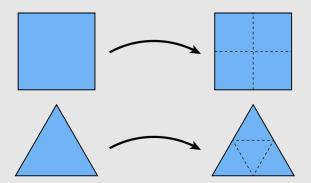
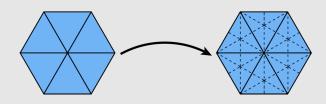
More Digital Geometric Processing

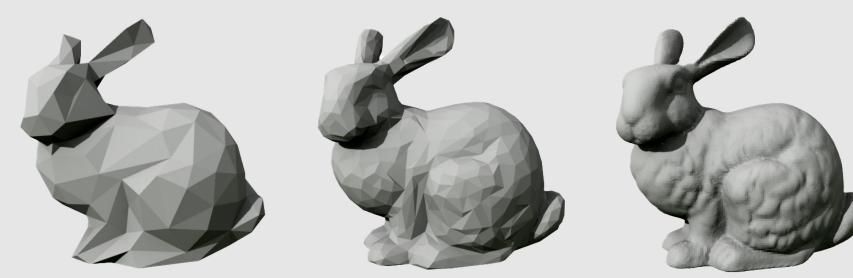
- Digital Geometric Processing
 - Geometric Subdivision
 - Geometric Simplification
 - Geometric Remeshing
 - Geometric Queries

Subdivision

- Subdivison is the process of **upsampling** a mesh
- General formula:
 - Split Step: split faces into smaller faces
 - **Move Step:** replace vertex positions/properties with weighted average of neighbors

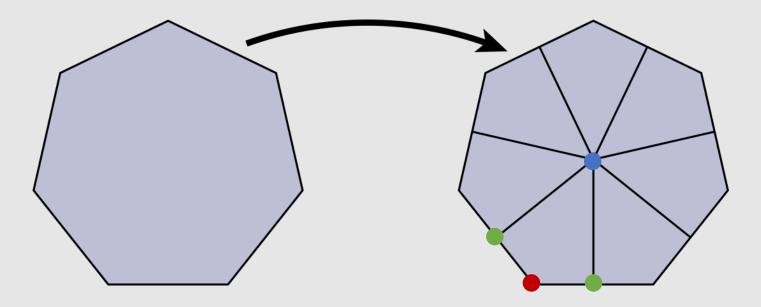






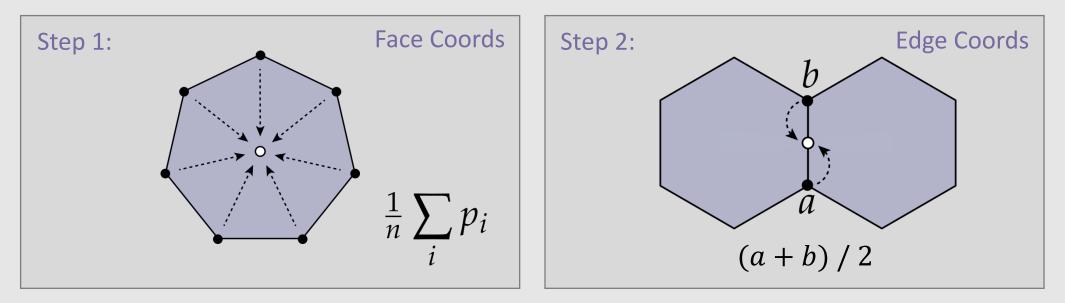
Linear Subdivision [Split Step]

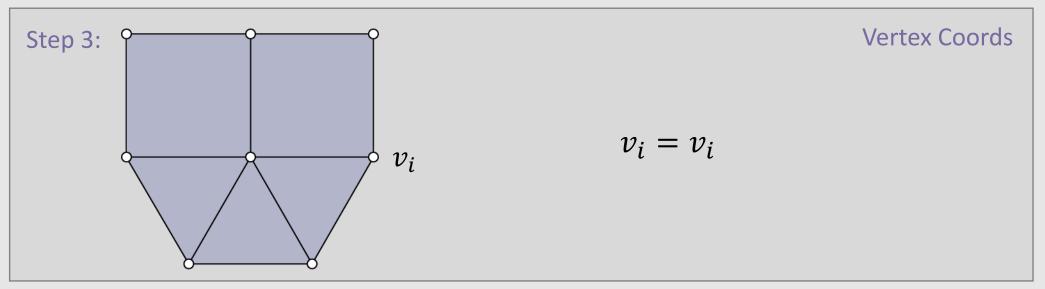
• Split every polygon (any # of sides) into quadrilaterals



