
The Rendering Equation

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

15-462/662 | Computer Graphics

• The Rendering Equation

• A Simple Path-Tracer

• Camera Rays

Lecture 14 | Rendering Equation

15-462/662 | Computer Graphics Lecture 10 | Rendering Equation

Tracing Rays

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Tracing Rays

• Goal: trace light rays around the scene
• Rays bounce around illuminating

objects before reaching a camera

• Think of light rays as packets of info
• When light hits an object, it picks

up the object’s color before
moving onto the next object

• Recall: absorption spectrum
• Any colors not absorbed are

emitted back out

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

The Rendering Equation

(recursive definition) (base case) + (scattering function) ∗

The Rendering Equation should:
• Be recursive
• Have a base case
• Govern how light scatters (reflectance)

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

The Rendering Equation

(recursive definition)

(base case)

(scattering function)

(previous recursive call)

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

The Rendering Equation

outgoing radiance at point 𝐩 in outgoing direction 𝜔!

emitted radiance at point 𝐩 in outgoing direction 𝜔!

scattering function at point 𝐩 from incoming direction 𝜔" to outgoing direction 𝜔!

incoming radiance to point 𝐩 from direction 𝜔"

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

The Rendering Equation

outgoing radiance at point 𝐩 in outgoing direction 𝜔!

emitted radiance at point 𝐩 in outgoing direction 𝜔!

scattering function at point 𝐩 from incoming direction 𝜔" to outgoing direction 𝜔!

incoming radiance to point 𝐩 from direction 𝜔"

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Outgoing Radiance

• To know what an object looks like, we want to know its
outgoing radiance
• Carries color and radiometry information

• Outgoing radiance parameterized by a ray with point 𝐩 in
outgoing direction 𝜔!
• Where is the light coming from, and at what

direction is it headed

• Want to solve for the outgoing radiance into the camera
• The rendering equation helps us get there

𝐩

𝜔!

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

The Rendering Equation

outgoing radiance at point 𝐩 in outgoing direction 𝜔!

emitted radiance at point 𝐩 in outgoing direction 𝜔!

scattering function at point 𝐩 from incoming direction 𝜔" to outgoing direction 𝜔!

incoming radiance to point 𝐩 from direction 𝜔"

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Recall: The Light Source

• Light sources emit electromagnetic radiation that we
view as light
• In this class, we will treat light as a particle
• Nice property: light paths are ray-like

• We know how to work with rays

• Adding light into our scenes allow us to illuminate color
• A scene without lights will be just black
• Light bounces off objects (emittance), until it hits a

sensor (eyes, camera, etc.)

• A light will have outgoing radiance at point 𝐩 in some
outgoing direction 𝜔!
• The way 𝐩 and 𝜔! are defined determines the light

source!
Kirby & The Forgotten Land (2022) Nintendo

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Point Light

• Defined by:
• 𝐩 = [x, y, z] origin

• Light rays generated from all directions
• Intensity falls of with radius ∝ #

$!
• Very easy to check for visibility

• Every point in active area

• Extension to Point Light: Area Light
• Light generated from rectangle

• Extension to Point Light: Spherical Light
• Light generated from sphere

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Directional Light

• Defined by:
• 	𝜔!= [x, y, z] direction

• Can be simplified to	𝜔!= [x, y]
• Normalized 3D coordinates can be written in 2D

• Light rays generated from infinity in the direction specified
• No fall-off of energy
• Very easy to check for visibility

• Every point in active area

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Spot Light

• Defined by:
• 𝐩 = [x, y, z] origin
• 𝜔! = [x, y] direction (same optimization)
• [hfov] horizontal field of view
• [vfov] vertical field of view

• Same parameters as a camera

• Light rays generated from directions within field of view
• Intensity falls of with radius ∝ #

$!
	

• Challenging to check for visibility
• Point must fall in the light’s field of view

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Environmental Light

• Defined by:
• An image!

