Variance Reduction

- Monte-Carlo Sampling
- Biased vs Unbiased Estimators
- Physically-Based Rendering Methods

What Makes A Render Expensive

- Number of Rays
 - How many rays traced into the scene
 - Measured as samples (rays) per pixel [spp]
- Number of Ray Bounces
 - How ray bounces before termination
 - Measured as ray bounce/depth
- Choosing the right number is difficult
 - Similar to sample theory

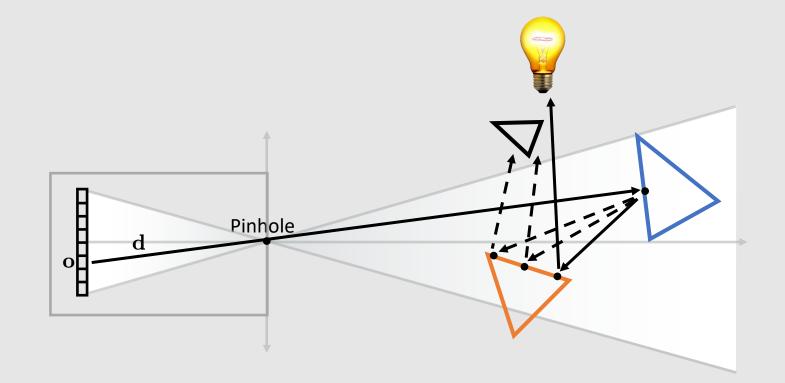
Star Wars VII: The Force Awakens (2015) Lucasfilm

Number Of Ray Samples

- **Number of Rays** ٠
 - How many rays traced into the scene •
 - Measured as samples (rays) per pixel [spp] ٠
- Increasing number of rays increases image quality ٠
 - Anti-aliasing ٠
 - Reduces black spots from terminating emission • occlusion

Number Of Ray Samples

- Having more rays similar to taking more samples in rasterization
 - Samples taken in a larger sample buffer and resolved into smaller output buffer
- More likely to find terminating ray that reaches light source/not be occluded

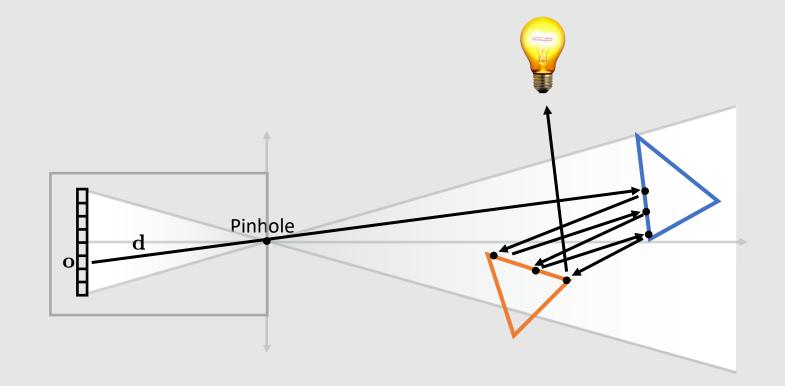


Number Of Ray Bounces

- Number of Ray Bounces
 - How ray bounces before termination
 - Measured as ray bounce/depth
- Increasing ray bounces increases image quality
 - Better color blending around images
 - More details reflected in specular images

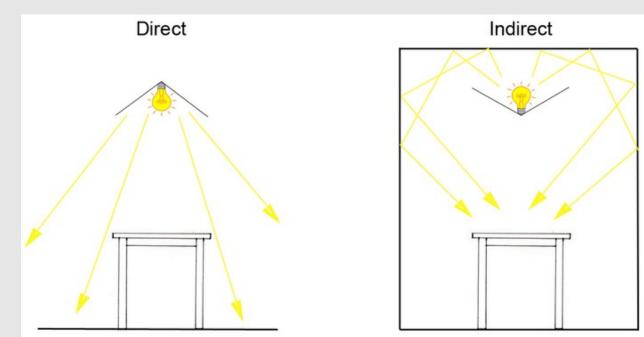
Number Of Ray Bounces

- Having more ray bouncing allows for better color blending
 - Final ray will be a larger mix of blue/orange than the original yellow
- Can render more interesting reflective and refractive paths with more bounces

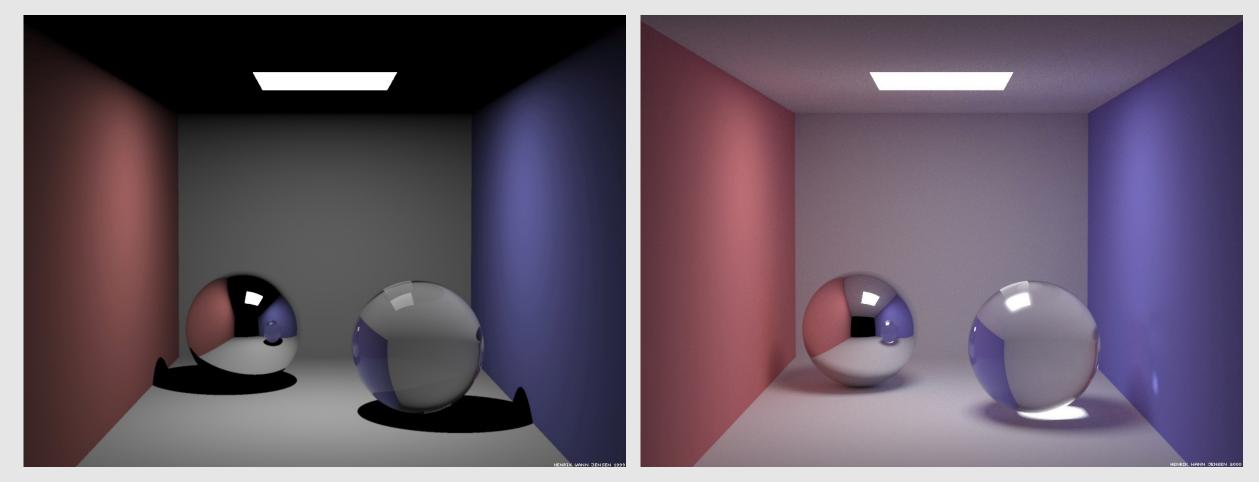


Direct VS Indirect Illumination

- **Direct Illumination:** Direct path from emitter to point
- Indirect Illumination: Multi-bounce path from emitter to point
- **Bounce** describes how many piecewise linear rays we can stich together to form a path
 - Direct is 1-bounce
 - Indirect is N-bounce
 - Some authors say Direct is 0bounce [index at 0]



Direct VS Indirect Illumination



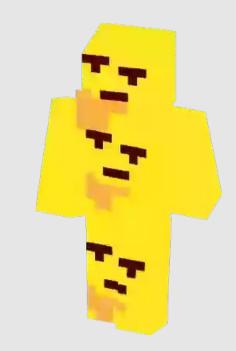
[Direct + Reflection + Refraction]**

[Global]

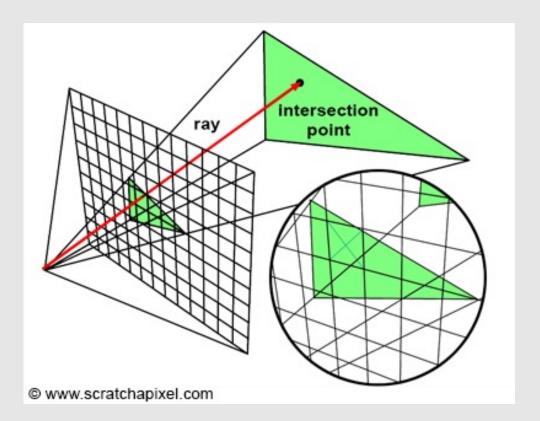
**Normally can't do reflection & refraction in direct illumination

15-462/662 | Computer Graphics

Wait a minute... direct illumination looks like rasterization



Direct VS Rasterization



- Food for thought: rasterization traces rays from a point in the output buffer to a shape in the scene
 - Even in rasterization, shapes have depth
 - We only care about the closest object we see (transparency disabled)
- Both rasterization and direct illumination only ever trace one ray!