- Each new quadrilateral now has:
 - [face coords] : 1 new vertex from the mesh face center
 - [edge coords] : 2 new vertices from the new edges
 - [vertex coords] : 1 new vertex from the original mesh face

Linear Subdivision [Move Step]





Catmull Clark Subdivision

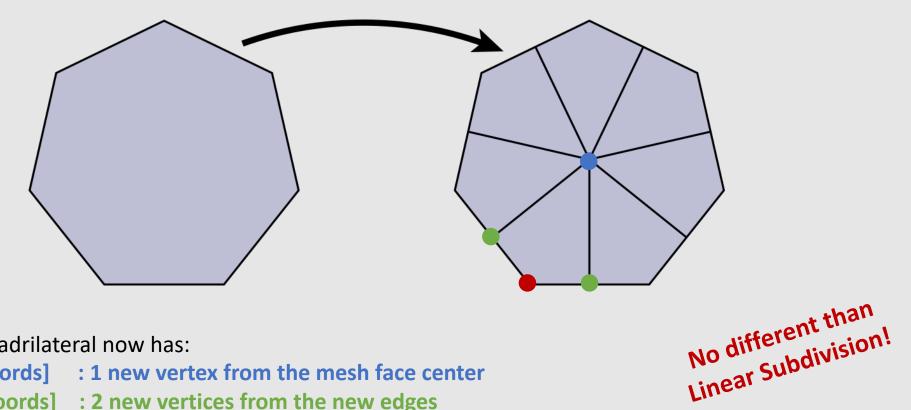
- In 1978, Edwin Catmull (Pixar co-founder) and Jim Clark ٠ wanted to create a generalization of uniform bi-cubic bsplines for 3D meshes
 - We will cover what this means in a future lecture :)
- Became ubiquitous in graphics ٠
 - Helped Catmull win an Academy Award for • **Technical Achievement in 2005**



OpenSubdiv V2 (2018) Pixar

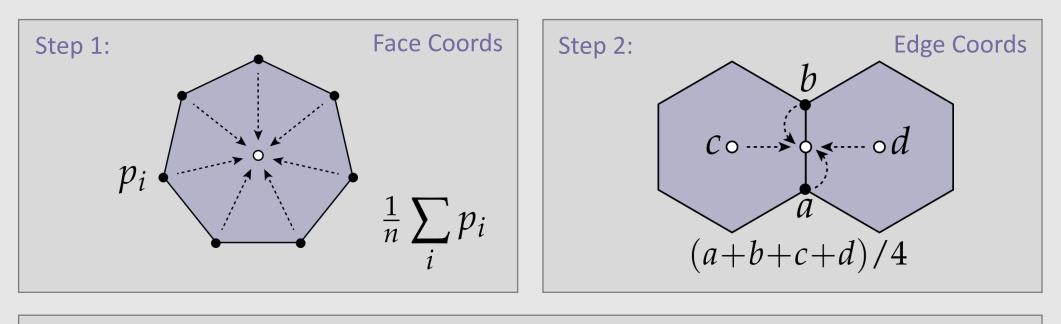
Catmull-Clark Subdivision [Split Step]

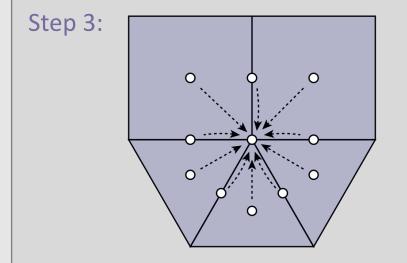
• Split every polygon (any # of sides) into quadrilaterals



- Each new quadrilateral now has: •
 - [face coords] : 1 new vertex from the mesh face center ٠
 - [edge coords] : 2 new vertices from the new edges
 - [vertex coords] : 1 new vertex from the original mesh face •

