we always satisfy given Dirichlet boundary conditions?

- Yes: a line can interpolate any two points.

\section*{1D Laplace w/ Neumann BCs}
- What about Neumann BCs?
- Q: Can we prescribe the derivative at both ends?

- No! A line has only one slope.
- In general, solution to a PDE may not exist for given BCs.

\section*{2D Laplace w/ Dirichlet BCs}
- 2D Laplace: \(\Delta \phi=0\)
- Q: Can satisfy any Dirichlet BCs? (given data along boundary)

- Yes: Laplace is long-time solution to heat flow

■ Data is "heat" at boundary. Then just let it flow...

\section*{2D Laplace w/ Neumann BCs}
- What about Neumann BCs for \(\Delta \phi=0\) ?
- Neumann BCs prescribe derivative in normal direction: \(n \cdot \nabla \phi\)

■ Q: Can it always be done? (Wasn't possible in 1D...)
- In 2D, we have the divergence theorem:
\[
\int_{\partial \Omega} n \cdot \nabla \phi=\int_{\Omega} \nabla \cdot \nabla \phi=\int_{\Omega} \Delta \phi \stackrel{!}{=} 0
\]
- Should be called, "what goes in must come out theorem!"
- Can't have a solution unless the net flux through the boundary is zero.

- Numerical libraries will not always tell you if there's a problem!
- Trust, but verify (e.g., after solving \(A x=b\), compute \(\|b-A x\|\) )

\section*{Solving the Heat Equation}
- Back to our three model equations, want to solve heat eqn.
\[
\dot{u}=\Delta u
\]
- Just saw how to discretize Laplacian
- Also know how to do time (forward Euler, backward Euler, ...)
- E.g., forward Euler:
\[
u^{k+1}=u^{k}+\tau \Delta u^{k}
\]

■ Q: On a grid, what's our overall update now at \(u_{i, j}\) ?
\[
u_{i, j}^{k+1}=u^{k}+\frac{\tau}{h^{2}}\left(4 u_{i, j}^{k}-u_{i+1, j}^{k}-u_{i-1, j}^{k}-u_{i, j+1}^{k}-u_{i, j-1}^{k}\right)
\]

■ Not hard to implement! Loop over grid, add up some neighbors.

\section*{Solving the Wave Equation}
- Finally, wave equation:
\[
\ddot{u}=\Delta u
\]

■ Not much different; now have 2nd derivative in time
- By now we've learned two different techniques:
- Convert to two 1st order (in time) equations:
\[
\dot{u}=v, \quad \dot{v}=\Delta u
\]
- Or, use centered difference (like Laplace) in time:
\[
\frac{u^{k+1}-2 u^{k}+u^{k-1}}{\tau^{2}}=\Delta u^{k}
\]
- Plus all our choices about how to discretize Laplacian.
- So many choices! And many, many (many) more we didn't discuss.

\section*{Wave Equation on a Grid, Triangle Mesh}

\begin{tabular}{c} 
Figure 1 \\
File Edit View Insert Tools Desktop Window Help \\
\hline
\end{tabular}

\section*{Fun with wave-like equations...}


\title{
Wait, what about all that other cool stuff? (Fluids, hair, cloth, ...)
}

\section*{Want to Know More? \\ - There are some good books: \\ - And papers:}

\section*{http://www.physicsbasedanimation.com/}


Biomechanical Simulation and Control of Hands and Tendinous Systems
Prashant Sachdeva, Shinjiro Sueda, Susanne Bradley, Mikhail Fain, Dinesh K. Pai

Fluid Simulation for Computer Graphics

Robert Bridson


\section*{- Also, what did the folks who wrote these books \& papers read?}
```