• Sample light directly from an image
• No intensity falloff. Image distance is at infinity
• Very easy to check for visibility

• Every point in active area

• We’ll learn how to build this in a future lecture
Uncharted 4 (2016) Naughty Dog

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

The Rendering Equation

outgoing radiance at point 𝐩 in outgoing direction 𝜔!

emitted radiance at point 𝐩 in outgoing direction 𝜔!

scattering function at point 𝐩 from incoming direction 𝜔" to outgoing direction 𝜔!

incoming radiance to point 𝐩 from direction 𝜔"

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Incoming Radiance

𝐩

𝜔"

• Measures how much light is coming in from direction 𝜔"
onto the incident surface point 𝐩
• Example: light source shining light on a surface

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

The Rendering Equation

outgoing radiance at point 𝐩 in outgoing direction 𝜔!

emitted radiance at point 𝐩 in outgoing direction 𝜔!

scattering function at point 𝐩 from incoming direction 𝜔" to outgoing direction 𝜔!

incoming radiance to point 𝐩 from direction 𝜔"

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Reflecting Light

Some objects, like mirrors,
will reflect light in a single direction

𝐩

𝜔"

𝜔%

𝜔% 𝜔% 𝜔% 𝜔%

𝜔%

𝐩

𝜔" 𝜔%

Some objects, like brick walls,
will reflect light in all directions

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

There’s A Lot Of BRDFs

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

The Rendering Equation

outgoing radiance at point 𝐩 in outgoing direction 𝜔!

emitted radiance at point 𝐩 in outgoing direction 𝜔!

scattering function at point 𝐩 from incoming direction 𝜔" to outgoing direction 𝜔!

incoming radiance to point 𝐩 from direction 𝜔"

what about the integral?

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Recap: Radiance In Rendering

• Surfaces are planar (Ex: triangles)
• Light can enter surface from any angle around the

hemisphere

• Outgoing radiance is a function of incoming radiance
from every possible direction around the hemisphere

Scratch-A-Pixel (2018)

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Just One Small Issue…

The integral assumes infinite
sampling around the hemisphere

• Infinite lighting
• Infinite rays
• Infinite ray bounces

Computers can only process
finite amounts of data

• Finite lighting
• Finite rays
• Finite ray bounces

15-462/662 | Computer Graphics

• The Rendering Equation

• A Simple Path-Tracer

• Camera Rays

Lecture 14 | Rendering Equation

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Example Of A Simple Renderer

Pinhole

• Yellow light ray generated from light source

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Example Of A Simple Renderer

Pinhole

• Yellow light ray generated from light source

• Ray hits orange specular surface
• Emits a ray in reflected direction
• Mixes yellow and orange color

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Example Of A Simple Renderer

Pinhole

• Yellow light ray generated from light source

• Ray hits orange specular surface
• Emits a ray in reflected direction
• Mixes yellow and orange color

• Ray hits blue specular surface
• Emits a ray in reflected direction
• Mixes blue and yellow and orange

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Example Of A Simple Renderer

Pinhole

• Yellow light ray generated from light source

• Ray hits orange specular surface
• Emits a ray in reflected direction
• Mixes yellow and orange color

• Ray hits blue specular surface
• Emits a ray in reflected direction
• Mixes blue and yellow and orange

• Ray passes through pinhole camera
• Light recorded on photoelectric cell
• Incident pixel will be brown in final image

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Example Of A Simple Renderer

Pinhole

• Problem: cannot always count on rays
entering camera!
• Example: if I turn the blue triangle a

bit, the ray goes off into the void

• Compute wasted on a ray that doesn’t
contribute to the final image!

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Idea: What if we trace a ray from the camera instead?