Catmull-Clark Subdivision [Move Step]



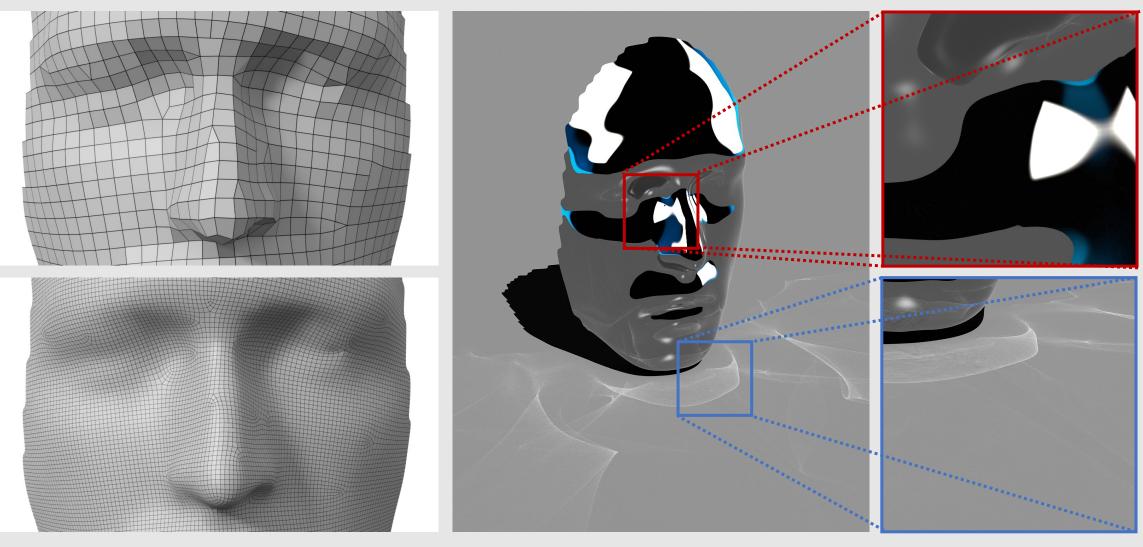


<u>Q</u> -	+2R+(n-3)S	
	п	
n	- vertex degree	

- Q average of face coords around vertex
- R average of edge coords around vertex
- S original vertex position

Vertex Coords

Catmull-Clark Subdivision [Quads]

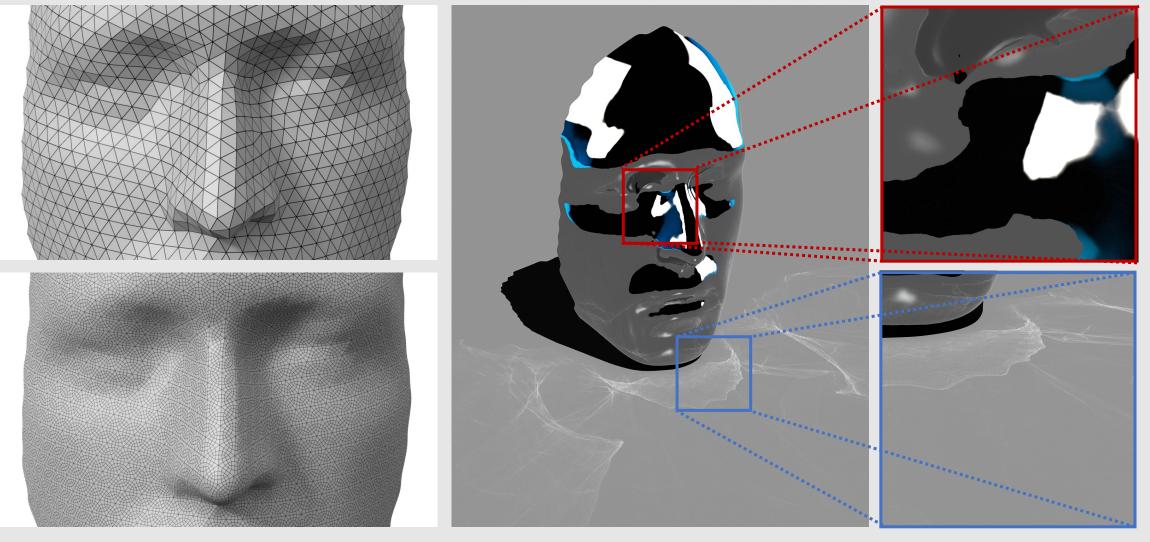


Few irregular vertices

Smoothly-varying surface normals

Smooth reflections/caustics

Catmull-Clark Subdivision [Triangles]



