The Rendering Equation

- The Rendering Equation
- A Simple Path-Tracer
- Camera Rays

Tracing Rays

Tracing Rays

- Goal: trace light rays around the scene
- Rays bounce around illuminating objects before reaching a camera
- Think of light rays as packets of info
- When light hits an object, it picks up the object's color before moving onto the next object
- Recall: absorption spectrum
- Any colors not absorbed are emitted back out

The Rendering Equation

$$
E=\int_{\mathrm{H}^{2}} L(\omega) \cos \theta d \omega
$$

The Rendering Equation should:

- Be recursive
- Have a base case
- Govern how light scatters (reflectance)

$($ recursive definition $)=($ base case $)+\int_{\mathcal{H}^{2}}($ scattering function $) * L_{i}\left(\mathbf{p}, \omega_{i}\right) \cos \theta d \omega_{i}$

The Rendering Equation

$$
\begin{aligned}
L_{0}\left(\mathbf{p}, \omega_{0}\right) & =L_{e}\left(\mathbf{p}, \omega_{0}\right)+\int_{\mathcal{H}^{2}} f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{0}\right) L_{i}\left(\mathbf{p}, \omega_{i}\right) \cos \theta d \omega_{i} \\
L_{o}\left(\mathbf{p}, \omega_{0}\right) & \text { (recursive definition) } \\
L_{e}\left(\mathbf{p}, \omega_{0}\right) & \text { (base case) } \\
f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{0}\right) & \text { (scattering function) } \\
L_{i}\left(\mathbf{p}, \omega_{i}\right) & \text { (previous recursive call) }
\end{aligned}
$$

The Rendering Equation

$$
\begin{aligned}
L_{o}\left(\mathbf{p}, \omega_{o}\right) & =L_{e}\left(\mathbf{p}, \omega_{0}\right)+\int_{\mathcal{H}^{2}} f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{0}\right) L_{i}\left(\mathbf{p}, \omega_{i}\right) \cos \theta d \omega_{i} \\
L_{o}\left(\mathbf{p}, \omega_{o}\right) & \text { outgoing radiance at point } \mathbf{p} \text { in outgoing direction } \omega_{o} \\
L_{e}\left(\mathbf{p}, \omega_{0}\right) & \text { emitted radiance at point } \mathbf{p} \text { in outgoing direction } \omega_{o} \\
f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{0}\right) & \text { scattering function at point } \mathbf{p} \text { from incoming direction } \omega_{i} \text { to outgoing direction } \omega_{o} \\
L_{i}\left(\mathbf{p}, \omega_{i}\right) & \text { incoming radiance to point } \mathbf{p} \text { from direction } \omega_{i}
\end{aligned}
$$

The Rendering Equation

$L_{o}\left(\mathbf{p}, \omega_{0}\right)=L_{e}\left(\mathbf{p}, \omega_{0}\right)+\int_{\mathcal{H}^{2}} f_{r}\left(\mathrm{p}, \omega_{i} \rightarrow \omega_{0}\right) L_{i}\left(\mathbf{p}, \omega_{i}\right) \cos \theta d \omega_{i}$
$L_{o}\left(\mathbf{p}, \omega_{0}\right)$ outgoing radiance at point \mathbf{p} in outgoing direction ω_{o}
$L_{e}\left(\mathbf{p}, \omega_{0}\right) \quad$ emitted radiance at point \mathbf{p} in outgoing direction ω_{o}
$f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{0}\right) \quad$ scattering function at point \mathbf{p} from incoming direction ω_{i} to outgoing direction ω_{o}
$L_{i}\left(\mathrm{p}, \omega_{i}\right)$ incoming radiance to point p from direction ω_{i}

Outgoing Radiance

- To know what an object looks like, we want to know its outgoing radiance
- Carries color and radiometry information
- Outgoing radiance parameterized by a ray with point \mathbf{p} in outgoing direction ω_{o}
- Where is the light coming from, and at what direction is it headed
- Want to solve for the outgoing radiance into the camera
- The rendering equation helps us get there

