Color
• Physical Color

• Digital Color

• Color Manipulation
What Is Color

• Color can also be thought of an object’s **visual response** to light
 • A green plant without light will be black
 • A green plant with light will absorb some energy for photosynthesis, and then emit some green light
 • This emission is its visual response

• Color gives us a language for communicating similar energies that our eyes pick up
 • **Example:** picking colors for a house

A Lowe’s, Probably.
What Is Light

- Light is electromagnetic radiation
 - Generated as an oscillation in the electromagnetic field
 - Is light a wave, or a particle?
 - Yes.

- The frequency of oscillation determines the color of light
 - Most light is not visible!
 - Frequencies visible are a part of the visible spectrum

- White is the combination of all visible frequencies
- Black is the absence of all visible frequencies

- Color is a range of frequencies
 - Scientifically referred to as a spectrum
Light Spectrums

- **Emission spectrum** describes range of light frequencies emitted from a light source
 - Combination of frequencies gives the overall light color
 - Integrating over the spectrum gives the energy output
 - Higher energy output = more energy required to power
 - **Example:** light bulb
 - Measured as intensity per frequency

- **Absorption spectrum** describes range of light frequencies absorbed from a light source
 - Frequencies not absorbed are reflected back
 - Measured as percent absorbed per frequency
Emission Spectrum Examples

- **Daylight**: Sun-like
- **Incandescent**: Energy efficient
- **Fluorescent**
- **Halogen**
- **Cool White LED**
- **Warm White LED**
Absorption Spectrum Examples

plants are green because they do not absorb green light
Absorbed Light

- Converted to heat
 - Wearing dark clothes makes you warmer

- Converted to fuel biological ecosystem
 - Photosynthesis requires energy to move around electrons

- Converted to electrical energy
 - Solar panels are black to absorb as much visible light

(This thing absorbs everything)
(he absorbed my pizza rolls once)
So What Is Color

- Color is emission multiplied by the reflectance
 - Reflectance is whatever percentage is not absorbed

- The sun’s emission is near-equal parts of all visible light
 - Reason why everything is its ‘true’ color under sunlight

Emission Spectrum $E(v)$

Reflectance Spectrum $R(v)$

Result Reflected $ER(v)$
Color By Emission

- We can change the color of objects by changing the emitted light
 - Plants under red light will appear red, etc.

- Red and blue plants appear much darker
 - Most light absorbed for photosynthesis

- Can also use non-visible light (UV) to show colors not originally there
‘Eye’ See What You Mean

- Eyes are biological cameras
 - Light passes through the pupil [black dot in the eye]
 - Iris controls how much light enters eye [colored ring around pupil]
 - Eyes are sensitive to too much light
 - Iris protects the eyes
 - Lens behind the eye converges light rays to back of the eye
 - Ciliary muscles around the lens allow the lens to be bent to change focus on nearby/far objects

- 130+ million retina cells at the back of the eye
 - Cells pick up light and convert it to electrical signal
 - Electric signal passes through optic nerve to reach the brain

Image appears backwards!
Don’t worry, brain flips it right-side up
The Biological Camera

- **Pupil** is the **camera opening**
 - Allows light through

- **Iris** is the **aperture ring**
 - Controls aperture

- **Lens** is the...well, **lens**
 - Can change focus

- **Retina** is the **sensor**
 - Converts light into electrical signal

- **Brain** is the **CPU**
 - Performs additional compute to correct raw image signal
Rods & Cones

- Cones are primary receptors near fovea used under high-light viewing conditions
 - Approx. 6-7 million cones in the human eye
 - Capture color
- Rods are primary receptors far from fovea used under low-light viewing conditions
 - Approx. 120 million rods in human eye
 - Capture intensity

Best vision at center of cones!

Human blind spot
A Little Trick

- Close left eye
- Stare at the circle
- Move closer to the screen
- Move farther from the screen
- Continue until the plus sign disappears

- Close right eye
- Stare at the plus
- Move closer to the screen
- Move farther from the screen
- Continue until the plus sign disappears

Works best on a laptop/device close to you!**

**https://www.webmd.com/eye-health/what-to-know-blind-spots-scotoma
Another Little Trick

• Grab someone and try it at home!
 • Have them hold up colored markers in peripheral [side] vision, bringing closer to center
 • Once you see a marker, guess the color
 • As the marker comes closer to center, did you get the color right?
Spectral Response of Cones