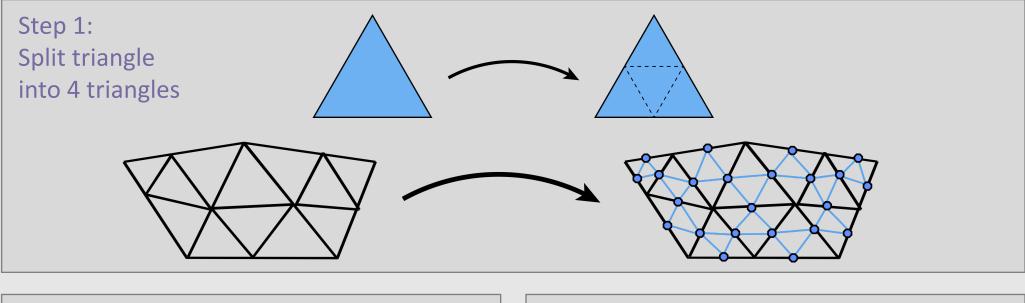
Many irregular vertices

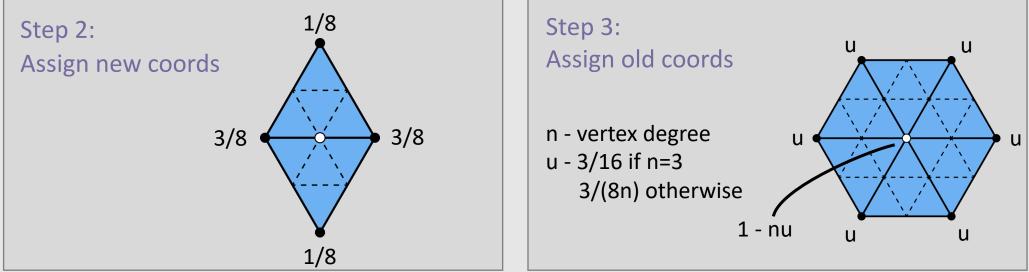
Erratic surface normals

Jagged reflections/caustics

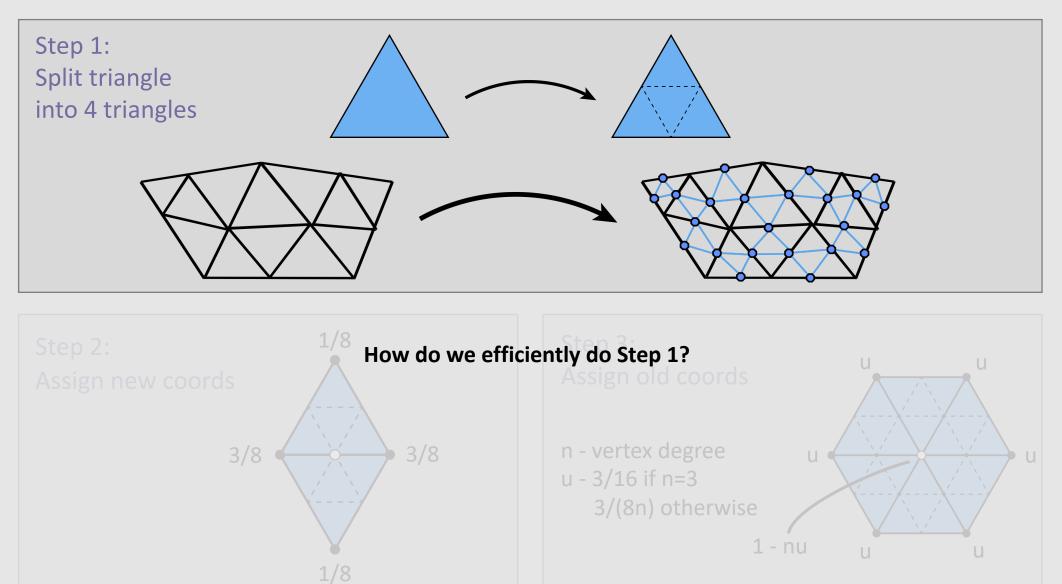
Is there a better subdivision scheme we can use for triangulated meshes?