The Rendering Equation

$$
\begin{array}{cl}
L_{0}\left(\mathbf{p}, \omega_{0}\right) & =L_{e}\left(\mathbf{p}, \omega_{0}\right)+\int_{\mathcal{H}^{2}} f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{0}\right) L_{i}\left(\mathbb{p}, \omega_{i}\right) \cos \theta d \omega_{i} \\
L_{0}\left(\mathbf{p}, \omega_{0}\right) & \text { outgoing radiance at point } \mathbf{p} \text { in outgoing direction } \omega_{0} \\
L_{e}\left(\mathbf{p}, \omega_{0}\right) & \text { emitted radiance at point } \mathbf{p} \text { in outgoing direction } \omega_{o} \\
f_{r}\left(\mathbb{p}, \omega_{i} \rightarrow \omega_{0}\right) & \text { scattering function at point } \mathbf{p} \text { from incoming direction } \omega_{i} \text { to outgoing direction } \omega_{0} \\
L_{i}\left(\mathbf{p}, \omega_{i}\right) & \text { incoming radiance to point } \mathbf{p} \text { from direction } \omega_{i}
\end{array}
$$

Recall: The Light Source

- Light sources emit electromagnetic radiation that we view as light
- In this class, we will treat light as a particle
- Nice property: light paths are ray-like
- We know how to work with rays
- Adding light into our scenes allow us to illuminate color
- A scene without lights will be just black
- Light bounces off objects (emittance), until it hits a sensor (eyes, camera, etc.)
- A light will have outgoing radiance at point \mathbf{p} in some outgoing direction ω_{o}
- The way \mathbf{p} and ω_{o} are defined determines the light source!
Kirby \& The Forgotten Land (2022) Nintendo

Point Light

- Defined by:
- $\mathbf{p}=[\mathrm{x}, \mathrm{y}, \mathrm{z}]$ origin

- Light rays generated from all directions
- Intensity falls of with radius $\propto \frac{1}{r^{2}}$
- Very easy to check for visibility
- Every point in active area
- Extension to Point Light: Area Light
- Light generated from rectangle
- Extension to Point Light: Spherical Light
- Light generated from sphere

Directional Light

- Defined by:
- $\omega_{o}=[x, y, z]$ direction
- Can be simplified to $\omega_{o}=[x, y]$
- Normalized 3D coordinates can be written in 2D
- Light rays generated from infinity in the direction specified
- No fall-off of energy
- Very easy to check for visibility
- Every point in active area

Spot Light

- Defined by:
- $\mathbf{p}=[x, y, z]$ origin
- $\omega_{o}=[\mathrm{x}, \mathrm{y}]$ direction (same optimization)
- [hfov] horizontal field of view
- [vfov] vertical field of view
- Same parameters as a camera
- Light rays generated from directions within field of view
- Intensity falls of with radius $\propto \frac{1}{r^{2}}$
- Challenging to check for visibility
- Point must fall in the light's field of view

Environmental Light

- Defined by:
- An image!
- Sample light directly from an image
- No intensity falloff. Image distance is at infinity
- Very easy to check for visibility
- Every point in active area
- We'll learn how to build this in a future lecture

Uncharted 4 (2016) Naughty Dog

The Rendering Equation

$$
\begin{aligned}
L_{0}\left(\mathrm{p}, \omega_{0}\right) & =L_{e}\left(\mathrm{p}, \omega_{0}\right)+\int_{\mathcal{H}^{2}} f_{r}\left(\mathrm{p}, \omega_{i} \rightarrow \omega_{0}\right) L_{i}\left(\mathbf{p}, \omega_{i}\right) \cos \theta d \omega_{i} \\
L_{0}\left(\mathrm{p}, \omega_{0}\right) & \text { outgoing radiance at point p in outgoing direction } \omega_{0} \\
L_{e}\left(\mathrm{p}, \omega_{0}\right) & \text { emitted radiance at point p in outgoing direction } \omega_{0} \\
f_{r}\left(\mathrm{p}, \omega_{i} \rightarrow \omega_{0}\right) & \text { scattering function at point p prom incoming direction } \omega_{i} \text { to outgoing direction } \omega_{o} \\
L_{i}\left(\mathbf{p}, \omega_{i}\right) & \text { incoming radiance to point } \mathbf{p} \text { from direction } \omega_{i}
\end{aligned}
$$

Incoming Radiance

- Measures how much light is coming in from direction ω_{i} onto the incident surface point \mathbf{p}
- Example: light source shining light on a surface