Direct VS Indirect Illumination

Minecraft (2020) Microsoft

- Direct Illumination gives you efficiency
 - Easy to render
 - Straightforward complexity
 - Comparable to rasterization in difficulty
 - Amendable to ray packeting
 - Easy real-time performance
- Indirect (Global) Illumination gives you quality
 - Some materials require multi-bounces
 - Ex: refraction
 - Ambient occlusion
 - Higher contrast
 - Samples converge to true values
- More bounces = \downarrow efficiency, \uparrow quality

So how do we take multiple samples?

Continuous Vs. Discrete

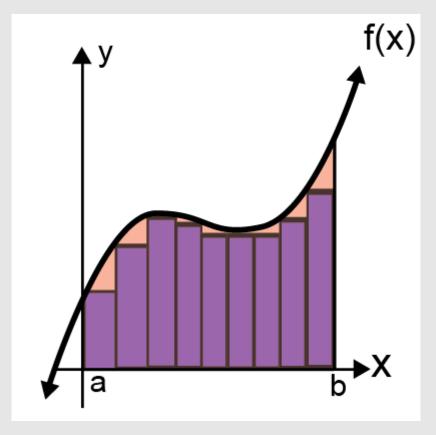
- Our eyes see a **continuous** signal of energy
- Our digital cameras see a discrete signal of energy
 - Computers process discrete values
- Let the following integral be the true continuous signal of the scene:

 $\int_{\mathcal{H}^2} f_r(\mathbf{p}, \omega_i \to \omega_o) L_i(\mathbf{p}, \omega_i) \cos \theta \, d\omega_i$

• Approximate the integral by taking multiple samples of our discrete scene function:

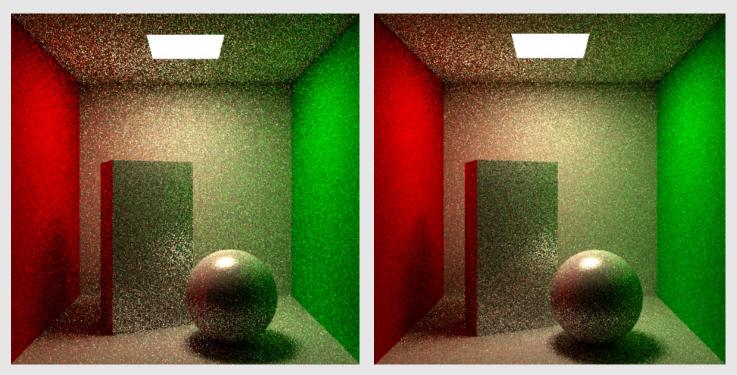
 $\frac{2\pi}{N}\sum_{i=1}^{N}f_r(\mathbf{p},\omega_i\to\omega_o)L_i(\mathbf{p},\omega_i)\cos\theta$

- We compute the average sample by dividing by N
- We multiply by the size of the domain, which is 2pi



Sampling Rays

- **Issue:** Responsible for picking rays since we are no longer integrating over every possible ray direction in hemisphere
 - Some rays will be better than others
 - Again, similar to **sample theory**
- Idea: pick rays from a PDF
 - Uniform PDF: ray sampled in uniformly random direction in hemisphere
 - **Cos-weighted PDF:** rays are more likely to be sampled in the direction of the normal



[uniform sampling]

[cosine sampling]

But wait, Isn't taking non-uniform samples biased?

Monte-Carlo Sampling

- Biased vs Unbiased Estimators
- Physically-Based Rendering Methods

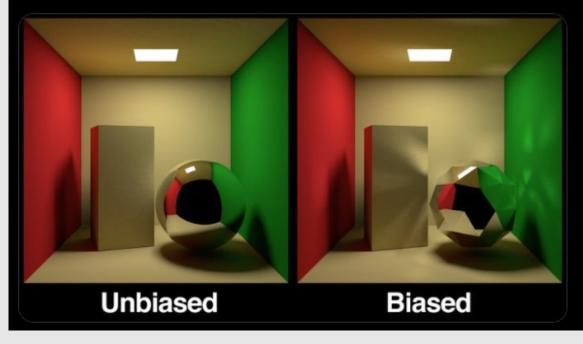
Biased vs. Unbiased Renderer

Keenan Crane

@keenanisalive

Hot take : even so-called "unbiased" rendering algorithms are biased if the #geometry has been approximated in any way.

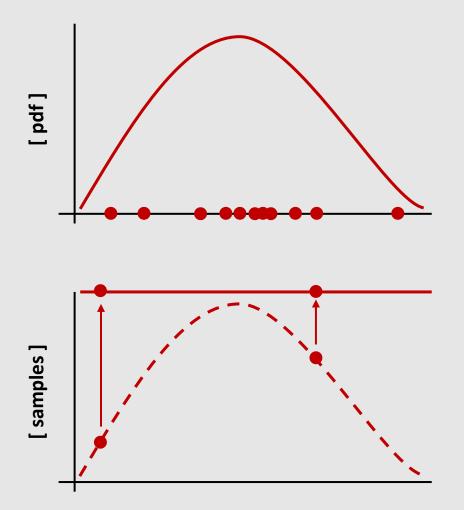
The expected value of the estimator disagrees with the intensity value of the true image. (Much as shading normals introduce bias.)



- An **unbiased** renderer tries to mimic the uniformity of real life
 - Does not introduce systematic bias
 - Taking more samples will reduce error
 - Approaches ground truth with infinite sampling
- A **biased** renderer will take shortcuts to make renders look better
 - Taking more samples may introduce even more signal than the original image
 - Usually faster rendering/less samples
 - Can seek out more difficult paths
- When comparing render methods, makes more sense to compare **unbiased methods**

Biased vs. Unbiased Example

- In a biased estimator, draw samples proportional to the PDF
 - More samples drawn where PDF is high
 - Under-sampling where PDF is low
- The good news is that it is easy to turn this biased estimator into an unbiased one!
- To make this biased estimator unbiased, simply divide by the PDF of the sample
 - Samples with a high PDF are divided by a high value, not increasing its contribution much
 - Samples with a **low PDF** are divided by a low value, **increasing its contribution a lot**
 - Produces an unbiased sample set



The Monte Carlo Estimator

- Named Monte Carlo after the famous gambling location in Monaco
 - Shares the same random characteristic as a roulette game

• Algorithm:

- Sample a direction based on the PDF $p(w_i)$
- Compute the incident radiance of the direction
- Divide by the PDF $p(w_i)$ to make unbiased
- Repeat, averaging the samples together

$$\frac{1}{N} \sum_{j=1}^{N} \frac{f_r(\mathbf{p}, \omega_j \to \omega_r) L_i(\mathbf{p}, \omega_j) \cos \theta_j}{p(\omega_j)}$$

Note! We no longer multiply our average by the size of the domain. Dividing by the PDF takes care of that for us. Why? Because the PDF must integrate to 1 over the entire domain.