Loop Subdivision

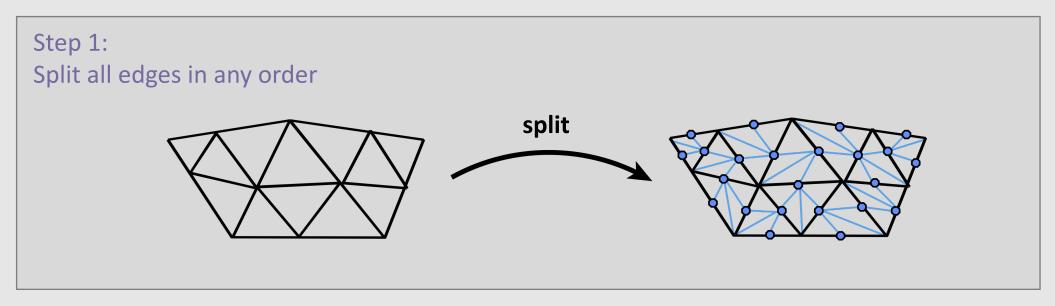


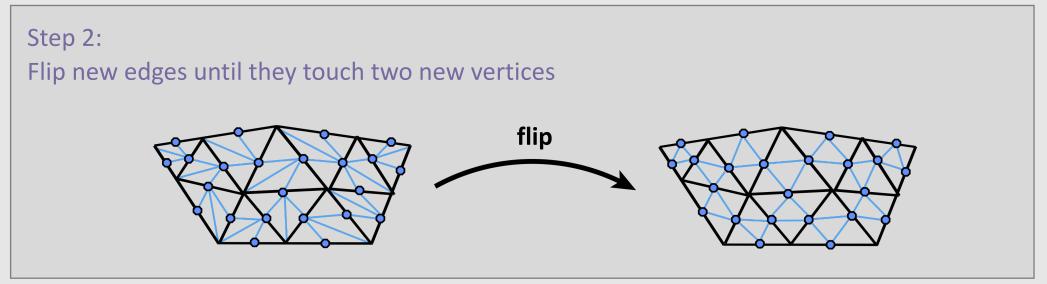


Loop Subdivision

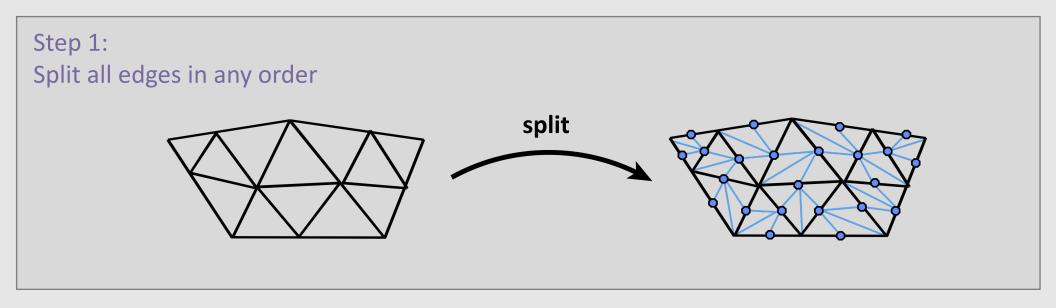


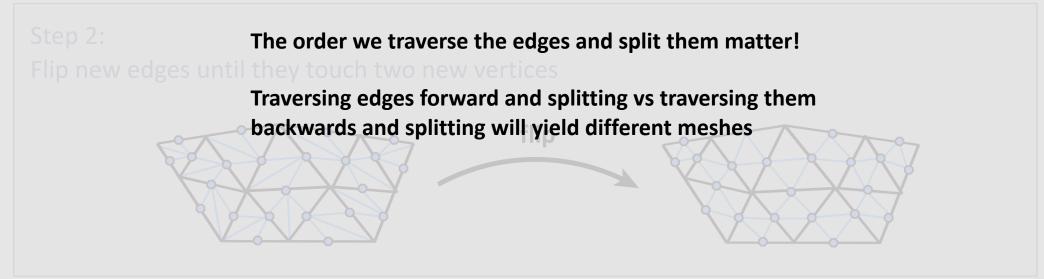
Loop Subdivision Using Local Ops



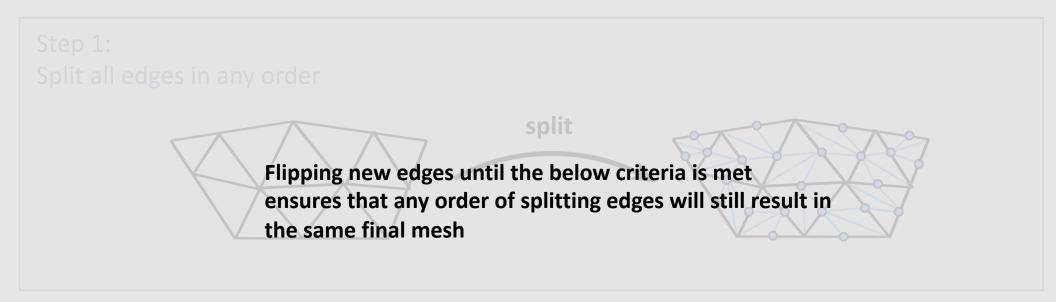


