
Kinematics

15-462/662 | Computer Graphics Lecture 19 | Kinematics

15-462/662 | Computer Graphics

• Forward Kinematics

• Inverse Kinematics

Lecture 19 | Kinematics

15-462/662 | Computer Graphics Lecture 19 | Kinematics

We saw the rendering equation,
But what is the animation equation?

15-462/662 | Computer Graphics Lecture 19 | Kinematics

The Animation Equation

mass

acceleration

Force

It’s a little more complicated than just this…

15-462/662 | Computer Graphics Lecture 19 | Kinematics

An Animation System

• Component of an animation system:
• Object’s mass
• Object’s configuration
• Object’s velocity
• Object’s acceleration
• Forces acting on object
• Set of constraints

• Configuration 𝑞(𝑡) is time dependent
• Can use splines to interpolate control

points (keyframes)

15-462/662 | Computer Graphics Lecture 19 | Kinematics

An Animation System

• Common to describe system with many
moving pieces
• Ex: a collection of billiard balls
• Can collect into a single configuration:

• Naturally maps to the way we actually
solve equations on a computer
• All variables stacked into a vector

and handed to a solver

15-462/662 | Computer Graphics Lecture 19 | Kinematics

Character Animation

• Configuration of a character is the
configuration of all their individual joints

• Keyframes save poses of characters
• Goal: use splines to interpolate between

poses of a character
• Hermite splines
• Catmull-Rom splines
• B-splines

• Problem: what is an efficient, user-friendly
way of setting character poses?

3D Animation in Unity (2020) Ing Jileček

15-462/662 | Computer Graphics Lecture 19 | Kinematics

Motion Capture

• Just take videos of real life poses
• Map to character model

• Data can get very messy
• Same idea as capturing a point cloud

• [+] Easy to understand
• [+] Capture real-life poses
• [-] Expensive to purchase
• [-] Very noisy data
• [-] Requires a lot of cleanup

The Hobbit (2012) Peter Jackson

15-462/662 | Computer Graphics Lecture 19 | Kinematics

The Human Rig

• Many systems well-described by a kinematic chain
• Collection of rigid bodies, connected by joints
• Joints have various behaviors

• Ball (shoulder)
• Hinge (elbow)

• Also have constraints (e.g., range of angles)
• Human neck can’t rotate around fully
• Owl necks can!

• Hierarchical structure (body → leg → foot)

• In animation, often called a character rig
• Character rigs are scene graphs!

15-462/662 | Computer Graphics Lecture 19 | Kinematics

Character Rigging

• Character rigging is a separate job from character modeling
and character animation
• Focuses on:

• Optimal joint placement
• Joint angle extent
• Joint hierarchy

• Not all human rigs are the same!
• Depends on character model proportions/movements

Up (2009) Pixar

15-462/662 | Computer Graphics Lecture 19 | Kinematics

How do we animate a rig?

15-462/662 | Computer Graphics Lecture 19 | Kinematics

Forward Kinematics

• Consider moving the hand 𝑐!	
• Rotate shoulder (moves 𝑐" and 𝑐!)
• Then rotate elbow (moves 𝑐!)

• New elbow position 𝑝"	computed as:

• New hand position 𝑝! computed as:

15-462/662 | Computer Graphics Lecture 19 | Kinematics

Forward Kinematics

• Consider moving the hand 𝑐!	
• Rotate shoulder (moves 𝑐" and 𝑐!)
• Then rotate elbow (moves 𝑐!)

• Can also be written as as series of rotations and translations

• Let’s sort this out on the board – what do we do first?

15-462/662 | Computer Graphics Lecture 19 | Kinematics

A Note About Spaces

• World Space: absolute coordinate space

• Local Space: the model’s space
• Often use the rig’s center as the origin

• Bone Space: For a given bone 𝑖, the origin is the bone’s base
point and the axes are rotated by its rotations and all the
parent rotations before it
• Bind Space: a form of Bone Space, but no rotations, just

translations
• Think of Bind Space as the model in T-pose position

with no rotations applied, just the offsets

• Pose Space: a form of Bone Space, with both rotations
and translations applied
• Think of it as the model that is posed with rotations

𝑐! = 𝑇 𝑢" 	𝑇 𝑢# 	𝑐#

𝑝! = 𝑅 𝜃# + 𝜃" 𝑇 𝑢" 𝑅(𝜃#)𝑇 𝑢# 	𝑝#
𝑝! = 𝑅 𝜃# 𝑇 𝑢# 𝑅(𝜃")𝑇 𝑢" 	𝑝#

15-462/662 | Computer Graphics Lecture 19 | Kinematics

At some point you will need to sort out the difference between global and local coordinate frames

