Splines \& Kinematics

- Splines
- Forward Kinematics
- Inverse Kinematics

Recall: 3D Animation

- Using meshes, materials, and rendering to produce 3D animated sequences
- Use a photorealistic rendere to make results photorealistic
- Today: No need to draw anything, computer takes care of everything
- Set keyframes by hand
- Forward Kinematics
- Inverse Kinematics
- Allow keyframes to interpolate
- Splines

Keyframing

- Set keyframes at important locations in the animation
- Have the computer interpolate the rest
- Can keyframe anything!
- Color
- Light intensity
- Camera zoom
- Problem: how should data interpolate?
- Linearly?
- Along a curve/arc?

Linear Interpolation

Piecewise Polynomial Interpolation

Splines

- Mathematical theory of interpolation arose from study of thin strips of wood or metal ("splines") under various forces
- Splines help us define how interpolation should occur

The Elastica: A Mathematical History (2008) Levin

Splines

- In this course, a spline is any piecewise cubic polynomial function

- Common spline: cubic polynomial:

$$
p(t)=a t^{3}+b t^{2}+c t+d
$$

- 3 goals of splines:
- Interpolation
- Continuity

Many solutions!

- Locality

Interpolation

- Interpolation: does the spline pass through the control points

$$
f\left(t_{i}\right)=f_{i} \quad \forall i
$$

- For every keyframe f_{i}, there exists some time t_{i} where the interpolation of f equals the keyframe f_{i}

Continuity

Continuity: Continuity comes in levels. We check whether the spline and its derivatives are continuous at the control points.

- CO continuity - keyframes are continuous
- C1 continuity - first derivative is continuous
- C2 continuity - second derivative is continuous
- By default, most applications will have keyframes connect
- Gives us CO continuity for free

Locality

- Locality: moving one control point does not modify the whole curve
- Important from a user perspective
- Need to be able to make small, local changes to spline

Piecewise Cubic Polynomial

- So why piecewise cubic polynomials?

$$
p(t)=a t^{3}+b t^{2}+c t+d
$$

- Cubic polynomial coefficients can be broken down into their keyframe and tangent components
- Animator specifies where a curve starts, ends, and the tangents at those points

$$
\begin{array}{ll}
p(0)=p_{0} & \Rightarrow d=p_{0} \\
p(1)=p_{1} & \Rightarrow a+b+c+d=p_{1} \\
p^{\prime}(0)=u_{0} & \Rightarrow c=u_{0} \\
p^{\prime}(1)=u_{1} & \Rightarrow 3 a+2 b+c=u_{1}
\end{array}
$$

- Gives us 4 constraints
- Can be turned into 4 coefficients

Piecewise Cubic Polynomial

- Can also write:

$$
p(t)=a t^{3}+b t^{2}+c t+d
$$

- As a linear system!

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
p_{0} \\
p_{1} \\
u_{0} \\
u_{1}
\end{array}\right]
$$

Runge Phenomenon

Tempting to use higher-degree polynomials to get higher-order continuity

Natural Splines

- Can build a spline out of piecewise cubic polynomials p_{i}
- Each polynomial extends from range $t=[0,1]$
- Keyframes agree at endpoints [CO continuity]:
$p_{i}(0)=f_{0}, \quad p_{n-1}(1)=f_{n}, \quad p_{i}(1)=p_{i+1}(0)=f_{i+1}, \quad \forall i=0, \ldots, n-2$
- Tangents agree at endpoints [C1 continuity]:

$$
p_{i}^{\prime}(1)=p_{i+1}^{\prime}(0), \quad \forall i=0, \ldots, n-2
$$

- Curvature agrees at endpoints [C2 continuity]:

$$
p^{\prime \prime}{ }_{i}(1)=p^{\prime \prime}{ }_{i+1}(0), \quad \forall i=0, \ldots, n-2
$$

- Total equations:
- $2 \mathrm{n}+(\mathrm{n}-1)+(\mathrm{n}-1)=4 \mathrm{n}-2$
- Total DOFs:
- $2 n+n+n=4 n$
- Set curvature at endpoints to 0 and solve

$$
p_{0}^{\prime \prime}(0)=0, \quad p_{n-1}^{\prime \prime}(1)=0
$$

Natural Splines

- \checkmark Interpolation: by definition

$$
p_{i}(0)=f_{i}, \quad p_{i}(1)=f_{i+1}, \quad \forall i=0, \ldots, n-1
$$

- \checkmark C2 Continuity: by definition

$$
p^{\prime \prime}{ }_{i}(1)=p^{\prime \prime}{ }_{i+1}(0), \quad \forall i=0, \ldots, n-2
$$