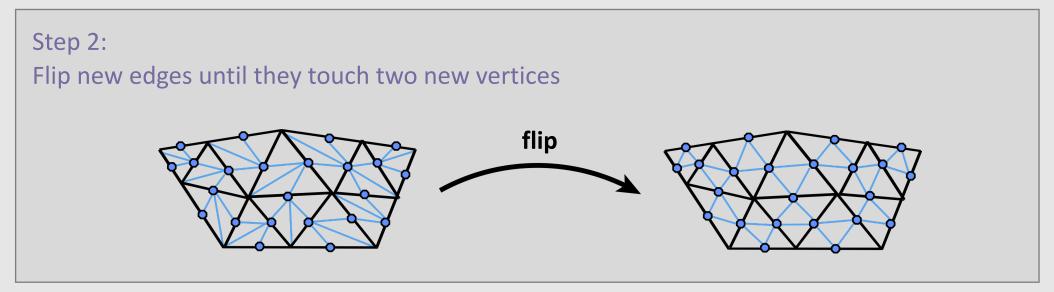
Loop Subdivision Using Local Ops





Loop Subdivision Using Local Ops

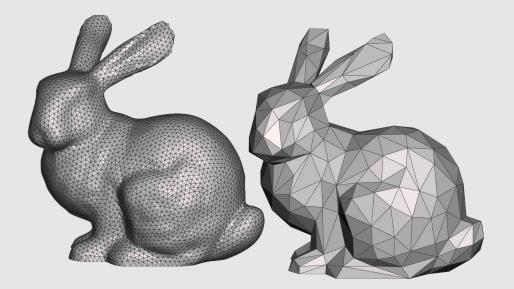




- Digital Geometric Processing
 - Geometric Subdivision
 - Geometric Simplification
 - Geometric Remeshing
 - Geometric Queries