Monte Carlo Uniform Sampling

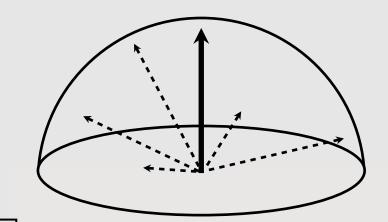
- Let f(w) be the incident radiance [ignoring BRDF]
- Let p(w) be the PDF of the sampled direction w

$$f(\omega) = L_i(\omega) \cos \theta$$
 $p(\omega) = \frac{1}{2\pi}$

• Taking random samples leads to:

$$\int_{\Omega} f(\omega) \, \mathrm{d}\omega \approx \frac{1}{N} \sum_{i}^{N} \frac{f(\omega)}{p(\omega)} = \frac{1}{N} \sum_{i}^{N} \frac{L_{i}(\omega) \, \cos \theta}{1/2\pi} = \left| \frac{2\pi}{N} \sum_{i}^{N} L_{i}(\omega) \cos \theta \right|$$

• PDF is constant in all directions, just multiply by scalar 2π



Monte Carlo Cosine Sampling

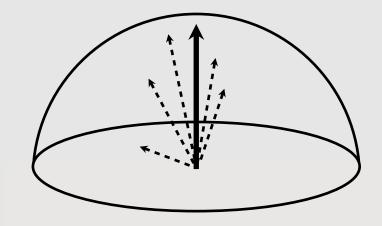
- Let f(w) be the incident radiance [ignoring BRDF]
- Let p(w) be the PDF of the sampled direction w

$$f(\omega) = L_i(\omega) \cos \theta$$
 $p(\omega) = \frac{\cos \theta}{\pi}$

• Taking random samples leads to:

$$\int_{\Omega} f(\omega) \, \mathrm{d}\omega \approx \frac{1}{N} \sum_{i}^{N} \frac{f(\omega)}{p(\omega)} = \frac{1}{N} \sum_{i}^{N} \frac{L_{i}(\omega) \, \cos \theta}{\cos \theta / \pi} = \left| \frac{\pi}{N} \sum_{i}^{N} L_{i}(\omega) \right|$$

• PDF removes the cosine term, we now get more radiance per sample!



How do we get a good sense of "how well" we did?

Variance

• Variance is how far we are from the average, on average

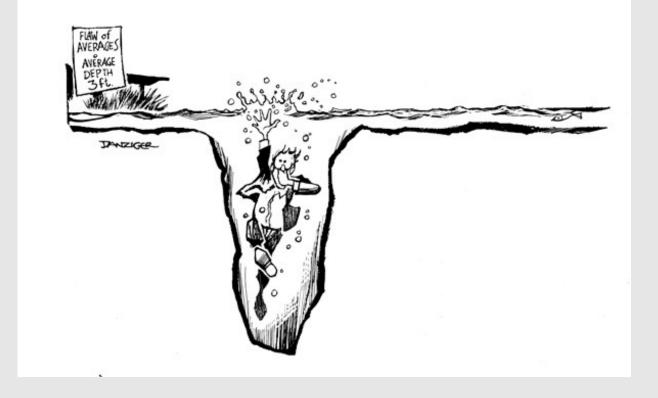
$$Var(X) := E[(X - E[X])^2]$$

• Discrete:

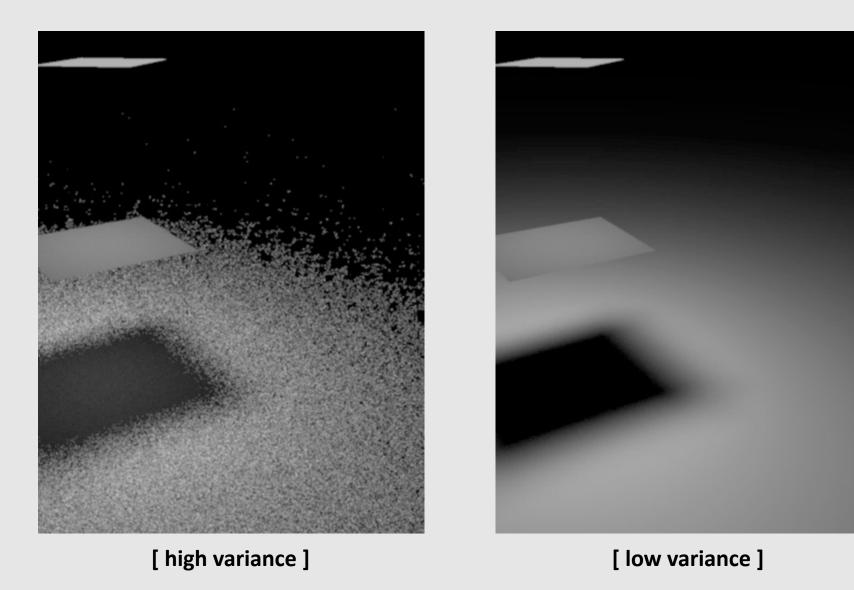
$$\sum_{i=1}^{n} p_i (x_i - \sum_j p_j x_j)^2$$

• Continuous:

$$\int_{\Omega} p(x)(x - \int_{\Omega} yp(y) \, dy)^2 \, dx$$

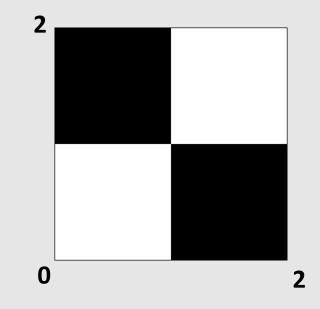


Variance In Rendering



Variance Reduction Example

$$\begin{split} \Omega &:= [0,2] \times [0,2] \\ f(x,y) &:= \begin{cases} 1 & \lfloor x \rfloor + \lfloor y \rfloor \text{ is even,} \\ 0 & \text{otherwise} \end{cases} \\ I &:= \int_{\Omega} f(x,y) \, dx dy \end{split}$$



- What's the expected value of the integrand?
 - Just by inspection: 1/2 (half black, half white)
- What's the variance?
 - $(1/2)(0-1/2)^2 + (1/2)(1-1/2)^2 = (1/2)(1/4) + (1/2)(1/4) = \frac{1}{4}$
- How do we reduce the variance?

Trick question! You can't reduce the variance of an integrand. Can only reduce variance of an estimator.

Bias & Consistency

• An estimator is **consistent** if it converges to the correct answer:

$$\lim_{n \to \infty} P(|I - \hat{I}_n| > 0) = 0$$

near infinite # of samples

• An estimator is **unbiased** if it is correct on average:

 $E[I - \hat{I}_n] = 0$ even if just 1 sample

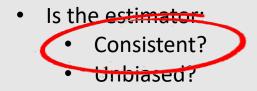
• consistent != unbiased

[biased]

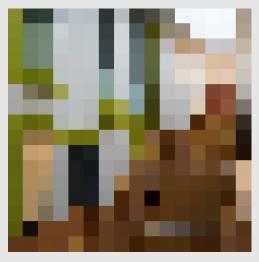
[unbiased]

Consistent Or Unbiased?

- Estimator for the integral over an image:
 - Take n = m x m samples at fixed grid points
 - Sum the contributions of each box
 - Let m go to ∞



[m = 4]



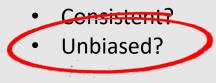
[m = 16]

[m = 64]

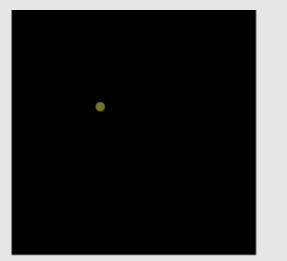
[m = ∞]

Consistent Or Unbiased?

