Midterm Review

Midterm Overview

- 80 minutes, during class this Wednesday
- Basic mathematical questions, no intense calculation
- Know your definitions and be able to apply them!
- No pseudocode
- Review slides are a good hint as to what might be on the exam :)
- Cheat sheet: one 3×3 inch note (about the size of a post it note) front and back
- Please bring a blue/black pen to write your solutions

3D Inverse Rotations

If you need to review any slides more in depth, look here for which lecture it came from

- Transformations Review
- Rasterization Review
- Geometry Review
- Spatial Data Structures Review

Transformations

- Homogeneous coordinates
- 3D Translation
- 3D Scale
- 3D Rotation
- Axis-Aligned rotation
- Axis-Angle rotation
- Rotations from orthonormal bases

3D Transforms in Homogeneous Coordinate

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]} \\
& {[\text { point in 3D] }}
\end{aligned}
$$

Matrix representations of 3D linear transformations just get an additional identity row/column:
$\left[\begin{array}{cccc}\cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{llll}1 & 0 & s & 0 \\ 0 & 1 & t & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{llll}a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{cccc}1 & 0 & 0 & u \\ 0 & 1 & 0 & v \\ 0 & 0 & 1 & w \\ 0 & 0 & 0 & 1\end{array}\right]$
[rotate around y by θ]
[shear by z in (s, t) direction] [scale by a, b, c]
[translate by (u, v, w)]

Translation in Homogeneous Coordinates

- A 2D translation is similar to a 3D shear
- Moving a slice up/down the shear moves the shape
- Recall shear is written as:

$$
f_{\mathbf{u}, \mathbf{v}}(\mathbf{x})=\mathbf{x}+\langle\mathbf{v}, \mathbf{x}\rangle \mathbf{u}
$$

$$
f_{\mathbf{u}, \mathbf{v}}(\mathbf{x})=\left(I+\mathbf{u v}^{\top}\right) \mathbf{x}
$$

- In our case, $v=(0,0,1)$, so**

$$
\left[\begin{array}{ccc}
1 & 0 & u_{1} \\
0 & 1 & u_{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
c p_{1} \\
c p_{2} \\
c
\end{array}\right]=\left[\begin{array}{c}
c\left(p_{1}+u_{1}\right) \\
c\left(p_{2}+u_{2}\right) \\
c
\end{array}\right] \stackrel{1 / c}{\Longrightarrow}\left[\begin{array}{c}
p_{1}+u_{1} \\
p_{2}+u_{2}
\end{array}\right]
$$

Non-Uniform Scaling

- To scale a vector u by a non-uniform amount (a, b, c) :

$$
\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
a u_{1} \\
b u_{2} \\
c u_{3}
\end{array}\right]
$$

- The above works only if scaling is axis-aligned. What if it isn't?
- Idea:
- Rotate to a new axis R
- Perform axis-aligned scaling D
- Rotate back to original axis R^{T}

$$
A:=R^{T} D R
$$

- Resulting transform A is a symmetric matrix

3D Inverse Rotations

Rotations From Orthonormal Bases

Other Ways to Rotate - Euler Angles and Quaternions

- Euler Angles: Rotate by combining rotation matrices for each major axis
- $R x=$ rotation about x axis, $R y=$ rotation about y axis, $R z=$ rotation about z axis
- $\mathrm{RxRyRz}=$ final rotation matrix
- Fairly intuitive, but prone to gimbal lock!
- Interpolating between Euler angles can create odd looking path, non-uniform rotation speed, etc.