- Long, Medium, and Small cones pick up Long, Medium, and Small wavelengths respectively.
- Each cone picks up a range of colors given by their response functions.
 - Not much different than absorption spectrum.
- Each cone integrates the emission & response to produce a single signal to transmit to the brain.
 \[
 S = \int_{\lambda} \Phi(\lambda) S(\lambda) d\lambda \\
 M = \int_{\lambda} \Phi(\lambda) M(\lambda) d\lambda \\
 L = \int_{\lambda} \Phi(\lambda) L(\lambda) d\lambda
 \]
- Uneven distribution of cone types in eye.
 - ~64% L cones, ~32% M cones ~4% S cones.
The Biological Camera [Again]

- Eyes perceive green color better than any other color
 - Thought to be an evolutionary property of humans
 - Sun emits more green light, our eyes adapt to capture more green light

- Camera sensor has 2x as many green sensors as blue or red
• **Mantis Shrimp** are a larger breed of shrimp that live in tropical waters
 • Known to have the most complex eyes of any creature studied on Earth

• Humans have 3 different cone receptors (SML)
 • These guys have 12
 • Can also detect UV and polarized light

• Does this mean shrimp see better than us?
 • Cognitive ability of a shrimp is much less than humans, leading shrimp to have a hard time distinguishing between colors

• **Lesson:** to have good eyes, you need a good brain
Metamers

• Different spectrums can be integrated over the SML activations to produce the same SML colors
 • Yellow can be made from yellow wavelengths
 • Yellow can also be made from equal parts red and green wavelengths

• Important for color reproduction!
 • No need to capture the entire spectral distribution, just the end SML values are enough
 • Led the way for digital color spaces

• Problem: trying to represent colors in print
 • Digital colors (pixels) have full control of emission
 • Physical colors (prints) only have control of absorption
 • Changing the emission (lighting) will change the resulting image colors
• Physical Color

• Digital Color

• Color Manipulation
Color Models

- Things to consider when picking a color:
 - **Gamut**
 - The area of color that is covered
 - **Conversion**
 - Converting from digital to print
 - **Convenience**
 - Easy for users to pick the color they want
 - **Storage**
 - Low data overhead

- **Additive color** starts with black and add colors
 - **Ex:** a black display emits no light, turning on RGB pixels adds a blending of emissions to create colors in regions
 - **Common:** RGB

- **Subtractive color** starts with white and remove colors
 - **Ex:** a white paper reflects all light, printing on a paper removes reflectance of certain colors in printed areas
 - **Common:** CMYK
Let’s Shed Some Light Here
Types of Color Models

- **RGB [Red Green Blue]**
 - Ubiquitous RGB displays

- **CMYK [Cyan Magenta Yellow Key]**
 - Common for printing

- **HSV [Hue Saturation Value]**
 - Most intuitive

- **SML [Small Medium Large]**
 - Weighted average of cone response spectrums

- **XYZ [3D color space]**
 - Absolute color space
Absolute Color Spaces

- An **absolute color space** will always present the same color given the same coordinates
 - RGB is not an absolute color space
 - XYZ is an absolute color space
 - CIEE XY space drops Z (luminance)
- **Idea:** define RGB color space as 3 vertices on the CIEE XY color space
 \[
 R = 0.65x + 0.31y \\
 B = 0.15x + 0.05y \\
 G = 0.31x + 0.57y
 \]
- Any color within the triangle can be produced with an RGB display
- Can share common RGB spaces for consistency:
 - REC.709
 - DCI-P3
 - REC.2020
Absolute Color Spaces

Producing high-range RGB color displays aren’t cheap.
MacAdam Ellipses

- Any color sampled from an ellipse is the same as the color in the center to the human eye
 - Not a transitive property: two colors on the extreme will look different

- **Chromaticity** is a color absent of any luminance
 - Radius of ellipse in a given direction measures the lack of chromaticity difference in changing a given color by a given amount to the human eye
Nonstandard Color Vision

- Morphological differences in eye can cause people & animals to see different ranges of color
 - 2 cones instead of 3
 - Different response functions per cone
 - Different cone sensitivity
 - More or less cones

- Alternative chromaticity diagrams help visualize color gamut, useful for designing, e.g., widely-accessible interfaces

- **Important for color theory:** pick colors that are universally (or as universally) recognizable as possible
Encoding Color Values

- RGB colors commonly encoded as 8-bits per channel
 - 256 possible values
 - If including alpha, add another 8 bits
 - Displays can now handle 16/24/32 bit channels
 - Continue to use 8-bits for backwards compatibility

- Hex format: #1B1F8A
 - 2 hex digits = 8 bits
 - Common in web development

- Uint8 format: (27, 31, 138)
 - Range of 0 - 255
 - Maps to displays easily

- Float format: (0.106, 0.082, 0.541)
 - Range of 0.0 – 1.0
 - Better precision with operation
 - Requires conversion to Uint8 at the end
Compressing Colors

- **Y’CbCr** color scheme common for modern digital video
 - **Y’** = luma: perceived luminance
 - **Cb** = blue-yellow deviation from gray
 - **Cr** = red-cyan deviation from gray

- Great compression properties!
 - **Y’** channel holds high frequency data
 - **Cb, Cr** channels hold low frequency data
Compressing Colors

Human vision much more sensitive to luminance than color!