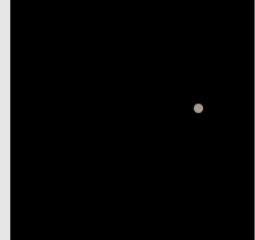
- Estimator for the integral over an image:
 - Take only a single random sample of the image (n=1)
 - Multiply it by the image area
 - Use this value as my estimate
- Is the estimator:

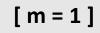


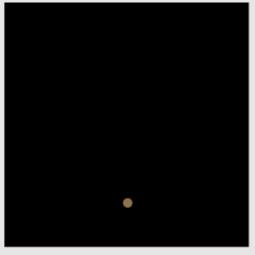
• What if I let my estimator go to ∞



[m = 1]





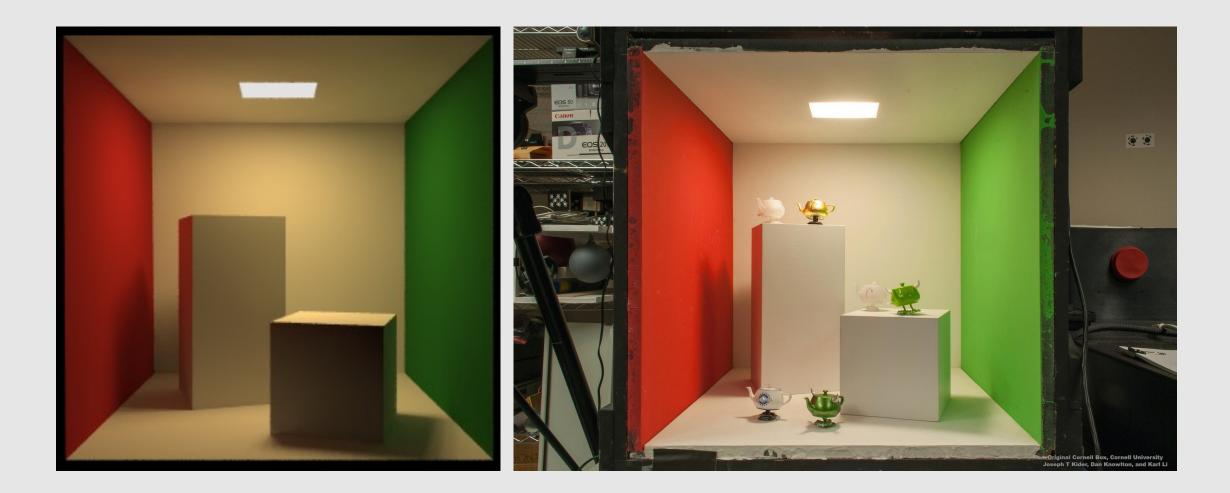


[m = 1]

[m = 1]

What is my true image?

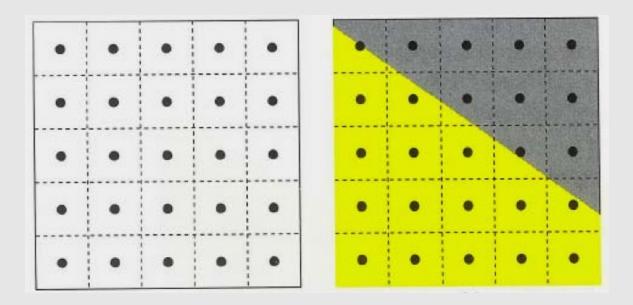
The Cornell Box

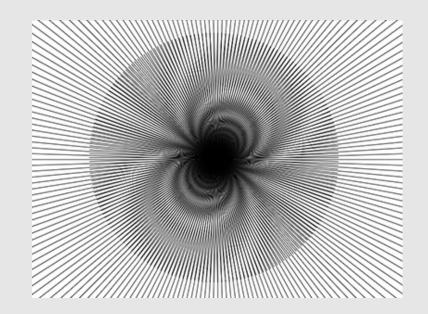


How do we take good samples?

Uniform Sampling

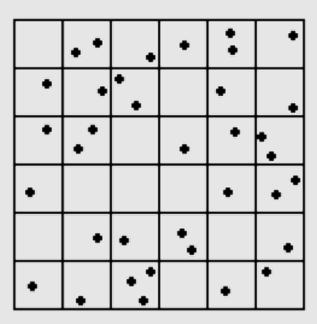
- Place samples uniformly apart in grid fashion
 - [+] Easy to compute
 - [-] We still have jagged edges, just at higher resolutions
 - [-] More samples needed
 - [-] Does not fix moiré pattern

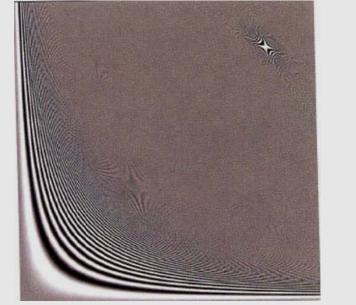


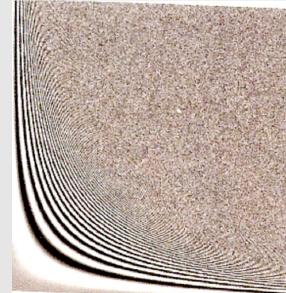


Random Sampling

- Place samples randomly
 - [+] Easy to compute
 - [-] Introduces noise, noticeable at low resolutions
 - [-] Lack of distance between samples

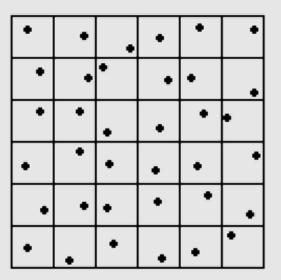


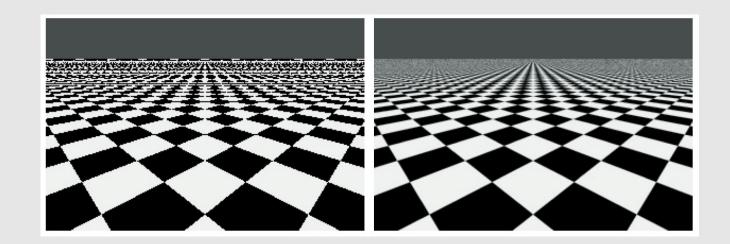




Jittered Sampling

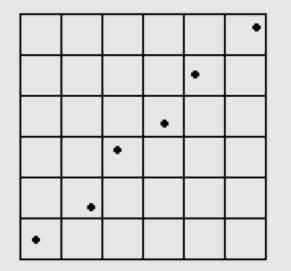
- Divide into N x N grid, place a sample randomly per grid cell
 - [+] Easy to compute
 - [+] A more constrained version of random sampling
 - [-] Ensures distance between samples, but not enough!

