Color

- Physical Color
- Digital Color
- Color Manipulation

What Is Color

- Color can also be thought of an object's visual response to light
- A green plant without light will be black
- A green plant with light will absorb some energy for photosynthesis, and then emit some green light
- This emission is its visual response
- Color gives us a language for communicating similar energies that our eyes pick up
- Example: picking colors for a house

A Lowe's, Probably.

What Is Light

- Light is electromagnetic radiation
- Generated as an oscillation in the electromagnetic field
- Is light a wave, or a particle?
- Yes.
- The frequency of oscillation determines the color of light
- Most light is not visible!
- Frequencies visible are a part of the visible spectrum

- White is the combination of all visible frequencies
- Black is the absence of all visible frequencies
- Color is a range of frequencies
- Scientifically referred to as a spectrum

Light Spectrums

- Emission spectrum describes range of light frequencies emitted from a light source
- Combination of frequencies gives the overall light color
- Integrating over the spectrum gives the energy output
- Higher energy output = more energy required to power
- Example: light bulb
- Measured as intensity per frequency
- Absorption spectrum describes range of light frequencies absorbed from a light source
- Frequencies not absorbed are reflected back
- Measured as percent absorbed per frequency

Emission Spectrum Examples

Halogen

Absorption Spectrum Examples

Absorbed Light

- Converted to heat
- Wearing dark clothes makes you warmer
- Converted to fuel biological ecosystem
- Photosynthesis requires energy to move around electrons
- Converted to electrical energy
- Solar panels are black to absorb as much visible light

This thing absorbs everything
(he absorbed my pizza rolls once)

So What Is Color

- Color is emission multiplied by the reflectance
- Reflectance is whatever percentage is not absorbed
- The sun's emission is near-equal parts of all visible light
- Reason why everything is its 'true' color under sunlight

Spectrum of Solar Radiation (Earth)

Reflectance Spectrum R(v)
Result Reflected ER(v) reflected

wavelength (nm)

Color By Emission

- We can change the color of objects by changing the emitted light
- Plants under red light will appear red, etc.
- Red and blue plants appear much darker
- Most light absorbed for photosynthesis
- Can also use non-visible light (UV) to show colors not originally there

'Eye’ See What You Mean

- Eyes are biological cameras
- Light passes through the pupil [black dot in the eye]
- Iris controls how much light enters eye [colored ring around pupil]
- Eyes are sensitive to too much light
- Iris protects the eyes
- Lens behind the eye converges light rays to back of the eye
- Ciliary muscles around the lens allow the lens to be bent to change focus on nearby/far objects
- 130+ million retina cells at the back of the eye
- Cells pick up light and convert it to electrical signal
- Electric signal passes through optic nerve to reach the brain

The Biological Camera

- Pupil is the camera opening
- Allows light through
- Iris is the aperture ring
- Controls aperture
- Lens is the...well, lens
- Can change focus
- Retina is the sensor
- Converts light into electrical signal
- Brain is the CPU
- Performs additional compute to correct raw image signal

Rods \& Cones

- Rods are primary receptors far from fovea used under low-light viewing conditions
- Approx. 120 million rods in human eye

Human blind spot

- Cones are primary receptors near fovea used under high-light viewing conditions
- Approx. 6-7 million cones in the human eye
- Capture color
- Capture intensity

A Little Trick

- Close left eye
- Stare at the circle
- Move closer to the screen
- Move farther from the screen
- Continue until the plus sign disappears
- Close right eye
- Stare at the plus
- Move closer to the screen
- Move farther from the screen
- Continue until the plus sign disappears

Another Little Trick

- Grab someone and try it at home!
- Have them hold up colored markers in peripheral [side] vision, bringing closer to center
- Once you see a marker, guess the color
- As the marker comes closer to center, did you get the color right?