The Rendering Equation

$$
\begin{aligned}
& L_{o}\left(\mathrm{p}, \omega_{o}\right)=L_{e}\left(\mathrm{p}, \omega_{0}\right)+\int_{t e^{2}} f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{o}\right) L_{i}\left(\mathrm{p}, \omega_{i}\right) \cos \theta d \omega_{i} \\
& L_{O}\left(\mathbf{p}, \omega_{0}\right) \text { outgoing radiance at point } \mathbf{p} \text { in outgoing direction } \omega_{o} \\
& L_{e}\left(\mathbf{p}, \omega_{0}\right) \quad \text { emitted radiance at point } \mathbf{p} \text { in outgoing direction } \omega_{o} \\
& f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{o}\right) \quad \text { scattering function at point } \mathbf{p} \text { from incoming direction } \omega_{i} \text { to outgoing direction } \omega_{o} \\
& L_{i}\left(\mathbf{P}, \omega_{i}\right) \text { incoming radiance to point } \mathbf{p} \text { from direction } \omega_{i}
\end{aligned}
$$

Reflecting Light

Some objects, like mirrors, will reflect light in a single direction

Some objects, like brick walls, will reflect light in all directions

There's A Lot Of BRDFs

The Rendering Equation

$$
\begin{aligned}
& L_{o}\left(\mathrm{p}, \omega_{o}\right)=L_{e}\left(\mathrm{p}, \omega_{o}\right)+\int_{\mathcal{H}^{2}} f_{r}\left(\mathrm{p}, \omega_{i} \rightarrow \omega_{o}\right) L_{i}\left(\mathrm{p}, \omega_{i}\right) \cos \theta d \omega_{i} \\
& L_{0}\left(\mathbf{p}, \omega_{0}\right) \text { outgoing radiance at point } \mathbf{p} \text { in outgoing direction } \omega_{o} \\
& L_{e}\left(\mathbf{p}, \omega_{0}\right) \text { emitted radiance at point } \mathbf{p} \text { in outgoing direction } \omega_{0} \\
& f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{0}\right) \quad \text { scattering function at point } \mathbf{p} \text { from incoming direction } \omega_{i} \text { to outgoing direction } \omega_{o} \\
& L_{i}\left(\mathbf{p}, \omega_{i}\right) \quad \text { incoming radiance to point } \mathbf{p} \text { from direction } \omega_{i} \\
& \text { what about the integral? }
\end{aligned}
$$

Recap: Radiance In Rendering

- Surfaces are planar (Ex: triangles)
- Light can enter surface from any angle around the hemisphere
- Outgoing radiance is a function of incoming radiance from every possible direction around the hemisphere

Scratch-A-Pixel (2018)

Just One Small Issue...

$$
L_{o}\left(\mathbf{p}, \omega_{0}\right)=L_{e}\left(\mathbf{p}, \omega_{o}\right)+\int_{\mathcal{H}^{2}} f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{o}\right) L_{i}\left(\mathbf{p}, \omega_{i}\right) \cos \theta d \omega_{i}
$$

The integral assumes infinite sampling around the hemisphere

- Infinite lighting
- Infinite rays
- Infinite ray bounces

Computers can only process
finite amounts of data

- Finite lighting
- Finite rays
- Finite ray bounces
- The Rendering Equation
- A Simple Path-Tracer
- Camera Rays

Example Of A Simple Renderer

- Yellow light ray generated from light source

Example Of A Simple Renderer

- Yellow light ray generated from light source
- Ray hits orange specular surface
- Emits a ray in reflected direction
- Mixes yellow and orange color

Example Of A Simple Renderer

- Yellow light ray generated from light source
- Ray hits orange specular surface
- Emits a ray in reflected direction
- Mixes yellow and orange color
- Ray hits blue specular surface
- Emits a ray in reflected direction
- Mixes blue and yellow and orange

Example Of A Simple Renderer

- Yellow light ray generated from light source
- Ray hits orange specular surface
- Emits a ray in reflected direction
- Mixes yellow and orange color
- Ray hits blue specular surface
- Emits a ray in reflected direction
- Mixes blue and yellow and orange
- Ray passes through pinhole camera

- Light recorded on photoelectric cell
- Incident pixel will be brown in final image

Example Of A Simple Renderer

- Problem: cannot always count on rays entering camera!
- Example: if I turn the blue triangle a bit, the ray goes off into the void
- Compute wasted on a ray that doesn't contribute to the final image!

Idea: What if we trace a ray from the camera instead?

Hemholtz Reciprocity

- Reversing the order of incoming and outgoing light does not affect the BRDF evaluation

$$
f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{o}\right)=f_{r}\left(\mathbf{p}, \omega_{o} \rightarrow \omega_{i}\right)
$$

- Critical to reverse path-tracing algorithms
- Allows us to trace rays backwards and still get the same BRDF effect

Example Of A Simple Backwards Renderer

- Rays now traced out from the camera
- Ray origin is pixel, direction faces pinhole
- Issue \#1: How do we know the color of the rays now things are backwards?
- Issue \#2: Rays still go to infinity!