- Quaternions: 4 coordinates, 1 real and 3 complex
- Defined by $\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=\mathrm{ijk}=-1$
o Not prone to gimbal lock! But not very intuitive to think about :(
- Can interpolate between them correctly with SLERP

- Transformations Review
- Rasterization Review
- Geometry Review
- Spatial Data Structures Review

Rasterization

- The "simpler" graphics pipeline
- Scene graph
- Clipping
- Rasterization
- Sampling
- Point-in-triangle tests
- Barycentric coordinates
- Textures
- Depth and Alpha blending

The "Simpler" Graphics Pipeline

Scene Graph

- Suppose we want to build a skeleton out of cubes
- Idea: transform cubes in world space
- Store transform of each cube
- Problem: If we rotate the left upper leg, the lower left leg won't track with it
- Better Idea: store a hierarchy of transforms
- Known as a scene graph
- Each edge (+root) stores a linear transformation
- Composition of transformations gets applied to nodes
- Keep transformations on a stack to reduce redundant multiplication
- Lower left leg transform: $A_{2} A_{1} A_{0}$

Clipping

- Clipping eliminates triangles not visible to the camera (not in view frustum)
- Don't waste time rasterizing primitives you can't see!
- Discarding individual fragments is expensive
- "Fine granularity"
- Makes more sense to toss out whole primitives
- "Coarse granularity"
- What if a primitive is partially clipped?
- Partially enclosed primitives are triangulated into non-overlapping smaller triangles that fit in the frustrum
- If part of a triangle is outside the frustrum, it means at least one of its vertices are outside the frustrum
- Idea: check which side of halfspaces the vertices are at

$\square=$ in frustrum

Rasterization

- Triangle
- Bounding box
- Incremental triangle traversal
- Hierarchical coverage
- For each Primitive (Triangle):
- For each Pixel:
- If Pixel in Primitive:
- Pixel color = Interpolated triangle color

Point-In-Triangle Test

- Measurements must all either be positive or negative for point to be in triangle

$$
\begin{gathered}
(\overrightarrow{a c} \times \overrightarrow{a b}) \cdot(\overrightarrow{a c} \times \overrightarrow{a q})>0 \text { \&\& } \\
(\overrightarrow{c b} \times \overrightarrow{c a}) \cdot(\overrightarrow{c b} \times \overrightarrow{c q})>0 \text { \&\& } \\
(\overrightarrow{b a} \times \overrightarrow{b c}) \cdot(\overrightarrow{b a} \times \overrightarrow{b q})>0 \\
\text { OR } \\
(\overrightarrow{a b} \times \overrightarrow{a c}) \cdot(\overrightarrow{a c} \times \overrightarrow{a q})<0 \text { \&\& } \\
(\overrightarrow{c a} \times \overrightarrow{c b}) \cdot(\overrightarrow{c b} \times \overrightarrow{c q})<0 \& \& \\
(\overrightarrow{b c} \times \overrightarrow{b a}) \cdot(\overrightarrow{b a} \times \overrightarrow{b q})<0
\end{gathered}
$$

- Orientation no longer matters
- Just be consistent!

Barycentric Coordinates

- Inversely proportional to the signed distance between the target point and a point within the triangle
- Can be computed as:

$$
\phi_{i}(x)=d_{i}(x) / h_{i}
$$

- How would you compute h_{i} ? $d_{i}(x)$?

Barycentric Coordinates [Another Way]

- Directly proportional to the signed area created by the triangle composed of the other two target points and a point within the triangle
- Can be computed as:

$$
\phi_{i}(x)=\frac{\operatorname{area}\left(x, x_{j}, x_{k}\right)}{\operatorname{area}\left(x_{i}, x_{j}, x_{k}\right)}
$$

- Note that signed distance / area implies barycentric coordinates can be negative, but they will still sum to 1 ! (if on the same plane, otherwise we project point to the plane containing our triangle)

Coverage via Samples

- Sample : Discrete measurement of a signal
- Multisampling vs Supersampling
- Approximate the coverage of the area of a pixel by taking n samples
- Per sample coverage \& depth test + texture lookup + alpha blending

Nearest Neighbor Sampling

- Idea: Grab texel nearest to requested location in texture
- Requires:

$$
\begin{aligned}
& x^{\prime} \leftarrow \operatorname{round}(x-0.5), \quad y^{\prime} \leftarrow \operatorname{round}(y)-0.5 \\
& t \leftarrow \operatorname{tex} . \operatorname{lookup}\left(x^{\prime}, y^{\prime}\right)
\end{aligned}
$$