15-462/662 | Computer Graphics Lecture 19 | Kinematics

Forward Kinematics

• [+] Computationally efficient
• [+] Easy interface to work with
• [+] Explicit control over every joint
• [-] Produces rigid animations
• [-] Hard to model real-world motions
• [-] Requires more keyframes

• Results often look robot-like

Big Hero 6 (2014) Disney

15-462/662 | Computer Graphics Lecture 19 | Kinematics

Linear Blend Skinning

• Vertices track with bones
• Known as blend skinning

• For each vertex 𝑖, compute weights 𝑤$% for each bone 𝑗
• Weights are normalized for each vertex

• Weights average transforms of each bone to compute
posed vertex position 𝑣′$ from bind vertex 𝑣$

• 𝑃% is bone 𝑗’s bone-to-pose transform
• 𝐵% is bone 𝑗’s bone-to-bind transform

• It should type-check :)

5
%

𝑤$% = 1

𝑣′$ =5
%

(𝑤$%𝑃%𝐵%&")𝑣$

Monster’s Inc (2001) Pixar

15-462/662 | Computer Graphics Lecture 19 | Kinematics

Computing Weights

• 𝑟 is the radius of the bone
• 𝑑$% is the distance between 𝑣$ and its closest projection

onto the bone

• Make sure to normalize weights

9𝑤$% =
max(0, 𝑟 − 𝑑$%)

𝑟

𝑤$% =
9𝑤$%

∑% 9𝑤$%

Why do we need r?

15-462/662 | Computer Graphics Lecture 07 | Geometry Processing

Review: Closest Point on a Line Segment

Compute the vector p from the line base a along the line

⟨𝐩 − 𝐚, 𝐛 − 𝐚⟩

Normalize to get a time

𝑡 =
⟨𝐩 − 𝐚, 𝐛 − 𝐚⟩
⟨𝐛 − 𝐚, 𝐛 − 𝐚⟩

Clip time to range [0,1]and interpolate

p
p p

p

p

p

pp
p

p

a

b

𝒂 + (𝐛 − 𝐚)𝑡

15-462/662 | Computer Graphics Lecture 07 | Geometry Processing

Weight Painting

• Computer animation applications allow
you to specify weights on your own
• Known as weight painting

• UI uses color to illustrate magnitude of
each vertex/bone pair

• Part of the rigging pipeline

Blender (2021) Ton Roosendaal

15-462/662 | Computer Graphics

• Splines

• Forward Kinematics

• Inverse Kinematics

Lecture 19 | Kinematics

15-462/662 | Computer Graphics Lecture 19 | Kinematics

How Humans Move

• We don’t think about the movement of each
individual joint
• Instead, we think about a part of our body, and

where we want it to go
• Our body solves for the correct movements
• Ex: hand moves to reach a doorknob

• No unique solution
• Many ways to catch a ball

• What if our rig behaved a similar way…

15-462/662 | Computer Graphics Lecture 19 | Kinematics

Inverse Kinematics

• Identify a bone on the rig 𝑖 and a handle ℎ that it should
reach for
• Can try to satisfy multiple targets (𝑖, ℎ)

• Loss function 𝑓 𝑞 	for rig configuration 𝑞 is:

• Where 𝑝$ 𝑞 is the position of the end of bone 𝑖

• Goal: compute the gradient ∇𝑓 𝑞 	
• Gradient represents how changing each joint will

change the loss function
• Apply gradient descent with some timestep 𝜏:

𝑓 𝑞 = 5
($,))

1
2
𝑝$ 𝑞 − ℎ !

𝑞 = 𝑞	 − 𝜏	∇𝑓 𝑞

Foundry (2020) Foundry Hub

15-462/662 | Computer Graphics Lecture 19 | Kinematics

Inverse Kinematic Gradient

𝑑𝑓
𝑑𝜃+

, = 5
($,))

𝑝$ 𝑞 − ℎ
𝑑𝑝$
𝑑𝜃+

,

𝑑𝑓
𝑑𝜃+

, 	=
𝑑
𝑑𝜃+

, 5
($,))

1
2 𝑝$ 𝑞 − ℎ !

-.!
-/"

=
-
-/"

∏%0#,$&"𝑅 𝜃%1 𝑅 𝜃%
, 𝑅 𝜃%2 𝑇 𝑢% 𝑅 𝜃$1 𝑅 𝜃$

, 𝑅 𝜃$2 𝑢$

-.!
-/"

= 𝑅 𝜃#1 𝑅 𝜃#
, 𝑅 𝜃#2 𝑇 𝑢# … 𝑅 𝜃+1

-
-/"

#𝑅 𝜃+
, 𝑅 𝜃+2 𝑇 𝑢$ … 𝑅 𝜃$1 𝑅 𝜃$

, 𝑅 𝜃$2 𝑢$

[linear transformation] [derivative] [transformed point]

Take gradient with respect to function

Expand 𝑝$ into transformations. Each rotation in 3D is axis-aligned

Gradient breaks down into 3 parts:

15-462/662 | Computer Graphics Lecture 19 | Kinematics

Inverse Kinematic Gradient

-.!
-/"

= ???