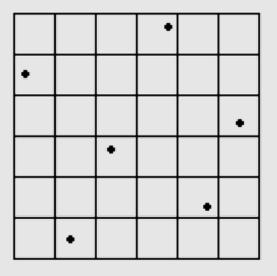




N-Rooks Sampling

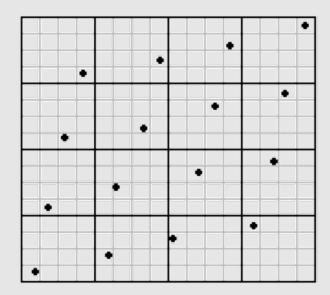
- All samples start on the diagonal, randomly shuffle (x, y) coordinates until rooks condition satisfied (no 2 samples lie on the same column or row)
 - [+] Provides good sample sparsity
 - [-] Expensive to compute
 - [-] Possibility of not terminating

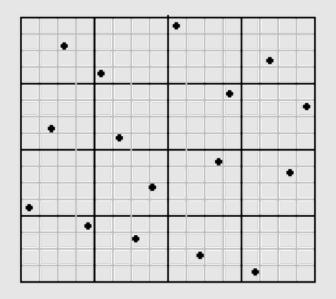




Multi-Jittered Sampling

- Jittering + n-rook sampling
 - [+] Provides good sample sparsity
 - [+] Easier to satisfy rook condition
 - [-] Expensive to compute





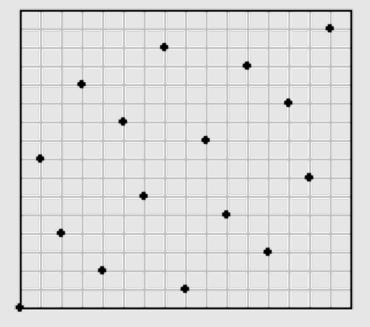
Hammersley Sampling

- Sample according to a fixed, well formed distribution
 - [+] Can pre-compute results
 - [+] Evenly distributed in 2D space
 - [-] No randomness in results

$$\Phi_2(i) \in [0,1] = \sum_{j=0}^n a_j(i)2^{-j-1} = a_02^{-1} + a_12^{-2} + \dots$$

 $1101 \Rightarrow 0.1011 = 1/2 + 1/8 + 1/16 = 11/16 = 0.6975$

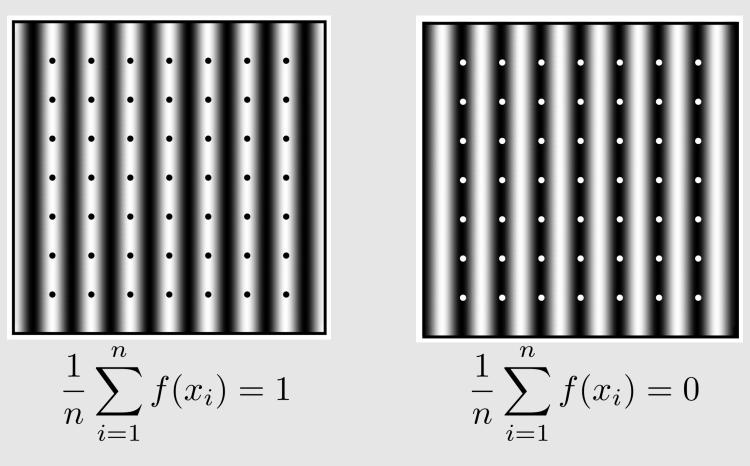
$$p_j=(x_i,y_i)=[rac{i}{n},\Phi_2(i)]$$



Low-Discrepancy Sampling

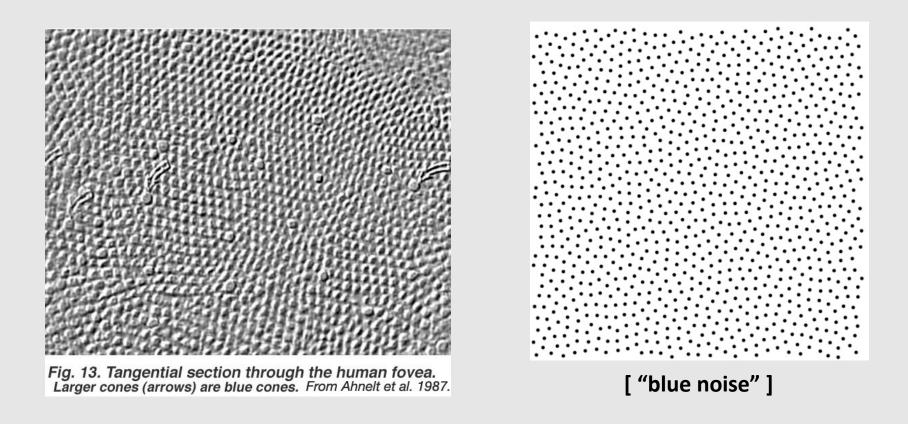
In general, number of samples should be proportional to area **Discrepancy** measures deviation from this ideal # of samples in S discrepancy of sample points X in a region S $d_S(X) := \left| A(S) - \frac{n(S)}{|X|} \right|$ area of S total # of samples in X $D(X) := \max_{S \in F} d_S(X)$ overall discrepancy some family of regions S (box, disk, etc...)

Low-Discrepancy Sampling



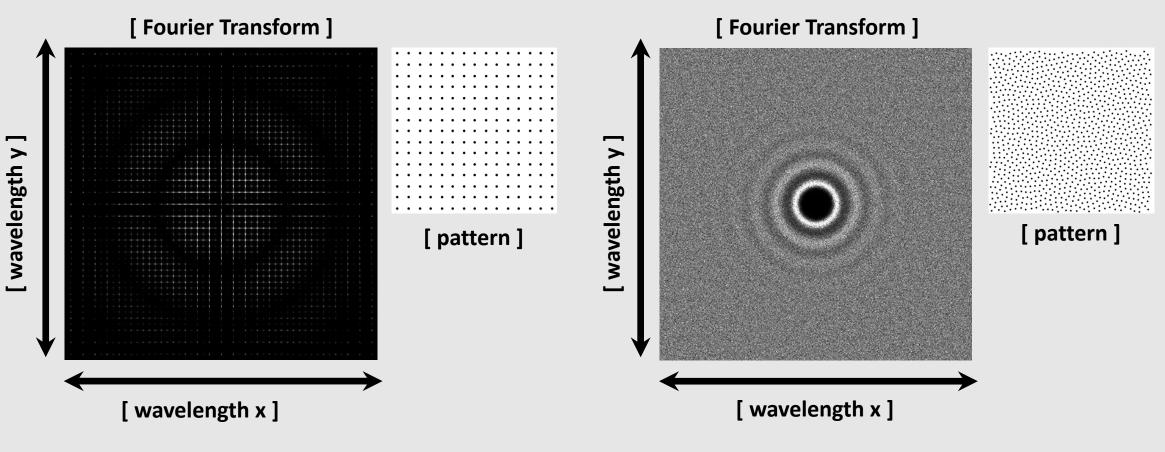
- A uniform grid has the lowest discrepancy
 - But even low-discrepancy patterns can exhibit poor behavior
 - We want patterns to be **anisotropic** (no preferred direction)