[original] [full res Y'] [low res CbCr] [composite]

Downsampled by a factor of 20 in each dim.
400x less samples
• Physical Color

• Digital Color

• Color Manipulation
Color Conversion

• Convert color from one model (RGB) to another (CMYK)
 • In a perfect world, want to match output spectrum
 • Even matching perception of color would be terrific (metamers)

• In reality, information will be lost
 • Depends on the gamut of the output device

• Lots of standards & software
 • ICC Profiles
 • Adobe Color Management
Color Conversion

- Difficulty converting between colors
 - RGB -> RGBA
 - Fill alpha value with 1.0
 - RGBA -> RGB
 - Pre-multiply alpha value
 - Drop alpha value altogether
- Grey -> RGB
 - Copy grey value to each channel
- Grey -> RGBA
 - Convert Grey -> RGB then RGB -> RGBA
- RGB -> Grey
 - Take the average of each channel
 - Take a weighted average based on human perception
- RGBA -> Grey
 - Convert RGBA -> RGB then RGB -> Grey
Brightness & Contrast

• Consider a color mapping from the range [0.0, 1.0]:
 \[y = x \]

• Brightness brings colors closer to white or black
 \[y = x + b \]

• Contrast brings colors closer to the average grey color
 \[y = c \times (x - 0.5) + 0.5 \]

• They can be combined as a 2-for-1 deal
 • Commonly found as a single effect in most color-grading software:
 \[y = c \times (x - 0.5) + 0.5 + b \]

• Values must be clamped back to range [0.0, 1.0]!
Saturation

- Saturation moves colors closer or farther from their ‘max’ value
- Compute the greyscale value of a color using the weighted greyscale average:
 \[x_{grey} = 0.299 \times r + 0.587 \times g + 0.114 \times b \]
- Linearly interpolate the original color with the grey color:
 \[y = a \times x + (1 - a) \times x_{grey} \]
- If \(a > 1 \) then the output image becomes oversaturated
- If \(a < 0 \) then the output image becomes undersaturated

\[2 \times \text{brown} - 1 \times \text{grey} = \text{brown} \]

artifacts of jpeg compression!
Gamma Correction

- When we look at an object, using two lights does not make it twice as bright [non-linear]
 - When a camera captures an object, using two lights emits two times the amount of photos, and the sensor picks up twice as many photons, making the observation twice as bright [linear]

- Cameras have a tendency to map colors too brightly, while having a hard time capturing darkness
 - Gamma correction modifies the signal by some γ:
 \[y = x^{-\gamma} \]
 - Then, when displaying the image, un-modifies the gamma:
 \[y = x^{\gamma} \]
Why Bother With Gamma Correction?

- Luminance is discretized into 8-bits from [0, 255]
 - Cameras pick up a lot of bright light
 - Small changes in darkness will not be captured by the sensor
 - Leads to ‘dark bands’
 - Idea: if a majority of the data is on the brighter end, let’s encode luminance as a logarithmic curve rather than a linear curve
 - Small changes in darkness can now be captured
 - Apply inverse of gamma correction for displays
 - Display emits light, eyes will autocorrect for it in a non-linear fashion the same as with real life
 - Main idea: cameras should save data non-linearly the same way eyes see the data

<table>
<thead>
<tr>
<th>Linear TRC</th>
<th>sRGB TRC</th>
<th>LAB L* TRC</th>
<th>Rec709 TRC</th>
<th>Gamma 1.8 TRC</th>
<th>Gamma 2.2TRC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
How do we use color in computer graphics?
Graphic Design

• Colors convey different emotions
 • Pick the right set of colors to convey the right emotions
• Find relationships between colors
 • Known as color theory
Color Theory

- Color theory combines several physical and cognitive abilities of humans to produce ‘appealing’ colors
 - Human optical ability
 - Psychological responses
 - Culture

- Goal is to make designs with physically recognizable colors that also invoke some targeted emotional response
 - Ex: Food colors invoke hunger