-.!
-/"

# = 𝑦	×	(𝑝	 − 𝑟)

Fun fact: by transforming the axis of rotation and base point to local coordinates,
Then the derivative of the rotation 𝑅 𝜃+

, by amount 𝜃+
, around axis 𝑦 and

center 𝑟 of point 𝑝 becomes:

𝑝 =	 [linear transformation] [𝑹 𝜽𝒌
𝒚] [transformed point]

𝑟 =	 [linear transformation’] [0,0,0]

𝑦 =	 [linear transformation’] [𝑹 𝜽𝒌𝒛]).rotate(𝜽𝒌
𝒚)(

[linear transformation’] = all rotations and transformations up to, but not including the kth bone

specific to the
current joint

constant for a
given handle

15-462/662 | Computer Graphics Lecture 19 | Kinematics

Inverse Kinematic Gradient

∇𝑓+
, = 𝑝$ 𝑞 − ℎ Q [𝑦+ 	× 𝑝$ 𝑞 − 𝑟+]

• Note: all joints that come before joint 𝑘 can also contribute to the movement
of joint 𝑘
• Example: moving your shoulder moves your hand

• Need to also compute how every joint prior to joint 𝑘 affects the movement
of joint 𝑘
• Gives us a gradient for each joint in range [0 - k]

∇𝑓+&"
, = 𝑝$ 𝑞 − ℎ Q [𝑦+&"	× 𝑝$ 𝑞 − 𝑟+&"]

∇𝑓+&!
, = 𝑝$ 𝑞 − ℎ Q [𝑦+&!	× 𝑝$ 𝑞 − 𝑟+&!]

∇𝑓#
, = 𝑝$ 𝑞 − ℎ Q [𝑦#	× 𝑝$ 𝑞 − 𝑟#]

…

𝑝

𝑟

𝑦specific to the
current joint

constant for a
given handle

15-462/662 | Computer Graphics Lecture 19 | Kinematics

Inverse Kinematic Gradient

• Each joint 𝑘 will have its own vector gradient -6
-/"

	= < -6
-/"

$, -6
-/"

#, -6
-/"

% >

• Same process for computing each component, just use 𝑥+ 	, 𝑦+ 	, or 𝑧+ 	

• What if we have multiple target pairs (𝑖, ℎ)?
• Gradient becomes a sum!

∇𝑓+
, += 𝑝$ 𝑞 − ℎ Q [𝑦+ 	× 𝑝$ 𝑞 − 𝑟+]

∇𝑓+&"
, += 𝑝$ 𝑞 − ℎ Q [𝑦+&"	× 𝑝$ 𝑞 − 𝑟+&"]

∇𝑓+&!
, += 𝑝$ 𝑞 − ℎ Q [𝑦+&!	× 𝑝$ 𝑞 − 𝑟+&!]

∇𝑓#
, += 𝑝$ 𝑞 − ℎ Q [𝑦#	× 𝑝$ 𝑞 − 𝑟#]

…

15-462/662 | Computer Graphics Lecture 19 | Kinematics

Inverse Kinematic Gradient
vec3 gradient_in_current_pose() {

 for (auto &handle : handles) {

 Vec3 h = handle.target;
 Vec3 p = // TODO: compute output point

 // walk up the kinematic chain
 for (BoneIndex b = handle.bone; b < bones.size(); b = bones[b].parent) {
 Bone const &bone = bones[b];
 Mat4 xf = // TODO: compute [linear transform’]

 Vec3 r = xf * Vec3{0.0f, 0.0f, 0.0f};

 Vec3 x = // TODO: compute bone’s x-axis in local space
 Vec3 y = // TODO: compute bone’s y-axis in local space
 Vec3 z = // TODO: compute bone’s z-axis in local space

 gradient[b].x += dot(cross(x, p - r), p - h);
 gradient[b].y += dot(cross(y, p - r), p - h);
 gradient[b].z += dot(cross(z, p - r), p - h);
 }
 }
}

15-462/662 | Computer Graphics Lecture 19 | Kinematics

Inverse Kinematic Gradient

• How do we apply the gradient?
• Iterate through each joint 𝑗 and apply ∇𝑓%
• Make sure to clear all gradients after each step!

• Recompute the loss function

• If loss is lower than some threshold, terminate
• Otherwise continue until max steps exceeded

𝜃% = 𝜃% − 𝜏	∇𝑓%

𝑓 𝑞 = 5
($,))

1
2 𝑝$ 𝑞 − ℎ !

my
optimizer

