The Rendering Equation
• The Rendering Equation

• A Simple Path-Tracer

• Camera Rays
Tracing Rays

\[L_0 \]

\[L_0 \]

\[L_0 \]

\[L_0 \]

\[L_0 \]
• **Goal:** trace light rays around the scene
 • Rays bounce around illuminating objects before reaching a camera

• Think of light rays as packets of info
 • When light hits an object, it picks up the object’s color before moving onto the next object

• **Recall:** absorption spectrum
 • Any colors not absorbed are emitted back out
The Rendering Equation

\[E = \int_{H^2} L(\omega) \cos \theta \, d\omega \]

The Rendering Equation should:
- Be recursive
- Have a base case
- Govern how light scatters (reflectance)

\[
(\text{recursive definition}) = (\text{base case}) + \int_{H^2} (\text{scattering function}) \ast L_i(p, \omega_i) \cos \theta \, d\omega_i
\]
The Rendering Equation

\[L_0(p, \omega_o) = L_e(p, \omega_o) + \int_{H^2} f_r(p, \omega_i \rightarrow \omega_o) L_i(p, \omega_i) \cos \theta \ d\omega_i \]

- \(L_0(p, \omega_o) \) (recursive definition)
- \(L_e(p, \omega_o) \) (base case)
- \(f_r(p, \omega_i \rightarrow \omega_o) \) (scattering function)
- \(L_i(p, \omega_i) \) (previous recursive call)
The Rendering Equation

\[
L_0(p, \omega_o) = L_e(p, \omega_o) + \int_{\mathcal{H}^2} f_r(p, \omega_i \rightarrow \omega_o) L_i(p, \omega_i) \cos \theta \, d\omega_i
\]

- \(L_0(p, \omega_o) \): outgoing radiance at point \(p \) in outgoing direction \(\omega_o \)
- \(L_e(p, \omega_o) \): emitted radiance at point \(p \) in outgoing direction \(\omega_o \)
- \(f_r(p, \omega_i \rightarrow \omega_o) \): scattering function at point \(p \) from incoming direction \(\omega_i \) to outgoing direction \(\omega_o \)
- \(L_i(p, \omega_i) \): incoming radiance to point \(p \) from direction \(\omega_i \)
The Rendering Equation

\[L_0(p, \omega_o) = L_e(p, \omega_o) + \int_{H^2} f_r(p, \omega_i \rightarrow \omega_o) L_i(p, \omega_i) \cos \theta \, d\omega_i \]

- \(L_0(p, \omega_o) \): outgoing radiance at point \(p \) in outgoing direction \(\omega_o \)
- \(L_e(p, \omega_o) \): emitted radiance at point \(p \) in outgoing direction \(\omega_o \)
- \(f_r(p, \omega_i \rightarrow \omega_o) \): scattering function at point \(p \) from incoming direction \(\omega_i \) to outgoing direction \(\omega_o \)
- \(L_i(p, \omega_i) \): incoming radiance to point \(p \) from direction \(\omega_i \)
Outgoing Radiance

- To know what an object looks like, we want to know its **outgoing radiance**
 - Carries color and radiometry information

- Outgoing radiance parameterized by a ray with point \mathbf{p} in outgoing direction ω_0
 - Where is the light coming from, and at what direction is it headed

- Want to solve for the outgoing radiance into the camera
 - The rendering equation helps us get there
The Rendering Equation

\[L_0(p, \omega_o) = L_e(p, \omega_o) + \int_{\mathcal{H}^2} f_r(p, \omega_i \rightarrow \omega_o)L_i(p, \omega_i) \cos \theta \, d\omega_i \]

- \(L_0(p, \omega_o) \): outgoing radiance at point \(p \) in outgoing direction \(\omega_o \)
- \(L_e(p, \omega_o) \): emitted radiance at point \(p \) in outgoing direction \(\omega_o \)
- \(f_r(p, \omega_i \rightarrow \omega_o) \): scattering function at point \(p \) from incoming direction \(\omega_i \) to outgoing direction \(\omega_o \)
- \(L_i(p, \omega_i) \): incoming radiance to point \(p \) from direction \(\omega_i \)
Recall: The Light Source

- Light sources emit electromagnetic radiation that we view as light
 - In this class, we will treat light as a particle
 - Nice property: light paths are ray-like
 - We know how to work with rays

- Adding light into our scenes allow us to illuminate color
 - A scene without lights will be just black
 - Light bounces off objects (emittance), until it hits a sensor (eyes, camera, etc.)