Spectral Response of Cones

- Long, Medium, and Small cones pick up Long, Medium, and Small wavelengths respectively
- Each cone picks up a range of colors given by their response functions
- Not much different than absorption spectrum
- Each cone integrates the emission \& response to produce a single signal to transmit to the brain

$$
\begin{aligned}
S & =\int_{\lambda} \Phi(\lambda) S(\lambda) d \lambda \\
M & =\int_{\lambda} \Phi(\lambda) M(\lambda) d \lambda \\
L & =\int_{\lambda} \Phi(\lambda) L(\lambda) d \lambda
\end{aligned}
$$

- Uneven distribution of cone types in eye
- $\sim 64 \%$ L cones, $\sim 32 \% \mathrm{M}$ cones $\sim 4 \% \mathrm{~S}$ cones

The Biological Camera [Again]

- Eyes perceive green color better than any other color
- Thought to be an evolutionary property of humans
- Sun emits more green light, our eyes adapt to capture more green light
- Camera sensor has $2 x$ as many green sensors as blue or red

King of the See

- Mantis Shrimp are a larger breed of shrimp that live in tropical waters
- Known to have the most complex eyes of any creature studied on Earth
- Humans have 3 different cone receptors (SML)
- These guys have 12
- Can also detect UV and polarized light
- Does this mean shrimp see better than us?
- Cognitive ability of a shrimp is much less than humans, leading shrimp to have a hard time distinguishing between colors
- Lesson: to have good eyes, you need a good brain

Why are we still here? Just to suffer? Every day I'm angry that a shrimp can see more colors than me
2:15 AM • 17 Sep 20 - Twitter for iPhone

Metamers

- Different spectrums can be integrated over the SML activations to produce the same SML colors
- Yellow can be made from yellow wavelengths
- Yellow can also be made from equal parts red and green wavelengths
- Important for color reproduction!
- No need to capture the entire spectral distribution, just the end SML values are enough
- Led the way for digital color spaces
- Problem: trying to represent colors in print
- Digital colors (pixels) have full control of emission
- Physical colors (prints) only have control of absorption
- Changing the emission (lighting) will change the resulting image colors

- Physical Color

- Digital Color
- Color Manipulation

Color Models

- Things to consider when picking a color:
- Gamut
- The area of color that is covered
- Conversion
- Converting from digital to print
- Convenience
- Easy for users to pick the color they want
- Storage
- Low data overhead
- Additive color starts with black and add colors
- Ex: a black display emits no light, turning on RGB pixels adds a blending of emissions to create colors in regions
- Common: RGB

Mixture of Light
(Additive Primaries)

Mixture of Pigments (Subtractive Primaries)

- Subtractive color starts with white and remove colors
- Ex: a white paper reflects all light, printing on a paper removes reflectance of certain colors in printed areas
- Common: CMYK

Let's Shed Some Light Here

Types of Color Models

- RGB [Red Green Blue]
- Ubiquitous RGB displays
- CMYK [Cyan Magenta Yellow Key]
- Common for printing
- HSV [Hue Saturation Value]
- Most intuitive
- SML [Small Medium Large]
- Weighted average of cone response spectrums
- XYZ [3D color space]
- Absolute color space

Absolute Color Spaces

- An absolute color space will always present the same color given the same coordinates
- RGB is not an absolute color space
- XYZ is an absolute color space
- CIEE XY space drops Z (luminance)
- Idea: define RGB color space as 3 vertices on the CIEE XY color space

$$
\begin{aligned}
& R=0.65 x+0.31 y \\
& B=0.15 x+0.05 y \\
& G=0.31 x+0.57 y
\end{aligned}
$$

- Any color within the triangle can be produced with an RGB display
- Can share common RGB spaces for consistency:
- REC. 709
- DCI-P3
- REC. 200

Absolute Color Spaces

\$1999

Producing high-range RGB color displays aren't cheap.

MacAdam Ellipses

- Any color sampled from an ellipse is the same as the color in the center to the human eye
- Not a transitive property: two colors on the extreme will look different
- Chromaticity is a color absent of any luminance
- Radius of ellipse in a given direction measures the lack of chromaticity difference in changing a given color by a given amount to the human eye

Nonstandard Color Vision

- Morphological differences in eye can cause people \& animals to see different ranges of color
- 2 cones instead of 3
- Different response functions per cone
- Different cone sensitivity
- More or less cones
- Alternative chromaticity diagrams help visualize color gamut, useful for designing, e.g., widelyaccessible interfaces
- Important for color theory: pick colors that are universally (or as universally) recognizable as possible

Normal Vision Protanomaly Deuteranomaly Tritanomaly

Achromatopsia Protanopia Deuteranopia Tritanopia

Encoding Color Values

- RGB colors commonly encoded as 8-bits per channel
- 256 possible values
- If including alpha, add another 8 bits
- Displays can now handle $16 / 24 / 32$ bit channels
- Continue to use 8 -bits for backwards compatibility
- Hex format: \#1B1F8A
- 2 hex digits $=8$ bits
- Common in web development
- Uint8 format: $(27,31,138)$
- Range of 0-255
- Maps to displays easily
- Float format: (0.106, 0.082, 0.541)
- Range of 0.0-1.0
- Better precision with operation
- Requires conversion to Uint8 at the end