Bilinear Interpolation Sampling

- Idea: Grab nearest 4 texels and blend them together based on their inverse distance from the requested location
- Blend two sets of pixels along one axis, then blend the remaining pixels
- Requires:
- 4 memory lookup
- 3 linear interpolations

$$
x^{\prime} \leftarrow \text { floor }(x-0.5), \quad y^{\prime} \leftarrow f \operatorname{loor}(y-0.5)
$$

$$
\Delta x \leftarrow(x-0.5)-x^{\prime}
$$

$$
\Delta y \leftarrow(y-0.5)-y^{\prime}
$$

$t_{(x, y)} \leftarrow$ tex. lookup $\left(x^{\prime}, y^{\prime}\right)$
$t_{(x+1, y)} \leftarrow$ tex.lookup $\left(x^{\prime}+1, y^{\prime}\right)$
$t_{(x, y+1)} \leftarrow$ tex. lookup $\left(x^{\prime}, y^{\prime}+1\right)$
$t_{(x+1, y+1)} \leftarrow$ tex. lookup $\left(x^{\prime},+1 y^{\prime}+1\right)$
$t_{x} \leftarrow(1-\Delta x) * t_{(x, y)}+\Delta x * t_{(x+1, y)}$
$t_{y} \leftarrow(1-\Delta x) * t_{(x, y+1)}+\Delta x * t_{(x+1, y+1)}$
$t \leftarrow(1-\Delta y) * t_{x}+\Delta y * t_{y}$

Trilinear Interpolation Sampling

- Idea: Perform bilinear interpolation on two layers of the mip-map that represents proper minification/magnification, blending the results together
- Requires:
- 8 memory lookup
- 7 linear interpolations

$$
\begin{aligned}
& L_{x}{ }^{2} \leftarrow \frac{d u^{2}}{d x}+\frac{d v^{2}}{d x} \\
& L_{y}{ }^{2} \leftarrow \frac{d u^{2}}{d y}+\frac{d v^{2}}{d y}
\end{aligned}
$$

$$
L \leftarrow \sqrt{\max \left(L_{x}{ }^{2}, L_{y}{ }^{2}\right)}
$$

$$
d \leftarrow \log _{2} L
$$

$$
d^{\prime} \leftarrow \text { floor }(d)
$$

$$
\Delta d \leftarrow d-d^{\prime}
$$

$$
t_{d} \leftarrow \text { tex }\left[d^{\prime}\right] . \operatorname{bilinear}(x, y)
$$

$$
t_{d+1} \leftarrow \text { tex }\left[d^{\prime}+1\right] . \text { bilinear }(x, y)
$$

$$
t \leftarrow(1-\Delta d) * t_{d}+\Delta d * t_{d+1}
$$

Mip-Map [L. williams '83]

- Storing an RGB Mip-Map can be fit into an image twice the width and twice the height of the original image
- See diagram for proof:)
- Does not work as nicely for RGBA!
- Issue: bad spatial locality
- Requesting a texel requires lookup in 3 very different regions of an image

Depth Buffer (Z-buffer)

Depth Buffer (Z-buffer)

Depth Buffer (Z-buffer)

Depth Buffer (Z-buffer)

											-		p	sed	ep	te	
\bigcirc	O	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O	\bigcirc	O	\bigcirc	O	\bigcirc						
\bigcirc	\bigcirc	\bigcirc	-	\bullet	\bullet	\bullet	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bullet	\bullet	\bullet	-	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bullet	\bullet	-	\bullet	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bullet	\bullet	\bullet	-	\bigcirc	\bigcirc
\bigcirc	\bigcirc	\bullet	-	\bullet	\bullet	\bullet	\bullet	O	O	O	\bullet	\bullet	\bullet	\bullet	-	-	\bigcirc
\bigcirc	\bigcirc	-	-	-	-	-	O	O	O	O	-	\bullet	\bullet	\bullet	\bullet	-	\bigcirc
\bigcirc	\bullet	-	O	-	\bullet	\bullet	\bullet	\bullet	O	\bullet	-	\bullet	\bullet	\bullet	-	\bullet	\bullet
\bigcirc	-	-	-	\bullet	-	,	-	-	\bigcirc	\bullet	\bullet	\bigcirc	\bullet	\bullet	\bullet	\bullet	-
\bigcirc																	
\bigcirc																	
[color buffer]									[depth buffer]								
near																	