- A light will have outgoing radiance at point \mathbf{p} in some outgoing direction ω_o
 - The way \mathbf{p} and ω_o are defined determines the light source!
Point Light

- Defined by:
 - \(\mathbf{p} = [x, y, z] \) origin

- Light rays generated from all directions
- Intensity falls off with radius \(\propto \frac{1}{r^2} \)
- Very easy to check for visibility
 - Every point in active area

- Extension to Point Light: Area Light
 - Light generated from rectangle

- Extension to Point Light: Spherical Light
 - Light generated from sphere
Directional Light

- Defined by:
 - $\omega_o = [x, y, z]$ direction
 - Can be simplified to $\omega_o = [x, y]$
 - Normalized 3D coordinates can be written in 2D

- Light rays generated from infinity in the direction specified
- No fall-off of energy
- Very easy to check for visibility
 - Every point in active area
Spot Light

• Defined by:
 • \(\mathbf{p} = [x, y, z] \) origin
 • \(\omega_o = [x, y] \) direction (same optimization)
 • \([hfov] \) horizontal field of view
 • \([vfov] \) vertical field of view
 • Same parameters as a camera

• Light rays generated from directions within field of view
• Intensity falls off with radius \(\propto \frac{1}{r^2} \)
• Challenging to check for visibility
 • Point must fall in the light’s field of view
Environmental Light

- Defined by:
 - An image!

- Sample light directly from an image
- No intensity falloff. Image distance is at infinity
- Very easy to check for visibility
 - Every point in active area

- We’ll learn how to build this in a future lecture
The Rendering Equation

\[
L_0(p, \omega_o) = L_e(p, \omega_o) + \int_{H^2} f_r(p, \omega_i \rightarrow \omega_o) L_i(p, \omega_i) \cos \theta \, d\omega_i
\]

- \(L_0(p, \omega_o)\): outgoing radiance at point \(p\) in outgoing direction \(\omega_o\)
- \(L_e(p, \omega_o)\): emitted radiance at point \(p\) in outgoing direction \(\omega_o\)
- \(f_r(p, \omega_i \rightarrow \omega_o)\): scattering function at point \(p\) from incoming direction \(\omega_i\) to outgoing direction \(\omega_o\)
- \(L_i(p, \omega_i)\): incoming radiance to point \(p\) from direction \(\omega_i\)
Incoming Radiance

• Measures how much light is coming in from direction ω_i
on to the incident surface point p
 • **Example:** light source shining light on a surface
The Rendering Equation

\[L_0(p, \omega_o) = L_e(p, \omega_o) + \int_{\mathcal{H}^2} f_r(p, \omega_i \to \omega_o) L_i(p, \omega_i) \cos \theta \, d\omega_i \]

- \(L_0(p, \omega_o) \): outgoing radiance at point \(p \) in outgoing direction \(\omega_o \)
- \(L_e(p, \omega_o) \): emitted radiance at point \(p \) in outgoing direction \(\omega_o \)
- \(f_r(p, \omega_i \to \omega_o) \): scattering function at point \(p \) from incoming direction \(\omega_i \) to outgoing direction \(\omega_o \)
- \(L_i(p, \omega_i) \): incoming radiance to point \(p \) from direction \(\omega_i \)
Reflecting Light

Some objects, like mirrors, will reflect light in a single direction.

Some objects, like brick walls, will reflect light in all directions.
There’s A Lot Of BRDFs
The Rendering Equation

\[L_0(p, \omega_o) = L_e(p, \omega_o) + \int_{\mathcal{H}^2} f_r(p, \omega_i \rightarrow \omega_o) L_i(p, \omega_i) \cos \theta \, d\omega_i \]

- \(L_0(p, \omega_o) \): outgoing radiance at point \(p \) in outgoing direction \(\omega_o \)
- \(L_e(p, \omega_o) \): emitted radiance at point \(p \) in outgoing direction \(\omega_o \)
- \(f_r(p, \omega_i \rightarrow \omega_o) \): scattering function at point \(p \) from incoming direction \(\omega_i \) to outgoing direction \(\omega_o \)
- \(L_i(p, \omega_i) \): incoming radiance to point \(p \) from direction \(\omega_i \)

what about the integral?
Recap: Radiance In Rendering

- Surfaces are planar (Ex: triangles)
 - Light can enter surface from any angle around the hemisphere

- Outgoing radiance is a function of incoming radiance from every possible direction around the hemisphere

Just One Small Issue...

\[L_0(p, \omega_0) = L_e(p, \omega_0) + \int_{H^2} f_r(p, \omega_i \rightarrow \omega_0) L_i(p, \omega_i) \cos \theta \, d\omega_i \]

The integral assumes infinite sampling around the hemisphere

Computers can only process finite amounts of data

- Infinite lighting
- Infinite rays
- Infinite ray bounces

- Finite lighting
- Finite rays
- Finite ray bounces
• The Rendering Equation

• A Simple Path-Tracer

• Camera Rays
Example Of A Simple Renderer

- Yellow light ray generated from light source
Example Of A Simple Renderer

- Yellow light ray generated from light source
- Ray hits orange specular surface
 - Emits a ray in reflected direction
 - Mixes yellow and orange color
Example Of A Simple Renderer