Compressing Colors

- $Y^{\prime} \mathrm{CbCr}$ color scheme common for modern digital video
- $\mathbf{Y}^{\prime}=$ luma: perceived luminance
- $\mathbf{C b}=$ blue-yellow deviation from gray
- $\mathbf{C b}=$ red-cyan deviation from gray
- Great compression properties!
- Y^{\prime} channel holds high frequency data
- Cb, Cr channels hold low frequency data

[Cb channel]

[Y^{\prime} channel]

Compressing Colors

Human vision much more sensitive to luminance than color!

- Physical Color

- Digital Color
- Color Manipulation

Color Conversion

- Convert color from one model (RGB) to another (CMYK)
- In a perfect world, want to match output spectrum
- Even matching perception of color would be terrific (metamers)
- In reality, information will be lost
- Depends on the gamut of the output device
- Lots of standards \& software
- ICC Profiles
- Adobe Color Management

[RGB]

[CMYK]

Color Conversion

What we see:

What animals with a larger color range than ours see:

- Difficulty converting between colors
- RGB -> RGBA
- Fill alpha value with 1.0
- RGBA -> RGB
- Pre-multiply alpha value
- Drop alpha value altogether
- Grey -> RGB
- Copy grey value to each channel
- Grey -> RGBA
- Convert Grey -> RGB then RGB -> RGBA
- RGB -> Grey
- Take the average of each channel
- Take a weighted average based on human perception
- RGBA -> Grey
- Convert RGBA -> RGB then RGB -> Grey

Brightness \& Contrast

- Consider a color mapping from the range [0.0, 1.0]:

$$
y=x
$$

- Brightness brings colors closer to white or black

$$
y=x+b
$$

- Contrast brings colors closer to the average grey color

$$
y=c *(x-0.5)+0.5
$$

- They can be combined as a 2 -for-1 deal
- Commonly found as a single effect in most colorgrading software:

$$
y=c *(x-0.5)+0.5+b
$$

- Values must be clamped back to range [0.0, 1.0]!

Saturation

- Saturation moves colors closer or farther from their 'max' value
- Compute the greyscale value of a color using the weighted greyscale average:

$$
x . g r e y=0.299 * x . r+0.587 * x . g+0.114 * x . b
$$

- Linearly interpolate the original color with the grey color:

$$
y=a * x+(1-a) * x . \text { grey }
$$

- If $a>1$ then the output image becomes oversaturated
- If $a<0$ then the output image becomes undersaturated

Gamma Correction

- When we look at an object, using two lights does not make it twice as bright [non-linear]
- When a camera captures an object, using two lights emits two times the amount of photos, and the sensor picks up twice as many photons, making the observation twice as bright [linear]
- Cameras have a tendency to map colors too brightly, while having a hard time capturing darkness
- Gamma correction modifies the signal by some γ :

$$
y=x^{-\gamma}
$$

- Then, when displaying the image, un-modifies the gamma:

$$
y=x^{\gamma}
$$

Why Bother With Gamma Correction?

- Luminance is discretized into 8-bits from [0, 255]
- Cameras pick up a lot of bright light
- Small changes in darkness will not be captured by the sensor
- Leads to 'dark bands'
- Idea: if a majority of the data is on the brighter end, let's encode luminance as a logarithmic curve rather than a linear curve
- Small changes in darkness can now be captured
- Apply inverse of gamma correction for displays
- Display emits light, eyes will autocorrect for it in a non-linear fashion the same as with real life
- Main idea: cameras should save data nonlinearly the same way eyes see the data

How do we use color in computer graphics?

Graphic Design

- Colors convey different emotions
- Pick the right set of colors to convey the right emotions
- Find relationships between colors
- Known as color theory

	Purple Royalty Luxury Luxury Spirituality			White $\substack{\text { Clien } \\ \text { Simplety } \\ \text { smocence }}$ Honest

Color Theory

- Color theory combines several physical and cognitive abilities of humans to produce 'appealing' colors
- Human optical ability
- Psychological responses
- Culture
- Goal is to make designs with physically recognizable colors that also invoke some targeted emotional response
- Ex: Food colors invoke hunger

Me Picking Colors For Graphics Design (2023) Colorized.