- X Locality: coefficients require us to solve a global linear system
- Small modification to a keyframe requires resolving the entire system

Hermite Splines

- Each cubic piece specified by endpoints and tangents
- Keyframes set at endpoints:

$$
p_{i}(0)=f_{i}, \quad p_{i}(1)=f_{i+1}, \quad \forall i=0, \ldots, n-1
$$

- Tangents set at endpoint:

$$
p_{i}^{\prime}(0)=u_{i,} \quad p_{i}^{\prime}(1)=u_{i,+1}, \quad \forall i=0, \ldots, n-1
$$

- Natural splines specify just keyframes
- Hermite splines specify keyframes and tangents
- Can get continuity if tangents are set equal
- Total equations:
- $2 n+2 n=4 n$
- Commonly used in vector art programs

- Illustrator
- Inkscape
- SVGs

Hermite vs. Bézier Splines

Hermite curves specify keyframes and tangents, Bezier curves specify control points

Same computation and properties! Just a different interface

Hermite vs. Bézier Splines

Hermite curves specify keyframes and tangents, Bezier curves specify control points

Same computation and properties! Just a different interface

Catmull-Rom Splines

- A specialized version of Hermite splines
- Only need to specify keyframes
- Tangents computed as:

$$
u_{i}:=\frac{f_{i+1}-f_{i-1}}{t_{i+1}-t_{i-1}}
$$

- All the same properties of Hermite splines
- Commonly used to interpolate motion in computer animation
- When we have tracking data, but not tangent data
- Easy to generate tangent data

Hermite vs. Bézier vs. Catmull-Rom Splines

- \checkmark Interpolation: by definition

$$
p_{i}(0)=f_{i}, \quad p_{i}(1)=f_{i+1}, \quad \forall i=0, \ldots, n-1
$$

- X Continuity: Can produce splines that are not C2 (or even C1) continuous
- Tangents do not need to be same values

$$
p_{i}^{\prime}(0)=u_{i,} \quad p_{i}^{\prime}(1)=u_{i,+1}, \quad \forall i=0, \ldots, n-1
$$

- \checkmark Locality: each cubic polynomial is generated individually
- Modifications can happen individually
- Ease of use make it a prime candidate for vector applications

B-Splines

- Compute a weighted average of nearby keyframes when interpolating
- B-spline basis defined recursively, with base condition:

$$
B_{i, 1}(t):= \begin{cases}1, & \text { if } t_{i} \leq t<t_{i+1} \\ 0, & \text { otherwise }\end{cases}
$$

- And inductive condition:

$$
B_{i, k}(t):=\frac{t-t_{i}}{t_{i+k-1}-t_{i}} B_{i, k-1}(t)+\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}} B_{i+1, k-1}(t)
$$

- B-spline is a linear combination of bases:

$$
f(t):=\sum_{i} a_{i} B_{i, d}
$$

B-Splines

- X Interpolation: For higher degrees, splines do not pass through keyframes
- \checkmark Continuity: With higher degrees, bases are twice differentiable

$$
B_{i, k}(t):=\frac{t-t_{i}}{t_{i+k-1}-t_{i}} B_{i, k-1}(t)+\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}} B_{i+1, k-1}(t)
$$

- \checkmark Locality: B-spline bases are a function of the current and next bases

$$
B_{i, k}(t):=\frac{t-t_{i}}{t_{i+k-1}-t_{i}} B_{i, k-1}(t)+\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}} B_{i+1, k-1}(t)
$$

B-Splines

- X Interpolation: For higher degrees, splines do not pass through keyframes
- $\sqrt{ }$ Continuity: With higher degrees, bases are twice differentiable

$$
B_{i, k}(t):=\frac{t-t_{i}}{t_{i+k-1}-t_{i}} B_{i, k-1}(t)+\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}} B_{i+1, k-1}(t)
$$

- \checkmark Locality: B-spline bases are a function of the current and next bases

$$
B_{i, k}(t):=\frac{t-t_{i}}{t_{i+k-1}-t_{i}} B_{i, k-1}(t)+\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}} B_{i+1, k-1}(t)
$$

Splines Review

Splines Review

- Splines

- Forward Kinematics
- Inverse Kinematics

We saw the rendering equation, But what is the animation equation?

The Animation Equation

It's a little more complicated than just this...