- Yellow light ray generated from light source
- Ray hits orange specular surface
 - Emits a ray in reflected direction
 - Mixes yellow and orange color
- Ray hits blue specular surface
 - Emits a ray in reflected direction
 - Mixes blue and yellow and orange
Example Of A Simple Renderer

- Yellow light ray generated from light source
- Ray hits orange specular surface
 - Emits a ray in reflected direction
 - Mixes yellow and orange color
- Ray hits blue specular surface
 - Emits a ray in reflected direction
 - Mixes blue and yellow and orange
- Ray passes through pinhole camera
 - Light recorded on photoelectric cell
 - Incident pixel will be brown in final image
Example Of A Simple Renderer

- **Problem:** cannot always count on rays entering camera!
 - **Example:** if I turn the blue triangle a bit, the ray goes off into the void

- Compute wasted on a ray that doesn’t contribute to the final image!
"Your misses 100% of the shots you don't take. -Wayne Gretzky"

-Michael Scott
Idea: What if we trace a ray from the camera instead?
Hemholtz Reciprocity

- Reversing the order of incoming and outgoing light does not affect the BRDF evaluation
 \[f_r(p, \omega_i \rightarrow \omega_o) = f_r(p, \omega_o \rightarrow \omega_i) \]

- Critical to reverse path-tracing algorithms
 - Allows us to trace rays backwards and still get the same BRDF effect
Example Of A Simple Backwards Renderer

- Rays now traced out from the camera
 - Ray origin is pixel, direction faces pinhole

- **Issue #1**: How do we know the color of the rays now things are backwards?

- **Issue #2**: Rays still go to infinity!

Let’s start with this
Example Of A Simple Backwards Renderer

- **Issue #2:** Rays still go to infinity!

- After n-bounces, **terminate** the ray by constructing the ray towards the light source
 - If scene has multiple lights, pick one

- **Only works for BDRFs that are not ideal specular** (Ex: mirror, glass)!
 - If ideal specular, then continue to trace the ray until a non ideal specular surface is hit
Example Of A Simple Backwards Renderer

- **Issue #1**: How do we know the color of the rays now things are backwards?

- Split the renderer into two parts:
 - **Path-trace** to find a path to the light source
 - **Backpropagate** the colors back to the pixel
Example Of A Simple Backwards Renderer

[ray depth 2]

\[L_0(p, \omega_0) = L_e(p, \omega_0) + \int_{H^2} f_r(p, \omega_i \rightarrow \omega_0) L_i(p, \omega_i) \cos \theta \, d\omega_i \]

\[L(\text{pixel}) = \]

\[L(\text{pixel}) = \]
Example Of A Simple Backwards Renderer

[ray depth 2]

\[L_o(p, \omega_0) = L_e(p, \omega_0) + \int_{\mathcal{H}^2} f_r(p, \omega_i \rightarrow \omega_0)L_i(p, \omega_i) \cos \theta \, d\omega_i \]

- Intersect \(\triangle \), no emission \(\square \)

\[L(p\text{pixel}) = L_e(\text{ray}_1) + f_r(\text{obj}_1)[\]

\[L(p\text{pixel}) = \square + f_r(\triangle)[\]
Example Of A Simple Backwards Renderer

[ray depth 2]

\[L_0(p, \omega_0) = L_e(p, \omega_0) + \int_{H^2} f_r(p, \omega_i \to \omega_0) L_i(p, \omega_i) \cos \theta \, d\omega_i \]

- Intersect \(\triangle \), no emission
- Intersect \(\triangle \), no emission

\[L(pixel) = L_e(ray_1) + f_r(obj_1)[L_e(ray_2) + f_r(obj_2)] \]

\[L(pixel) = + f_r(\triangle)[+ f_r(\triangle)[]] \]
Example Of A Simple Backwards Renderer

\[L_0(p, \omega_0) = L_e(p, \omega_0) + \int_{H^2} f_r(p, \omega_i \rightarrow \omega_0)L_i(p, \omega_i) \cos \theta \, d\omega_i \]

- Intersect \(\triangle \), no emission
- Intersect \(\triangle \), no emission
- Ray terminate, emission

\[L(pixel) = L_e(ray_1) + f_r(obj_1)[L_e(ray_2) + f_r(obj_2)[L_e(ray_3)]] \]

\[L(pixel) = \square + f_r(\triangle)[\square + f_r(\triangle)[\square]] \]
Example Of A Simple Backwards Renderer

\[L_0(p, \omega_0) = L_e(p, \omega_0) + \int_{\mathcal{H}_2} f_r(p, \omega_i \rightarrow \omega_0) L_i(p, \omega_i) \cos \theta \, d\omega_i \]