Blue Noise



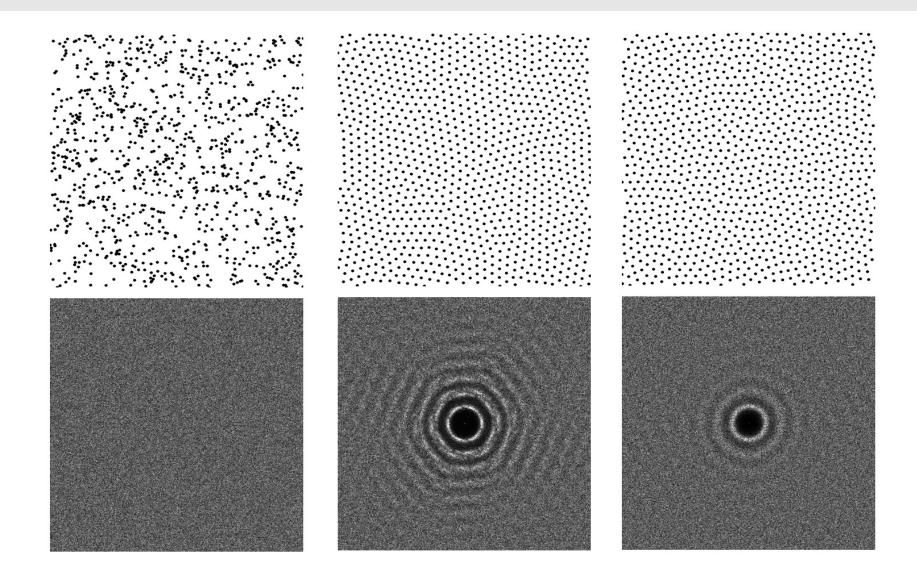
- Monkey retina exhibits **blue noise** pattern [Yellott 1983]
 - No preferred directions (anisotropic)

Blue Noise Fourier Transform



- Regular pattern has "spikes" at regular intervals
- Blue noise is spread evenly over all frequencies in all directions
 - Bright center "ring" corresponds to sample spacing

Blue Noise Fourier Transform

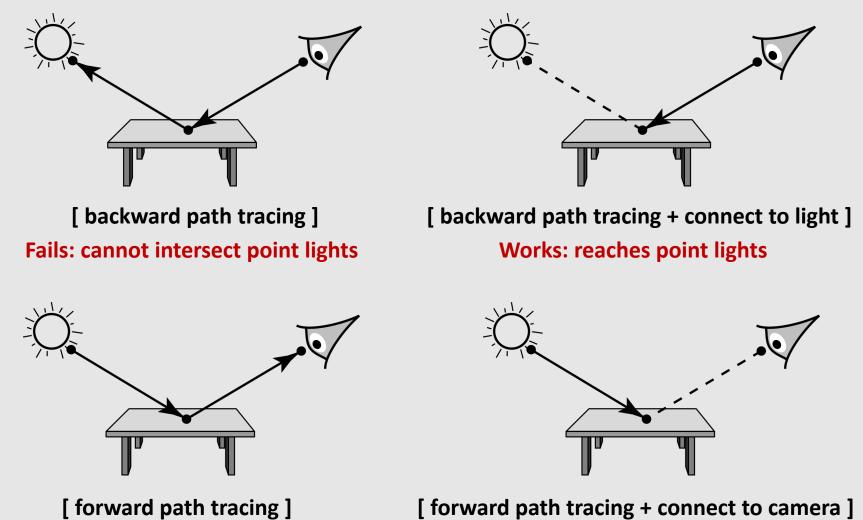


Monte-Carlo Sampling

Biased vs Unbiased Estimators

• Physically-Based Rendering Methods

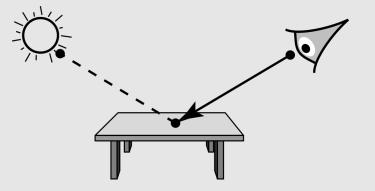
Previous Methods



[forward path tracing] Fails: cannot intersect pinhole camera

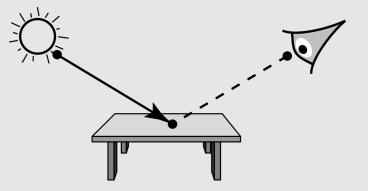
Works: reaches pinhole camera

Path Tracing Can Be Biased



- Deliberately connect terminating rays to light (forward) or camera (backward)
- Probability of sampling a ray that hits a nonvolume source (point light, pinhole camera) is 0
 - We bias our renderer by choosing those rays

[backward path tracing + connect to light] works: reaches point lights

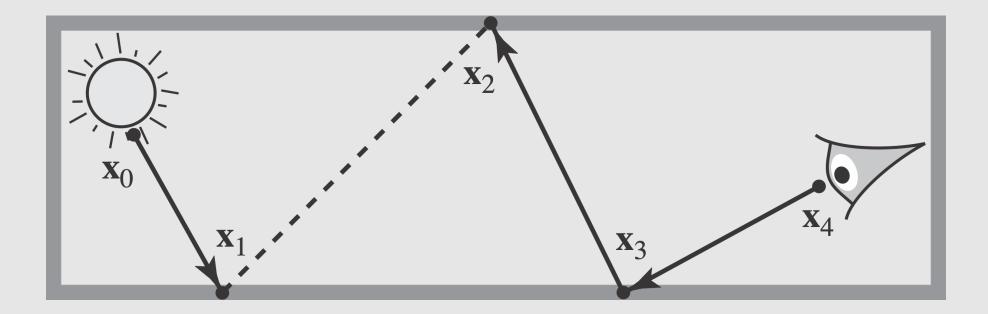


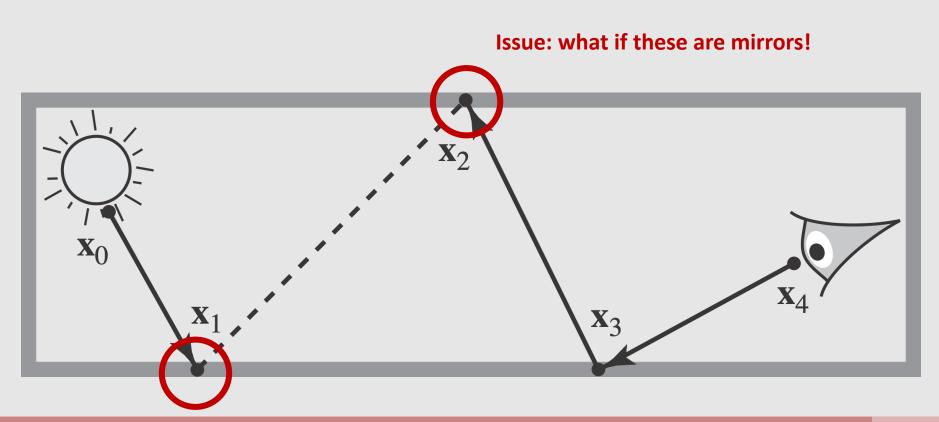
[forward path tracing + connect to camera]

works: reaches pinhole camera

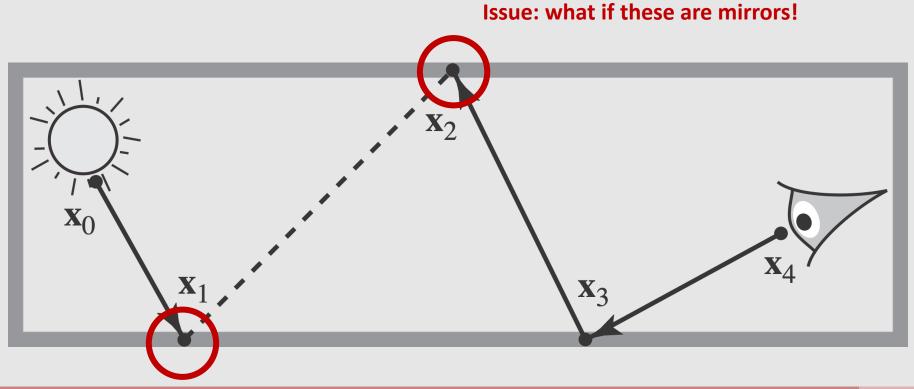
- If path-tracing is so great, why not do it twice?
 - Main idea of bidirectional!
- Trace a ray from the camera into the scene
- Trace a ray from the light into the scene
 - Connect the rays at the end