An Animation System

- Component of an animation system:
- Object's mass
- Object's configuration
- Object's velocity
- Object's acceleration
- Forces acting on object
- Set of constraints
- Configuration $q(t)$ is time dependent
- Can use splines to interpolate control points (keyframes)

$$
\begin{aligned}
\dot{q}: & =\frac{d}{d t} q \\
g(q, \dot{q}, t) & =0
\end{aligned}
$$

$$
\ddot{q}=F / m
$$

An Animation System

- Common to describe system with many moving pieces
- Ex: a collection of billiard balls
- Can collect into a single configuration:

$$
q=\left(x_{0}, x_{1}, \ldots, x_{n}\right)
$$

- Naturally maps to the way we actually solve equations on a computer
- All variables stacked into a vector and handed to a solver

Character Animation

- Configuration of a character is the configuration of all their individual joints
- Keyframes save poses of characters
- Goal: use splines to interpolate between poses of a character
- Natural splines
- Hermite splines
- B-splines
- Problem: what is an efficient, user-friendly way of setting character poses?

3D Animation in Unity (2020) Ing Jileček

Motion Capture

- Just take videos of real life poses
- Map to character model
- Data can get very messy
- Same idea as capturing a point cloud
- [+] Easy to understand
- [+] Capture real-life poses
- [-] Expensive to purchase
- [-] Very noisy data
- [-] Requires a lot of cleanup

The Hobbit (2012) Peter Jackson

The Human Rig

- Many systems well-described by a kinematic chain
- Collection of rigid bodies, connected by joints
- Joints have various behaviors
- Ball (shoulder)
- Piston (neck)
- Hinge (elbow)
- Also have constraints (e.g., range of angles)
- Human neck can't rotate around fully
- Owl necks can!
- Hierarchical structure (body \rightarrow leg \rightarrow foot)
- In animation, often called a character rig
- Character rigs are scene graphs!

Character Rigging

- Character rigging is a separate job from character modeling and character animation
- Focuses on:
- Optimal joint placement
- Joint angle extent
- Joint hierarchy
- Not all human rigs are the same!
- Depends on character model proportions/movements

Up (2009) Pixar

How do we animate a rig?

Forward Kinematics

- Consider moving the hand c_{2}
- Rotate shoulder (moves c_{1} and c_{2})
- Then rotate elbow (moves c_{2})
- New elbow position p_{1} computed as:

$$
p_{1}=p_{0}+\left[\begin{array}{rr}
\cos \theta_{0} & \sin \theta_{0} \\
-\sin \theta_{0} & \cos \theta_{0}
\end{array}\right] u_{0}
$$

- Can also be written as:

$$
p_{1}=p_{0}+e^{\imath \theta_{0}} u_{0}
$$

- New hand position p_{2} computed as:

$$
p_{2}=p_{0}+e^{\imath \theta_{0}} u_{0}+e^{\imath \theta_{0}} e^{\imath \theta_{1}} u_{1}
$$

Forward Kinematics

- Consider moving the hand c_{2}
- Rotate shoulder (moves c_{1} and c_{2})
- Then rotate elbow (moves c_{2})

- Can also be written as as series of rotations and translations:

$$
p_{2}=T\left(u_{1}\right) R\left(\theta_{1}\right) T\left(u_{0}\right) R\left(\theta_{0}\right) p_{0}
$$

A Note About Spaces

- World Space: absolute coordinate space
- Local Space: the model's space
- Often use the rig's center as the origin
- Bone Space: For a given bone i, the origin is the bone's base point and the axes are rotated by its rotations and all the parent rotations before it
- Bind Space: a form of Bone Space, but no rotations, just translations
- Think of Bind Space as the model in T-pose position with no rotations applied, just the offsets

$$
c_{2}=T\left(u_{1}\right) T\left(u_{0}\right) c_{0}
$$

- Pose Space: a form of Bone Space, with both rotations and translations applied

- Think of it as the model that is posed with rotations

$$
p_{2}=T\left(u_{1}\right) R\left(\theta_{1}\right) T\left(u_{0}\right) R\left(\theta_{0}\right) p_{0}
$$

A Note About Spaces

- In Scotty3D, we give you points in either Bind or Pose Space, and you need to compute the transformation to Local Space
- Just involves flipping the order of matrices
- Bind-to-Local:

$$
c_{0}=T\left(u_{0}\right) T\left(u_{1}\right) c_{2}
$$

- Pose-to-Local:

$$
p_{0}=R\left(\theta_{0}\right) T\left(u_{0}\right) R\left(\theta_{1}\right) T\left(u_{1}\right) R\left(\theta_{2}\right) p_{2}
$$

- Rotations and transformations will be saved as child-toparent
- No need to invert