Alpha Values

- Common image format: RGBA
- Alpha channel specifies 'opacity'/transparency of object
- Most common encoding is 8 -bits per channel

$$
\alpha=3 / 4
$$

$$
\alpha=1 / 2
$$

$$
\alpha=1 / 4
$$

[koala over nyc] [nyc over...koala?]

$$
\alpha=0
$$

fully transparent
where is the koala...

- Transformations Review
- Rasterization Review
- Geometry Review
- Spatial Data Structures Review

Geometry Types

- What is implicit geometry
- Algebraic surfaces
- Constructive solid geometry
- Signed distance fields
- What is explicit geometry
- Point clouds
- Triangle meshes
- Be able to compare the pros and cons of implicit and explicit geometry
- Manifold mesh requirements

Implicit Geometry

- Points aren't known directly, but satisfy some relationship
- Example: unit sphere is all points such that $x^{2}+y^{2}+z^{2}=1$
- More generally, in the form $f(x, y, z)=0$
- Finding example points is hard
- Requires solving equation
- Checking if points are inside/outside is easy
- Just evaluate the function with a given point

Signed Distance Fields

- Signed distance fields are implicit functions $f(x, y, z)$ that tell us the sign (inside/outside) and the distance away from the boundary
- Gradient $\nabla f(x, y, z)$ makes finding the boundary easier
- SDFs make it easy to check where and how far a point is from a surface

Algebraic Surfaces [Implicit]

- Simple way to think of it: a surface built with algebra [math]
- Generally thought of as a surface where points are some radius r away from another point/line/surface
- Easy to generate smooth/symmetric surfaces
- Difficult to generate impurities/deformations

$$
\begin{array}{r}
\left.2+\frac{9 y^{2}}{4}+z^{2}-1\right)^{3}= \\
x^{2} z^{3}+\frac{9 y^{2} z^{3}}{80}
\end{array}
$$

Constructive Solid Geometry [Implicit]

- Build more complicated shapes via Boolean operations
- Basic operations:

- Can be used to form complex shapes!

Level Sets [Imolicit]

- Store a grid of values approximating function

-.55	-.45	-.35	-.30	-.25
-.30	-.25	-.20	-.10	. .10

- Surface is found where interp olated values equal zero

The aerodynamics of a cow:

- How do find this? Bilinear interpolation!
- [+] Provides much more explicit control over shape
- [-] Runs into problems of aliasing!

Explicit Geometry

- All points are given directly
- The polygons we were given during rasterization is an example of explicit geometry
- More generally:

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} ;(u, v) \mapsto(x, y, z)
$$

- Given any (u, v), we can find a point on the surface
- Can limit (u, v) to some range
- Example: triangle with barycentric coordinates
- Finding example points is easy
- We are given them for free
- Checking if points are inside/outside is hard
- We are given the output values and need to find input values that satisfy the geometry

Point Cloud [Explicit]

- Easiest representation: list of points (x, y, z)
- Often augmented with normal
- Easily represent any kind of geometry
- Easy to draw dense cloud (>>1 point/pixel)
- Easy for simulation
- Large lookup time
- Large memory overhead
- Hard to interpolate undersampled regions
- Hard to do processing / simulation /
- Result is just as good as the scan

Triangle Mesh [Explicit]

- Large memory overhead
- Store vertices as triples of coordinates (x, y, z)
- Store triangles as triples of indices (i,j,k)
- Easy interpolation with good approximation
- Use barycentric interpolation to define points inside triangles