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Hemholtz Reciprocity

• Reversing the order of incoming and outgoing
light does not affect the BRDF evaluation

• Critical to reverse path-tracing algorithms
• Allows us to trace rays backwards and

still get the same BRDF effect

𝐩

𝜔" 𝜔%

𝐩

𝜔! 𝜔"

𝑓$ p, 𝜔" → 𝜔! = 𝑓$ p, 𝜔! → 𝜔"

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

• Rays now traced out from the camera
• Ray origin is pixel, direction faces

pinhole

• Issue #1: How do we know the color of the
rays now things are backwards?

• Issue #2: Rays still go to infinity!

Let’s start with this

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

• Issue #2: Rays still go to infinity!

• After n-bounces, terminate the ray by
constructing the ray towards the light source
• If scene has multiple lights, pick one

• Only works for BDRFs that are not ideal
specular (Ex: mirror, glass)!
• If ideal specular, then continue to trace

the ray until a non ideal specular
surface is hit

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

• Issue #1: How do we know the color of
the rays now things are backwards?

• Split the renderer into two parts:
• Path-trace to find a path to the

light source
• Backpropagate the colors back to

the pixel

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿& 𝑟𝑎𝑦# + 𝑓$(𝑜𝑏𝑗#)[𝐿& 𝑟𝑎𝑦' + 𝑓$(𝑜𝑏𝑗')[𝐿& 𝑟𝑎𝑦(]]

𝐿 𝑝𝑖𝑥𝑒𝑙	 = 	 +𝑓$ 	 [+𝑓$ 	 []]

[ray depth 2]

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿& 𝑟𝑎𝑦# + 𝑓$(𝑜𝑏𝑗#)[𝐿& 𝑟𝑎𝑦' + 𝑓$(𝑜𝑏𝑗')[𝐿& 𝑟𝑎𝑦(]]

𝐿 𝑝𝑖𝑥𝑒𝑙	 = 	 +𝑓$ 	 [+𝑓$ 	 []]

• Intersect , no emission

[ray depth 2]

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿& 𝑟𝑎𝑦# + 𝑓$(𝑜𝑏𝑗#)[𝐿& 𝑟𝑎𝑦' + 𝑓$(𝑜𝑏𝑗')[𝐿& 𝑟𝑎𝑦(]]

𝐿 𝑝𝑖𝑥𝑒𝑙	 = 	 +𝑓$ 	 [+𝑓$ 	 []]

• Intersect , no emission
• Intersect , no emission

[ray depth 2]

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿& 𝑟𝑎𝑦# + 𝑓$(𝑜𝑏𝑗#)[𝐿& 𝑟𝑎𝑦' + 𝑓$(𝑜𝑏𝑗')[𝐿& 𝑟𝑎𝑦(]]

𝐿 𝑝𝑖𝑥𝑒𝑙	 = 	 +𝑓$ 	 [+𝑓$ 	 []]

• Intersect , no emission
• Intersect , no emission
• Ray terminate, emission

[ray depth 2]

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿& 𝑟𝑎𝑦# + 𝑓$(𝑜𝑏𝑗#)[𝐿! 𝑟𝑎𝑦']

𝐿 𝑝𝑖𝑥𝑒𝑙	 = 	 +𝑓$ 	 []]

• Intersect , no emission
• Intersect , no emission
• Ray terminate, emission

[ray depth 2]

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Example Of A Simple Backwards Renderer

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿! 𝑟𝑎𝑦#

𝐿 𝑝𝑖𝑥𝑒𝑙	 = 	 +𝑓$ 	 [+𝑓$ 	 []]

• Intersect , no emission
• Intersect , no emission
• Ray terminate, emission

[ray depth 2]

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Terminating Emission Occlusion

Pinhole

𝐿 𝑝𝑖𝑥𝑒𝑙 = 𝐿! 𝑟𝑎𝑦#

𝐿 𝑝𝑖𝑥𝑒𝑙	 = 	 +𝑓$ 	 [+𝑓$ 	 []]

• Intersect , no emission
• Intersect , no emission
• Ray terminate, emission

[ray depth 2]

• Possibility that geometry in the scene blocks final ray from
reaching light source
• No contribution returned, ray wasted : (

15-462/662 | Computer Graphics

Next Event Estimation (NEE)

Lecture 14 | Rendering Equation

Pinhole

• Extension to Backwards Path Tracing
• At each ray bounce, trace two new rays:

• A ray generated by the BRDF
• A ray towards the light

• Average samples together
• Can only be done for diffuse surfaces!