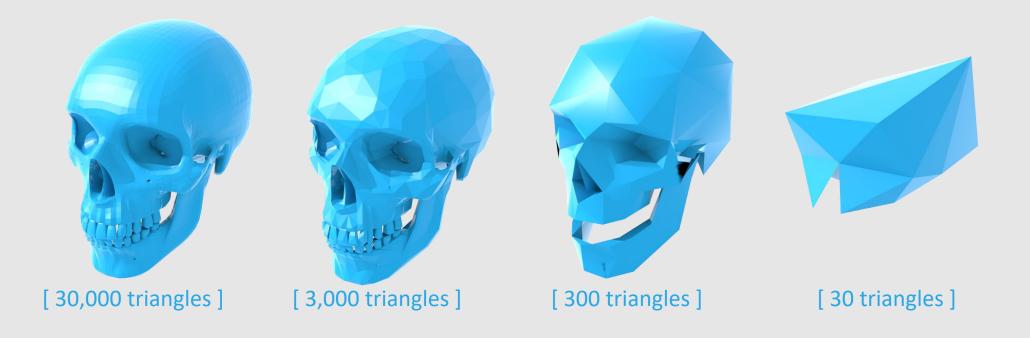
Simplification

- Simplification is the process of **downsampling** a mesh
 - Less Storage overhead
 - Smaller file sizes
 - Less Processing overhead
 - Less elements to iterate over
 - Larger mesh modifications
 - Instead of moving tens of smaller mesh elements, move one larger mesh element



Simplification Algorithm Basics

- Greedy Algorithm:
 - Assign each edge a cost
 - Collapse edge with least cost
 - Repeat until target number of elements is reached
- Particularly effective cost function: quadric error metric**



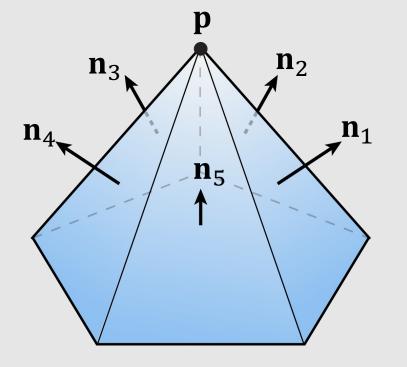
**invented at CMU (Garland & Heckbert 1997)

Quadric Error Metric

- **Goal:** approximate a point's distance from a collection of triangles
 - Review: what is the distance of a point x from a plane p with normal n?

 $dist(\mathbf{x}) = \langle \mathbf{n}, \mathbf{x} \rangle - \langle \mathbf{n}, \mathbf{p} \rangle = \langle \mathbf{n}, \mathbf{x} - \mathbf{p} \rangle$

• Quadric error is the sum of squared point-to-plane distances



$$Q(\mathbf{x}) := \sum_{i=1}^{k} \langle \mathbf{n}_i, \mathbf{x} - \mathbf{p} \rangle^2$$

X

р

Q = 1

Q

Q = 0

8

n

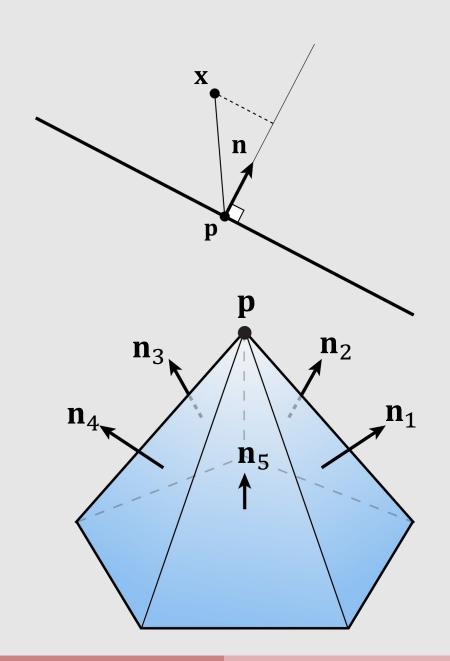
Quadric Error Metric

• Given:

- Query point $\mathbf{x} = (x, y, z)$
- Normal $\mathbf{n} = (a, b, c)$
- Offset from origin $e = \langle \mathbf{n}, \mathbf{p} 0 \rangle = \langle \mathbf{n}, \mathbf{p} \rangle$
- We want the negative of this value to make a plane equation
 - $d = -e = -\langle \mathbf{n}, \mathbf{p} \rangle$
- We can rewrite in homogeneous coordinates:
 - $\mathbf{u} = (x, y, z, 1)$
 - $\mathbf{v} = (a, b, c, d)$
- Signed distance to plane is then just $\langle \mathbf{u}, \mathbf{v} \rangle = ax + by + cz + d$
 - Note that it is zero in the plane!
- Squared distance is $\langle \mathbf{u}, \mathbf{v} \rangle^2 = \mathbf{u}^{\mathsf{T}} (\mathbf{v} \mathbf{v}^{\mathsf{T}}) \mathbf{u} =: \mathbf{u}^{\mathsf{T}} K \mathbf{u}$