- Polygonal Mesh: shapes do not need to be triangles
- Ex: quads

$$
p=\phi_{i} \mathbf{p}_{i}+\phi_{j} \mathbf{p}_{j}+\phi_{k} \mathbf{p}_{k}
$$

Marching Cubes

- Marching cubes is an algorithm for converting implicit geometry to explicit
- Adds both positional (vertices) and connectivitv (edges)
- Idea: march a cube though the scene, checking if each of the vertices in the cube lie inside or outside the implicit function $f(x, y, z)$
- 8 vertices, 8 checks
- Can encode as an 8 -bit number
- Generate geometry that makes sure inside vertices are enclosed by the geometry, and outside geometry are kept out
- Issue: how big of a cube to use
- A smaller cube leads to finer details
- A smaller cube also requires more samples

Marching Cubes Linear Interpolation

- Issue: lookup table only tells us on what edges to place vertices and how to connect them
- Does not tell us the specific location of vertices
- When placing vertices, can linearly interpolate them on the edges depending on the evaluated values on the cube vertices
- Example:
- $f\left(x_{0}, y_{0}, z_{0}\right)=-0.75$
- $f\left(x_{3}, y_{3}, z_{3}\right)=+0.25$
- Vertex is placed $1 / 4$ distance away from corner $3,3 / 4$ distance from corner 0
- What if we want to interpolate across a face?

- Bilinear Interpolation!
- Between texture sampling, generating mipmaps, level sets, marching cubes etc... Bilinear interpolation is very useful!

Manifold Properties

- For polygonal surfaces, we will check for "fins" and "fans"
- Every edge is contained in only two polygons (no "fins")
- The extra $3^{\text {rd }}$ or $4^{\text {th }}$ or $5^{\text {th }}$ or so forth polygon is the fin of a fish
- The polygons containing each vertex make a single "fan"
- We should be able to loop around the faces around a vertex in a clear way

Halfedge Mesh

- What are the components of a halfedge mesh
- How to traverse around a vertex? A face? An edge?
- Why can we not represent a non-manifold mesh using halfedge geometry?
- What makes a good mesh?

Halfedge Data Structure

- Let's store a little, but not a lot, about our neighbors:
- Halfedge data structure added to our geometry
- Each edge gets 2 halfedges
- Each halfedge "glues" an edge to a face
- Pros:
- [+] No duplicate coordinates
- [+] Finding neighbors is $\mathrm{O}(1)$
- [+] Easy to traverse geometry
- [+] Easy to change mesh connectivity
- [+] Easy to add/remove mesh elements
- [+] Easy to keep geometry manifold
- Cons:
- [-] Does not support nonmanifold geometry

Halfedge Data Structure

- Makes mesh traversal easy
- Use "twin" and "next" pointers to move around the mesh
- Use "vertex", "edge", and "face" pointers to grab element

```
struct Halfedge
{
    Halfedge* twin;
    Halfedge* next;
    Vertex* vertex;
    Edge* edge;
    Face* face;
};
```

Example: visit all vertices in a face

```
Halfedge* h = f->halfedge;
do {
    h = h->next;
    // do something w/ h->vertex
}
while( h != f->halfedge );
```


Example: visit all neighbors of a vertex

```
```

Halfedge* h = v->halfedge;

```
```

Halfedge* h = v->halfedge;
do {
do {
h = h->twin->next;
h = h->twin->next;
}
}
while(h != v->halfedge);

```
```

while(h != v->halfedge);

```
```


Note: only makes sense if mesh is manifold!

Halfedge Data Structure

- Halfedge meshes are always manifold!
- Halfedge data structures have the following constraints:

```
h->twin->twin == h // my twin's twin is me
h->twin != h // I am not my own twin
h2->next = h //every h's is someone's "next"
```

- Keep following next and you'll traverse a face
- Keep following twin and you'll traverse an edge
- Keep following next->twin and you'll traverse a vertex
- Q : Why, therefore, is it impossible to encode the red figures?
- First shape violates first 2 conditions
- Second shape violates $3^{\text {rd }}$ condition

A Good Mesh Has...

- Good approximation of original shape
- Keep only elements that contribute information about shape
- More elements where curvature is high
- Regular vertex degree
- Degree 6 for triangle mesh, 4 for quad mesh
- Better polygon shape
- More regular computation
- Smoother subdivision

[okay]

[bad]

A Good Mesh Has...