• No need to trace ray to light source explicitly
on termination
• Taken care of at each ray bounce

• Issue: requires a lot of ray traces!

15-462/662 | Computer Graphics

Single Sample Importance Sampling

Lecture 14 | Rendering Equation

Pinhole

• Extension to Backwards Path Tracing
• At each ray bounce, pick one:

• A ray generated by the BRDF
• A ray towards the light

• Can only be done for diffuse surfaces!
• Sample between rays with uniform

probability

• You will implement this in Scotty3D

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

If we can connect the final ray to whatever our target is,
why can’t we just use Forward Path Tracing?

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Problem With Forward Renderer

Pinhole

• Terminating ray must go through pinhole!

• Cannot chose which pixel sensor the light
ray will hit
• Leads to uneven distribution of light

samples onto final image sensor

• Backwards Renderer allows us to generate
even number of rays from sensor
• Leads to higher-quality image

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Side Note: Why Is Everything In Focus?

Cyberpunk 2077 (2020) CD Projekt

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Side Note: Why Is Everything In Focus?

• When rendering, we can render everything clearly
• No need to set focal distance
• No blur like with real cameras

• Rendering uses pinhole cameras
• Light isn’t spread out across multiple sensors
• Produces clear images everywhere

• Renderers can use pinhole, cameras cannot
• Pinhole rendering takes in less light

• Requires longer exposure
• Render can freeze digital scene
• Camera cannot freeze physical scene

• Needs to increase aperture
• Leads to blurring at different distances

15-462/662 | Computer Graphics

• The Rendering Equation

• A Simple Path-Tracer

• Camera Rays

Lecture 14 | Rendering Equation

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Camera Properties

• Goal: render an image of a given width and height
• Think of the sensor image in front of the

camera 1 unit away in the –z direction

• Construct rays from the camera origin to a point
on the sensor
• Where on the sensor depends on what

sampling method

• Instead of width and height, we are given the
vertical field of view (vfov) and aspect ratio of
the sensor image
• Vertical FOV measures how wide vertically

the camera can see
• Aspect ratio is the ratio of width/height

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Generating Camera Rays
• Solve for width and height

• Generate point on sensor plane using any sampler
• In our example we use random sampling

• Build a ray from the camera to the sample point
on the sensor

Ray Camera::generate_ray()
{
 // generate ray uniformly [0, 1]
 // can use other methods here too
 float x = rand() – 0.5f;
 float y = rand() – 0.5f;

 // computing height is an exercise to reader
 float hgt = // TODO: some trig
 // aspect ratio tells us ratio of wth/hgt
 float wth = hgt * aspect_ratio;

 // convert to 2D sensor coordinates
 float x_cord = x * wth;
 float y_cord = y * hgt;

 // construct ray from camera origin to sensor
 // sensor is 1 unit away in –z dir
 Ray r(Vec3(), Vec3(x_cord, y_cord, -1.0f));

 return r;
}

Triangle! Just use trig!

15-462/662 | Computer Graphics Lecture 14 | Rendering Equation

Supersampling Camera Rays

• Similar to rasterization, can trace multiple rays per pixel
• Resolve samples by averaging

• Many different sampling methods to chose from:
• Jittered Sampling
• Multi-jittered sampling
• N-Rooks sampling
• Sobol sequence sampling
• Halton sequence sampling
• Hammersley sequence sampling

• Visualizer built in Scotty3D to see ray distribution