Example Of A Simple Backwards Renderer

- Issue \#2: Rays still go to infinity!
- After n-bounces, terminate the ray by constructing the ray towards the light source
- If scene has multiple lights, pick one
- Only works for BDRFs that are not ideal specular (Ex: mirror, glass)!
- If ideal specular, then continue to trace the ray until a non ideal specular surface is hit

Example Of A Simple Backwards Renderer

- Issue \#1: How do we know the color of the rays now things are backwards?
- Split the renderer into two parts:
- Path-trace to find a path to the light source
- Backpropagate the colors back to the pixel

Example Of A Simple Backwards Renderer
[ray depth 2]

$$
L_{o}\left(\mathbf{p}, \omega_{o}\right)=L_{e}\left(\mathbf{p}, \omega_{o}\right)+\int_{\mathcal{H}^{2}} f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{o}\right) L_{i}\left(\mathbf{p}, \omega_{i}\right) \cos \theta d \omega_{i}
$$

$$
\begin{aligned}
& L(\text { pixel })= \\
& \qquad L(\text { pixel })=
\end{aligned}
$$

Example Of A Simple Backwards Renderer

[ray depth 2]

$$
L_{o}\left(\mathbf{p}, \omega_{o}\right)=L_{e}\left(\mathbf{p}, \omega_{o}\right)+\int_{\mathcal{H}^{2}} f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{o}\right) L_{i}\left(\mathbf{p}, \omega_{i}\right) \cos \theta d \omega_{i}
$$

- Intersect Δ, no emission

$$
\begin{aligned}
& L(\text { pixel })= L_{e}\left(r a y_{1}\right)+f_{r}\left(o b j_{1}\right) \\
& L(\text { pixel })=\square+f_{r}(\Delta)
\end{aligned}
$$

Example Of A Simple Backwards Renderer

[ray depth 2]

$$
L_{o}\left(\mathbf{p}, \omega_{o}\right)=L_{e}\left(\mathbf{p}, \omega_{o}\right)+\int_{\mathcal{H}^{2}} f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{o}\right) L_{i}\left(\mathbf{p}, \omega_{i}\right) \cos \theta d \omega_{i}
$$

- Intersect Δ, no emission
- Intersect \triangle, no emission \square

$$
\left.\left.\begin{array}{r}
L(\text { pixel })=L_{e}\left(r a y_{1}\right)+f_{r}\left(o b j_{1}\right)\left[L_{e}\left(r a y_{2}\right)+f_{r}\left(o b j_{2}\right)[\right. \\
L(\text { pixel })=\square+f_{r}(\Delta)\left[\square+f_{r}(\Delta)[\right.
\end{array}\right]\right]
$$

Example Of A Simple Backwards Renderer

[ray depth 2]

$$
L_{0}\left(\mathbf{p}, \omega_{0}\right)=L_{e}\left(\mathbf{p}, \omega_{0}\right)+\int_{\mathcal{H}^{2}} f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{0}\right) L_{i}\left(\mathbf{p}, \omega_{i}\right) \cos \theta d \omega_{i}
$$

- Intersect \triangle, no emission
- Intersect Δ, no emission \square
- Ray terminate, emission

$$
\begin{gathered}
L(\text { pixel })=L_{e}\left(r a y_{1}\right)+f_{r}\left(o b j_{1}\right)\left[L_{e}\left(r a y_{2}\right)+f_{r}\left(o b j_{2}\right)\left[L_{e}\left(\text { ray }_{3}\right)\right]\right] \\
L(\text { pixel })=\square+f_{r}(\Delta)\left[\square+f_{r}(\Delta)[\square]\right]
\end{gathered}
$$

Example Of A Simple Backwards Renderer

[ray depth 2]

$$
L_{0}\left(\mathbf{p}, \omega_{0}\right)=L_{e}\left(\mathbf{p}, \omega_{0}\right)+\int_{\mathcal{H}^{2}} f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{0}\right) L_{i}\left(\mathbf{p}, \omega_{i}\right) \cos \theta d \omega_{i}
$$

- Intersect Δ, no emission
- Intersect \triangle, no emission \square
- Ray terminate, emission

$$
\begin{array}{r}
L(\text { pixel })=L_{e}\left(r a y_{1}\right)+f_{r}\left(o b j_{1}\right)\left[L_{o}\left(r a y_{2}\right)\right] \\
L(\text { pixel })=\square+f_{r}(\Delta)[\square]
\end{array}
$$