- Good triangle shape
- All angles close to 60 degrees
- More sophisticated condition: Delaunay
- For every triangle, the unique circumcircle (circle passing through all vertices of the triangle) does not encase any other vertices
- Many nice properties:
- Maximizes minimum angle
- Smoothest interpolation
- Tradeoff: sometimes a mesh can be approximated best with long \& skinny triangles
- Doesn't make the mesh Delaunay anymore
- Example: cylinder

[good]

[bad]

Halfedge Mesh Operations

- Local Operations
- EdgeBevel
- EdgeCollapse
- EraseVertex
- FaceBevel
- EdgeFlit
- EdgeVertexSplit
- VertexBevel
- EraseEdge
- FaceCollapse
- Global Operations
- Loop Subdivision
- Isotropic Remeshing
- Simplification

Local Operations

Loop Subdivision Using Local Ops

Step 1:

Split all edges in any order

Step 2:
Flip new edges until they touch two new vertices

Isotropic Remeshing

Step 1:

Step 3:

Step 2:

> Step 4:

Simplification Algorithm Basics

- Greedy Algorithm:
- Assign each edge a cost
- Collapse edge with least cost
- Repeat until target number of elements is reached

- Particularly effective cost function: quadric error metric**

- Transformations Review
- Rasterization Review
- Geometry Review
- Spatial Data Structures Review

Spatial Data Structures

- Primitive-partitioning acceleration structure:
- Partitions node's primitives into disjoint sets (but sets may overlap in space)
- Bounding Volume Hierarchy
- How to construct a BVH
- How to traverse a BVH
- Axis-aligned vs non-axis aligned BVHs
- Space-partitioning acceleration structures:
- Partitions space into disjoint regions (but primitives may be contained in multiple regions)
- K-D Trees
- Uniform Grids
- Quad/OctTreees

BVH Construction

For axis $\mathbf{x , y , z : ~}$

Initialize buckets
For each primitive p in node:
$B=$ compute_bucket(p.centroid)
B.bbox.enclose(p.bbox)
B.prim_count++

For each of $|B|-1$ possible partitions Evaluate cost (SAH), keep track of lowest cost partition
Recurse on lowest cost partition found (or make node leaf)

BVH Example

Bounding boxes will sometimes intersect!

Axis-Aligned BVH

- Are non-axis-aligned BVHs actually faster?
- Yes, and no.

$$
C=C_{t r a v}+\frac{S_{A}}{S_{C}} N_{A} C_{t r i}+\frac{S_{B}}{S_{C}} N_{B} C_{t r i}
$$

- Surface area ratio $\frac{S_{A}}{S_{C}}$ decreases with better-fitting bboxes
- Bounding box intersection cost $C_{\text {trav }}$ increases with more compute required to check unaligned bbox
- How to check for intersection with non-axis-aligned bbox?
- Bbox now has an extra transform matrix T taking it from its local space to its parent space
- Apply the inverse transform to the ray and compute axis-aligned intersections
- Larger memory overhead, now need to store the transform with each node

- Recursively partition space via axis-aligned partitioning planes
- Interior nodes correspond to spatial splits
- Node traversal proceeds in front-to-back order
- Unlike BVH, can terminate search after first hit is found
- Still $O(\log (N))$ performance

Uniform Grid

- Partition space into equal sized volumes (volumeelements or "voxels")
- Each grid cell contains primitives that overlap voxel. (very cheap to construct acceleration structure)
- Walk ray through volume in order
- Very efficient implementation possible (think: 3D line rasterization)
- Only consider intersection with primitives in voxels the ray intersects
- What is a good number of voxels?
- Should be proportional to total number of primitives N
- Number of cells traversed is proportional to $O(\sqrt[3]{N})$
- A line going through a cube is a cubed root
- Still not as good as $O(\log (N))$

Quad-Tree/Octree

- Like uniform grid, easy to build
- Has greater ability to adapt to location of scene geometry than uniform grid
- Still not as good adaptability as K-D tree
- Quad-tree: nodes have 4 children
- Partitions 2D space
- Octree: nodes have 8 children
- Partitions 3D space