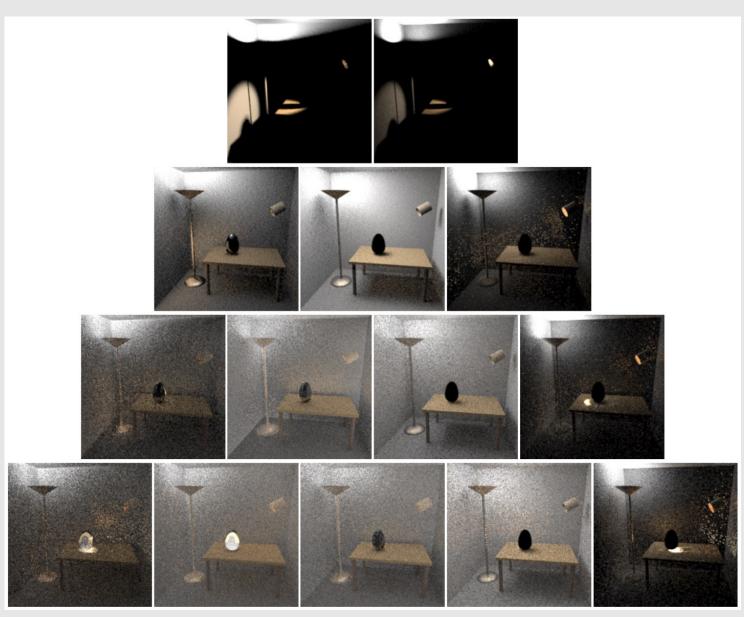
- Unbiased algorithm
 - No longer trying to connect rays through non-volume sources
- Can set different lengths per ray
 - Example: Forward m = 2, Backward m = 1





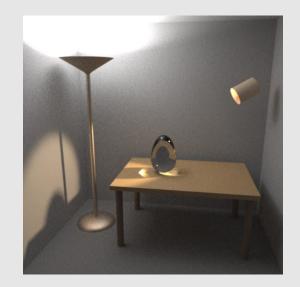
- In cases of mirrors, we cannot choose any ray path
- Instead, continue tracing rays until diffuse surfaces are reached on both rays





[final image]

- Each row shows path length
- As we move over images in a row, we decrease forward ray depth and increase a backward ray depth
 - Overall length kept constant per row



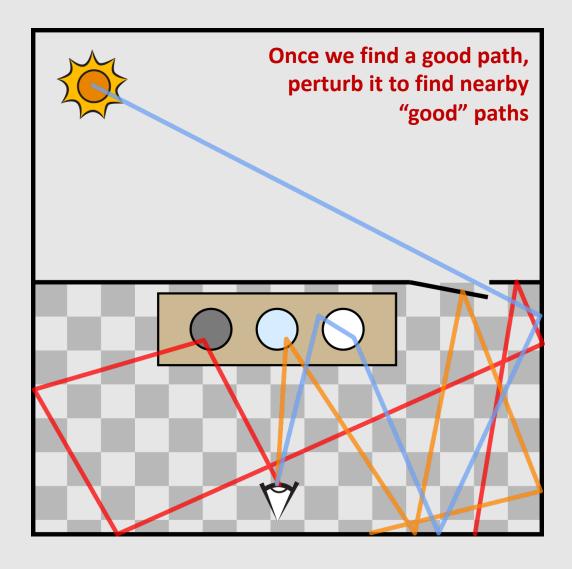
[final image]

- Not easy to tell which path lengths work well for a scene!
 - The glass egg is illuminated at specific path lengths for forward and backward rays

Good Paths Are Hard To Find

[Bidirectional Path Tracing]

[Metropolis Light Transport]

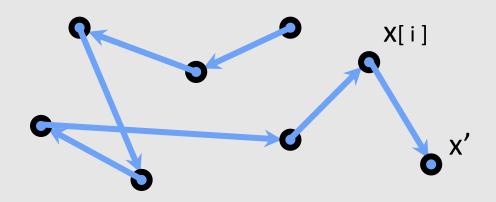


Metropolis Hasting Algorithm

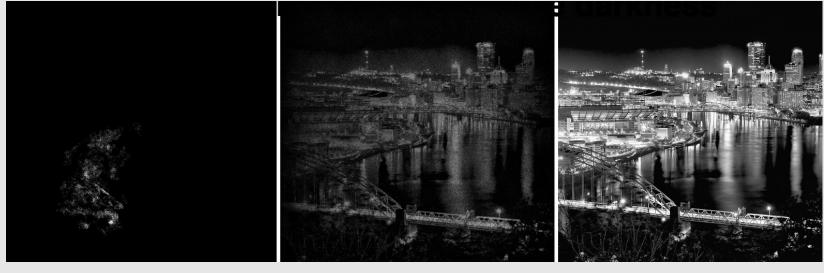
- "Once we find a good path, perturb it to find nearby 'good' paths" – previous slide
- Algorithm: take random walk of dependent samples
 - If in an area where sampling yields high values, stay in or near the area
 - Otherwise move far away
- Sample distribution should be proportional to integrand
 - Make sure mutations are "ergodic" (reach whole space)
 - Need to take a long walk, so initial point doesn't matter

```
float r = rand();
```

```
// if f(x') >> f(x[i]), then a is large
// and we increase chances of moving to x'
// if f(x') << f(x[i]), then a is small
// and we increase chances of staying at x
float a = f(x')/f(x[i]);
if (r < a)
    x[i+1] = x';
else
    x[i+1] = x;</pre>
```



Metropolis Hasting: Sampling An Image



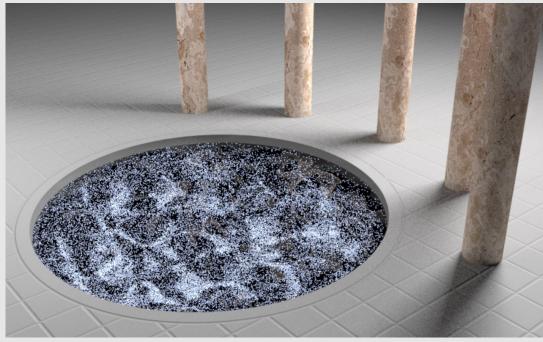
[short walk]

[original image]

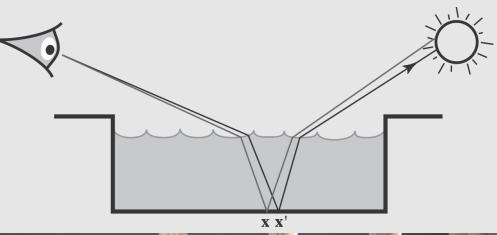
- Want to take samples proportional to image density *f*
- Occasionally jump to a random point (ergodicity)
- Transition probability is 'relative darkness'
 - $f(x')/f(x_i)$

Metropolis Light Transport

- Similar idea: mutate good paths
- Water causes paths to refract a lot
 - Small mutations allows renderer to find contributions faster
- Path Tracing and MLT rendered in the same time