Forward Kinematics

- [+] Computationally efficient
- [+] Easy interface to work with
- [+] Explicit control over every joint
- [-] Produces rigid animations
- [-] Hard to model real-world motions
- [-] Requires more keyframes
- Results often look robot-like

Big Hero 6 (2014) Disney

Linear Blend Skinning

Monster's Inc (2001) Pixar

- Vertices track with bones
- Known as blend skinning
- For each vertex i, compute weights $w_{i j}$ for each bone j
- Weights are normalized for each vertex

$$
\sum_{j} w_{i j}=1
$$

- Weights average transforms of each bone to compute posed vertex position v_{i}^{\prime} from bind vertex v_{i}

$$
v_{i}^{\prime}=\sum_{j}\left(w_{i j} P_{j} B_{j}^{-1}\right) v_{i}
$$

- P_{j} is bone j 's bone-to-pose transform
- B_{j} is bone j 's bone-to-bind transform
- It should type-check :)

Computing Weights

Review: Closest Point on a Line Segment

Compute the vector \mathbf{p} from the line base a along the line

$$
\langle\mathbf{p}-\mathbf{a}, \mathbf{b}-\mathbf{a}\rangle
$$

Normalize to get a time

$$
t=\frac{\langle\mathbf{p}-\mathbf{a}, \mathbf{b}-\mathbf{a}\rangle}{\langle\mathbf{b}-\mathbf{a}, \mathbf{b}-\mathbf{a}\rangle}
$$

Clip time to range $[0,1$]and interpolate

$$
\boldsymbol{a}+(\mathbf{b}-\mathbf{a}) t
$$

Weight Painting

- Computer animation applications allow you to specify weights on your own
- Known as weight painting
- UI uses color to illustrate magnitude of each vertex/bone pair
- Part of the rigging pipeline

Blender (2021) Ton Roosendaal

- Splines

- Forward Kinematics
- Inverse Kinematics

How Humans Move

- We don't think about the movement of each individual joint
- Instead, we think about a part of our body, and where we want it to go
- Our body solves for the correct movements
- Ex: hand moves to reach a doorknob
- No unique solution
- Many ways to catch a ball
- What if our rig behaved a similar way...

Inverse Kinematics

- Identify a bone on the rig i and a handle h that it should reach for
- Can try to satisfy multiple targets (i, h)
- Loss function $f(q)$ for rig configuration q is:

$$
f(q)=\sum_{(i, h)} \frac{1}{2}\left|p_{i}(q)-h\right|^{2}
$$

- Where $p_{i}(q)$ is the position of the end of bone i
- Goal: compute the gradient $\nabla f(q)$
- Gradient represents how changing each joint will change the loss function

Foundry (2020) Foundry Hub

- Apply gradient descent with some timestep τ :

$$
q=q-\tau \nabla f(q)
$$

Inverse Kinematic Gradient

$$
\frac{d f}{d \theta_{k}^{y}}=\frac{d}{d \theta_{k}^{y}} \sum_{(i, h)} \frac{1}{2}\left|p_{i}(q)-h\right|^{2}
$$

Take gradient with respect to function

$$
\frac{d f}{d \theta_{k}^{y}}=\sum_{(i, h)}\left(p_{i}(q)-h\right) \frac{d p_{i}}{d \theta_{k}^{y}}
$$

Expand p_{i} into transformations. Each rotation in 3D is axis-aligned

$$
\frac{d p_{i}}{d \theta_{k}^{y}}=\frac{d}{d \theta_{k}^{y}}\left[\prod_{j=0, i-1} R\left(\theta_{j}^{z}\right) R\left(\theta_{j}^{y}\right) R\left(\theta_{j}^{x}\right) T\left(u_{j}\right)\right] R\left(\theta_{i}^{z}\right) R\left(\theta_{i}^{y}\right) R\left(\theta_{i}^{x}\right) u_{i}
$$

Gradient breaks down into 3 parts:

$$
\begin{gathered}
\frac{d p_{i}}{d \theta_{k}^{y}}=R\left(\theta_{0}^{z}\right) R\left(\theta_{0}^{y}\right) R\left(\theta_{0}^{x}\right) T\left(u_{0}\right) \ldots R\left(\theta_{k}^{z}\right) \frac{d}{d \theta_{k}^{y}} R\left(\theta_{k}^{y}\right) R\left(\theta_{k}^{x}\right) T\left(u_{i}\right) \ldots R\left(\theta_{i}^{z}\right) R\left(\theta_{i}^{y}\right) R\left(\theta_{i}^{x}\right) u_{i} \\
{[\text { linear transformation] [derivative] [transformed point] }}
\end{gathered}
$$