- Intersect \(\triangle \), no emission ☐
- Intersect \(\triangle \), no emission ☐
- Ray terminate, emission ☑

\[L(p_{\text{pixel}}) = L_e(\text{ray}_1) + f_r(\text{obj}_1)[L_0(\text{ray}_2)] \]

\[L(p_{\text{pixel}}) = ☐ + f_r(\triangle) [☑] \]
Example Of A Simple Backwards Renderer

\[L_o(p, \omega_0) = L_e(p, \omega_0) + \int_{H^2} f_r(p, \omega_i \rightarrow \omega_0) L_i(p, \omega_i) \cos \theta \, d\omega_i \]

- Intersect \triangle, no emission
- Intersect \triangle, no emission
- Ray terminate, emission

\[L(pixel) = L_o(ray_1) \]

\[L(pixel) = \square \]
Terminating Emission Occlusion

[ray depth 2]

• Possibility that geometry in the scene blocks final ray from reaching light source
 • No contribution returned, ray wasted : (

• Intersect △, no emission □
• Intersect △, no emission □
• Ray terminate, emission □

\[L(\text{pixel}) = L_0(\text{ray}_1) \]

\[L(\text{pixel}) = \square \]
Next Event Estimation (NEE)

- Extension to Backwards Path Tracing
 - At each ray bounce, trace two new rays:
 - A ray generated by the BRDF
 - A ray towards the light
 - Average samples together
 - Can only be done for diffuse surfaces!

- No need to trace ray to light source explicitly on termination
 - Taken care of at each ray bounce

- Issue: requires a lot of ray traces!
Single Sample Importance Sampling

- Extension to Backwards Path Tracing
 - **At each ray bounce, pick one:**
 - A ray generated by the BRDF
 - A ray towards the light
 - Can only be done for diffuse surfaces!
 - Sample between rays with uniform probability

- You will implement this in Scotty3D
If we can connect the final ray to whatever our target is, why can’t we just use Forward Path Tracing?
Problem With Forward Renderer

• Terminating ray must go through pinhole!

• Cannot chose which pixel sensor the light ray will hit
 • Leads to uneven distribution of light samples onto final image sensor

• Backwards Renderer allows us to generate even number of rays from sensor
 • Leads to higher-quality image
Side Note: Why Is Everything In Focus?

Cyberpunk 2077 (2020) CD Projekt
Side Note: Why Is Everything In Focus?

- When rendering, we can render everything clearly
 - No need to set focal distance
 - No blur like with real cameras

- Rendering uses pinhole cameras
 - Light isn’t spread out across multiple sensors
 - Produces clear images everywhere

- Renderers can use pinhole, cameras cannot
 - Pinhole rendering takes in less light
 - Requires longer exposure
 - Render can freeze digital scene
 - Camera cannot freeze physical scene
 - Needs to increase aperture
 - Leads to blurring at different distances
• The Rendering Equation

• A Simple Path-Tracer

• Camera Rays
Camera Properties

• **Goal:** render an image of a given width and height
 • Think of the sensor image in front of the camera 1 unit away in the \(-z\) direction

• Construct rays from the camera origin to a point on the sensor
 • Where on the sensor depends on what sampling method

• Instead of width and height, we are given the **vertical field of view (vfov)** and **aspect ratio** of the sensor image
 • Vertical FOV measures how wide vertically the camera can see
 • Aspect ratio is the ratio of width/height
Generating Camera Rays

Ray Camera::generate_ray()
{
 // generate ray uniformly [0, 1]
 // can use other methods here too
 float x = rand() - 0.5f;
 float y = rand() - 0.5f;

 // computing height is an exercise to reader
 float hgt = // TODO: some trig
 // aspect ratio tells us ratio of wth/hgt
 float wth = hgt * aspect_ratio;

 // convert to 2D sensor coordinates
 float x_cord = x * wth;
 float y_cord = y * hgt;

 // construct ray from camera origin to sensor
 // sensor is 1 unit away in -z dir
 Ray r(Vec3(), Vec3(x_cord, y_cord, -1.0f));
 return r;
}

• Solve for width and height

• Generate point on sensor plane using any sampler
 • In our example we use random sampling

• Build a ray from the camera to the sample point
 on the sensor

Triangle! Just use trig!
Supersampling Camera Rays

• Similar to rasterization, can trace multiple rays per pixel
 • Resolve samples by averaging

• Many different sampling methods to chose from:
 • Jittered Sampling
 • Multi-jittered sampling
 • N-Rooks sampling
 • Sobol sequence sampling
 • Halton sequence sampling
 • Hammersley sequence sampling

• Visualizer built in Scotty3D to see ray distribution