Example Of A Simple Backwards Renderer

[ray depth 2]

$$
L_{0}\left(\mathbf{p}, \omega_{0}\right)=L_{e}\left(\mathbf{p}, \omega_{0}\right)+\int_{\mathcal{H}^{2}} f_{r}\left(\mathbf{p}, \omega_{i} \rightarrow \omega_{0}\right) L_{i}\left(\mathbf{p}, \omega_{i}\right) \cos \theta d \omega_{i}
$$

- Intersect Δ, no emission
- Intersect \triangle, no emission \square
- Ray terminate, emission

$$
\begin{array}{r}
L(\text { pixel })=L_{o}\left(\text { ray }_{1}\right) \\
L(\text { pixel })=
\end{array}
$$

Terminating Emission Occlusion

[ray depth 2]

- Possibility that geometry in the scene blocks final ray from reaching light source
- No contribution returned, ray wasted : (

- Intersect Δ, no emission
- Intersect \triangle, no emission \square
- Ray terminate, emission

$$
L(\text { pixel })=L_{o}\left(r a y_{1}\right)
$$

$$
L(\text { pixel })=
$$

Next Event Estimation (NEE)

- Extension to Backwards Path Tracing
- At each ray bounce, trace two new rays:
- A ray generated by the BRDF
- A ray towards the light
- Average samples together
- Can only be done for diffuse surfaces!
- No need to trace ray to light source explicitly on termination
- Taken care of at each ray bounce

- Issue: requires a lot of ray traces!

Single Sample Importance Sampling

- Extension to Backwards Path Tracing
- At each ray bounce, pick one:
- A ray generated by the BRDF
- A ray towards the light
- Can only be done for diffuse surfaces!
- Sample between rays with uniform probability
- You will implement this in Scotty3D

If we can connect the final ray to whatever our target is, why can't we just use Forward Path Tracing?

Problem With Forward Renderer

- Terminating ray must go through pinhole!
- Cannot chose which pixel sensor the light ray will hit
- Leads to uneven distribution of light samples onto final image sensor
- Backwards Renderer allows us to generate even number of rays from sensor
- Leads to higher-quality image

Side Note: Why Is Everything In Focus?

Cyberpunk 2077 (2020) CD Projekt

Side Note: Why Is Everything In Focus?

- When rendering, we can render everything clearly
- No need to set focal distance
- No blur like with real cameras
- Rendering uses pinhole cameras
- Light isn't spread out across multiple sensors
- Produces clear images everywhere
- Renderers can use pinhole, cameras cannot
- Pinhole rendering takes in less light
- Requires longer exposure
- Render can freeze digital scene
- Camera cannot freeze physical scene
- Needs to increase aperture
- Leads to blurring at different distances

- The Rendering Equation

- A Simple Path-Tracer
- Camera Rays

Camera Properties

- Goal: render an image of a given width and height
- Think of the sensor image in front of the camera 1 unit away in the -z direction
- Construct rays from the camera origin to a point on the sensor
- Where on the sensor depends on what sampling method
- Instead of width and height, we are given the vertical field of view (vfov) and aspect ratio of the sensor image
- Vertical FOV measures how wide vertically the camera can see
- Aspect ratio is the ratio of width/height

Generating Camera Rays

```
Ray Camera::generate ray()
{
    // generate ray uniformly [0, 1]
    // can use other methods here too
    float x = rand() - 0.5f;
    float y = rand() - 0.5f;
    // computing height is an exercise to reader
    float hgt = // TODO: some trig
    // aspect ratio tells us ratio of wth/hgt
    float wth = hgt * aspect_ratio;
    // convert to 2D sensor coordinates
    float x_cord = x * wth;
    float y_cord = y * hgt;
    // construct ray from camera origin to sensor
    // sensor is 1 unit away in -z dir
    Ray r(Vec3(), Vec3(x_cord, y_cord, -1.0f));
    return r;
}
```

- Solve for width and height
- Generate point on sensor plane using any sampler
- In our example we use random sampling
- Build a ray from the camera to the sample point on the sensor

Triangle! Just use trig!

Supersampling Camera Rays

- Similar to rasterization, can trace multiple rays per pixel
- Resolve samples by averaging
- Many different sampling methods to chose from:
- Jittered Sampling
- Multi-jittered sampling
- N-Rooks sampling
- Sobol sequence sampling
- Halton sequence sampling
- Hammersley sequence sampling
- Visualizer built in Scotty3D to see ray distribution