Inverse Kinematic Gradient

$$
\frac{d p_{i}}{d \theta_{k}^{y}}=\text { ??? }
$$

Fun fact: by transforming the axis of rotation and base point to local coordinates, Then the derivative of the rotation $R\left(\theta_{k}^{y}\right)$ by amount θ_{k}^{y} around axis y and center r of point p becomes:

$$
\frac{d p_{i}}{d \theta_{k}^{y}}=y \times(p-r)
$$

constant for a
given handle

 current joint

Inverse Kinematic Gradient

- Note: all joints that come before joint k can also contribute to the movement of joint k
- Example: moving your shoulder moves your hand
- Need to also compute how every joint prior to joint k affects the movement of joint k
- Gives us a gradient for each joint in range [0-k]

$$
\begin{aligned}
& \nabla f_{k}^{y}=\left(p_{i}(q)-h\right) \cdot\left[y_{k} \times\left(p_{i}(q)-r_{k}\right)\right] \\
& \nabla f_{k-1}^{y}=\left(p_{i}(q)-h\right) \cdot\left[y_{k-1} \times\left(p_{i}(q)-r_{k-1}\right)\right] \\
& \nabla f_{k-2}^{y}=\left(p_{i}(q)-h\right) \cdot\left[y_{k-2} \times\left(p_{i}(q)-r_{k-2}\right)\right] \\
& \quad \ldots \\
& \nabla f_{0}^{y}=\left(p_{i}(q)-h\right) \cdot\left[y_{0} \times\left(p_{i}(q)-r_{0}\right)\right]
\end{aligned}
$$

constant for a given handle

$\underset{\text { specific to the }}{\longrightarrow} y$ current joint

Inverse Kinematic Gradient

- Each joint k will have its own vector gradient $\frac{d f}{d \theta_{k}}=\left\langle\frac{d f}{d \theta_{k}^{x}}, \frac{d f}{d \theta_{k}^{y}}, \frac{d f}{d \theta_{k}^{Z}}\right\rangle$
- Same process for computing each component, just use x_{k}, y_{k}, or z_{k}
- What if we have multiple target pairs (i, h) ?
- Gradient becomes a sum!

$$
\begin{aligned}
& \nabla f_{k}^{y}+=\left(p_{i}(q)-h\right) \cdot\left[y_{k} \times\left(p_{i}(q)-r_{k}\right)\right] \\
& \nabla f_{k-1}^{y}+=\left(p_{i}(q)-h\right) \cdot\left[y_{k-1} \times\left(p_{i}(q)-r_{k-1}\right)\right] \\
& \nabla f_{k-2}^{y}+=\left(p_{i}(q)-h\right) \cdot\left[y_{k-2} \times\left(p_{i}(q)-r_{k-2}\right)\right] \\
& \ldots \\
& \nabla f_{0}^{y}+=\left(p_{i}(q)-h\right) \cdot\left[y_{0} \times\left(p_{i}(q)-r_{0}\right)\right]
\end{aligned}
$$

Inverse Kinematic Gradient

```
vec3 gradient_in_current_pose() {
    for (auto &handle : handles) {
        Vec3 h = handle.target;
        Vec3 p = // TODO: compute output point
        // walk up the kinematic chain
        for (BoneIndex b = handle.bone; b < bones.size(); b = bones[b].parent) {
            Bone const &bone = bones[b];
            Mat4 xf = // TODO: compute [linear transform']
            Vec3 r = xf * Vec3{0.0f, 0.0f, 0.0f};
            Vec3 x = // TODO: compute bone's x-axis in local space
            Vec3 y = // TODO: compute bone's y-axis in local space
            Vec3 z = // TODO: compute bone's z-axis in local space
            gradient[b].x += dot(cross(x, p - r), p - h);
            gradient[b].y += dot(cross(y, p - r), p - h);
            gradient[b].z += dot(cross(z, p - r), p - h);
        }
}
}
```


Inverse Kinematic Gradient

- How do we apply the gradient?
- Iterate through each joint j and apply ∇f_{j}
- Make sure to clear all gradients after each step!

$$
\theta_{j}=\theta_{j}-\tau \nabla f_{j}
$$

- Recompute the loss function

$$
f(q)=\sum_{(i, h)} \frac{1}{2}\left|p_{i}(q)-h\right|^{2}
$$

- If loss is lower than some threshold, terminate
- Otherwise continue until max steps exceeded

道 56789645198
HE MAKE AN BIG STEPPY