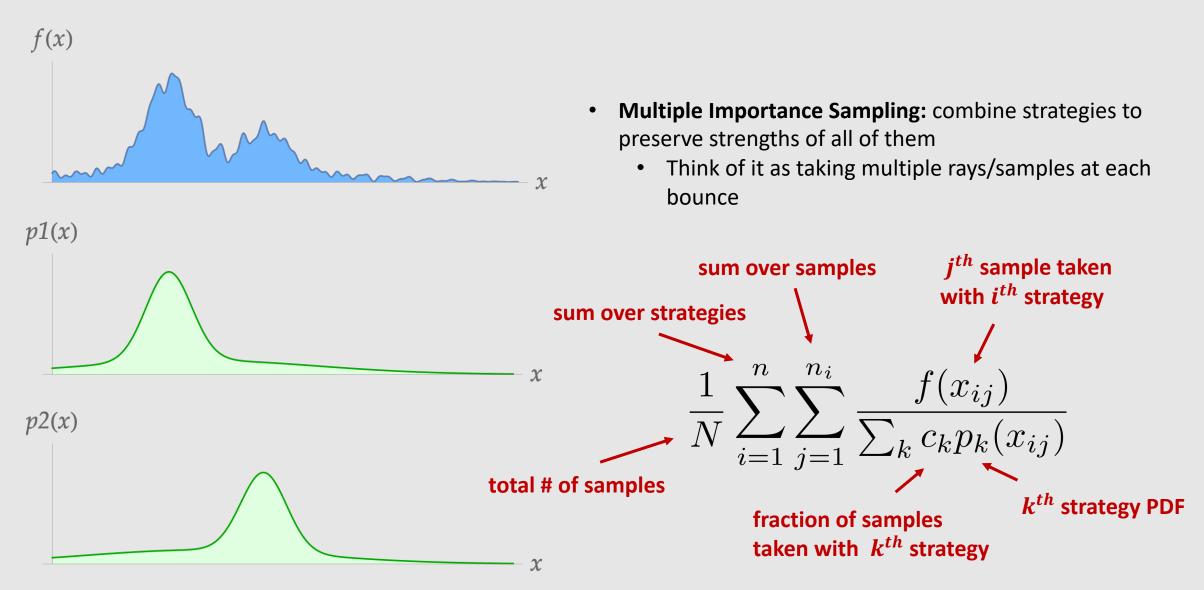
[Path Tracing]



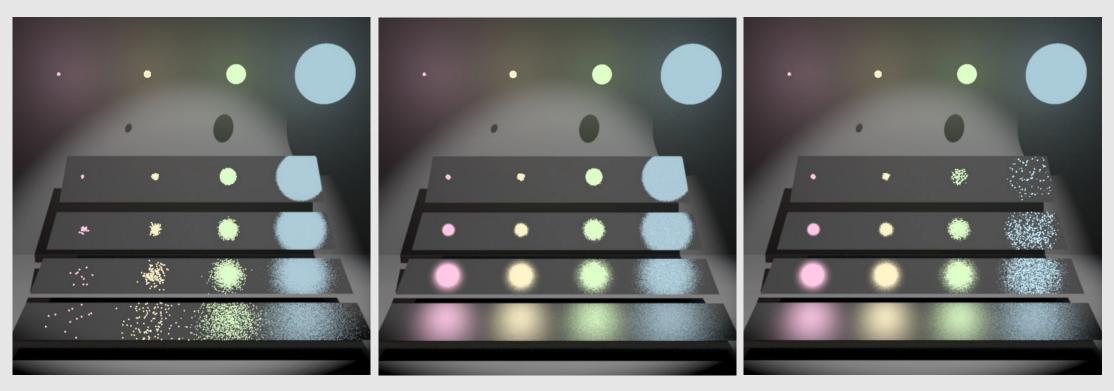
[Metropolis Light Transport]

If there are so many good sampling methods, why not combine them?

Multiple Importance Sampling



Multiple Importance Sampling



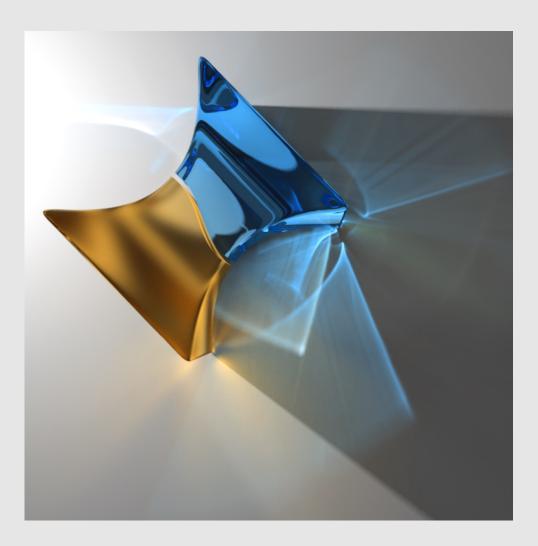
[sample materials]

[sample both]

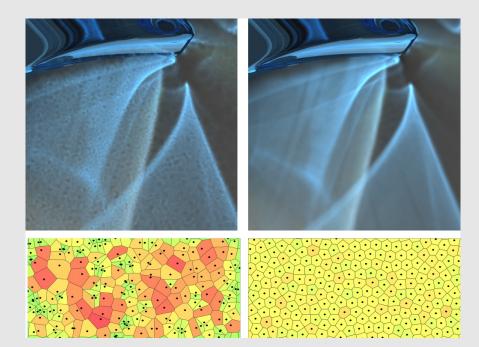
[sample lights]

- Normally need to pick next ray bounce as hitting a material or hitting light
 - MIS allows us to take both rays and average them together
 - At each bounce, trace a ray as normal, and another ray to the light

Photon Mapping

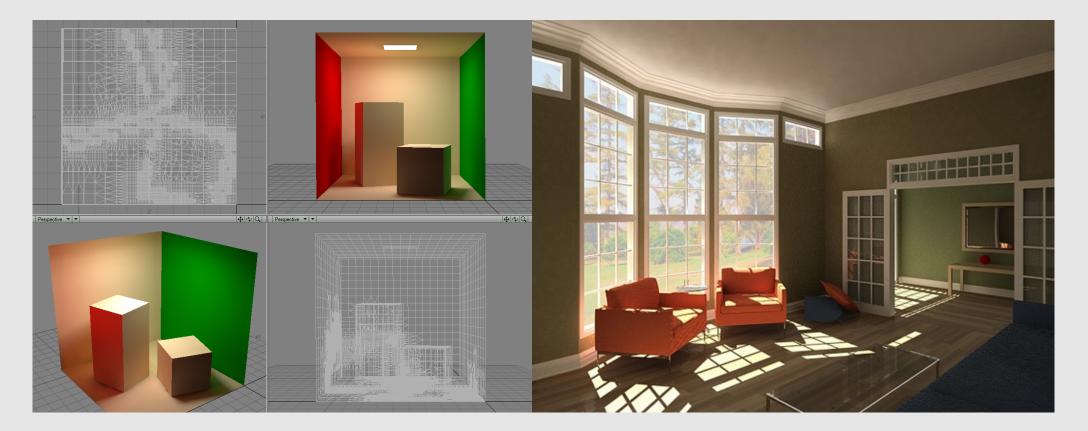


- Trace particles from light, deposit "photons" in KD-tree
 - Useful for, e.g., caustics, fog
- Voronoi diagrams can improve photon distribution
 - **Careful:** poor Voronoi resolution causes aliasing!



Finite Element Radiosity

- Transport light between patches in scene
- Solve large linear system for equilibrium distribution
 - Good for diffuse lighting; hard to capture other light paths
 - Light paths travel in groups
 - Difficult when light diverges



Rendering Algorithm Chart

method	consistent?	unbiased?
Rasterization	no	no
Path Tracing	almost	almost
Bidirectional Path Tracing	yes	yes
Metropolis Light Transport	yes	yes
Photon Mapping	yes	no
Finite Element Radiosity	no	no