• Matrix
$$K = \mathbf{v}\mathbf{v}^T$$
 encodes squared distance to plane

$$K = \begin{bmatrix} a^2 & ab & ac & ad \\ ab & b^2 & bc & bd \\ ac & bc & c^2 & cd \\ \mathbf{u}^T K_1 \mathbf{u} + \mathbf{u}^T K_2 \mathbf{u}^{\underline{ad}} = \mathbf{u}^T b (k_1 + ck_2) \mathbf{u}^{d^2} \end{bmatrix}$$



15-462/662 | Computer Graphics

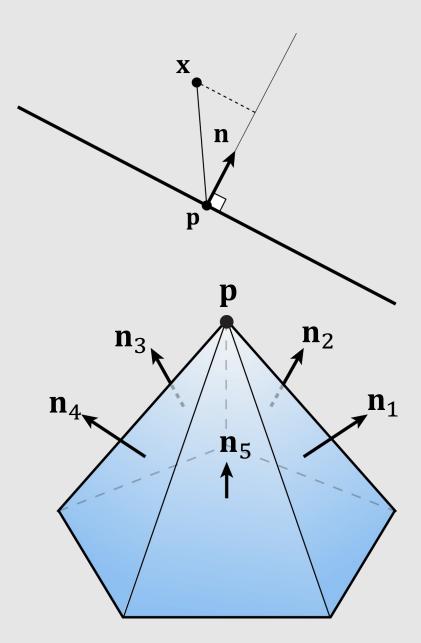
Quadric Error Metric

- Given:
 - Query point $\mathbf{x} = (x, y, z)$
 - Normal $\mathbf{n} = (a, b, c)$
 - $d = -\langle \mathbf{n}, \mathbf{p} \rangle$
 - **u** = (x, y, z, 1)
 - $\mathbf{v} = (a, b, c, d)$
- Signed distance to plane is $\langle \mathbf{u}, \mathbf{v} \rangle = ax + by + cz + d$
- Squared distance is $\langle \mathbf{u}, \mathbf{v} \rangle^2 = \mathbf{u}^{\mathsf{T}} (\mathbf{v} \mathbf{v}^{\mathsf{T}}) \mathbf{u} =: \mathbf{u}^{\mathsf{T}} K \mathbf{u}$
 - Matrix $K = \mathbf{v}\mathbf{v}^T$ encodes squared distance to plane

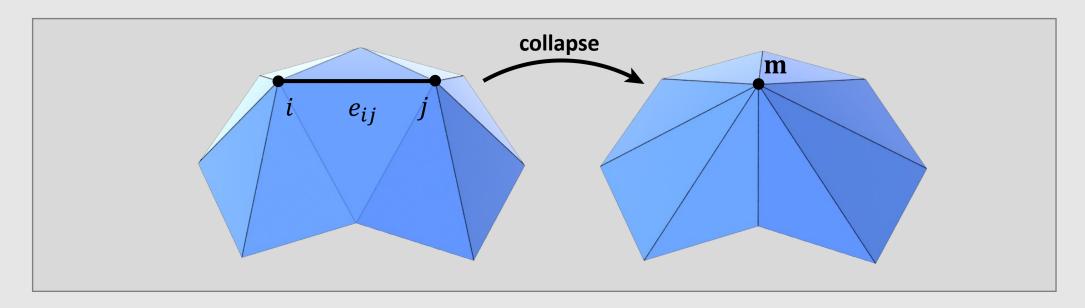
$$K = \begin{bmatrix} a^2 & ab & ac & ad \\ ab & b^2 & bc & bd \\ ac & bc & c^2 & cd \\ ad & bd & cd & d^2 \end{bmatrix}$$

• Key Idea: sum of matrices *K* represents distance to a union of planes

$$\mathbf{u}^{\mathsf{T}}K_1\mathbf{u} + \mathbf{u}^{\mathsf{T}}K_2\mathbf{u} = \mathbf{u}^{\mathsf{T}}(K_1 + K_2)\mathbf{u}$$



Quadric Error of Edge Collapse

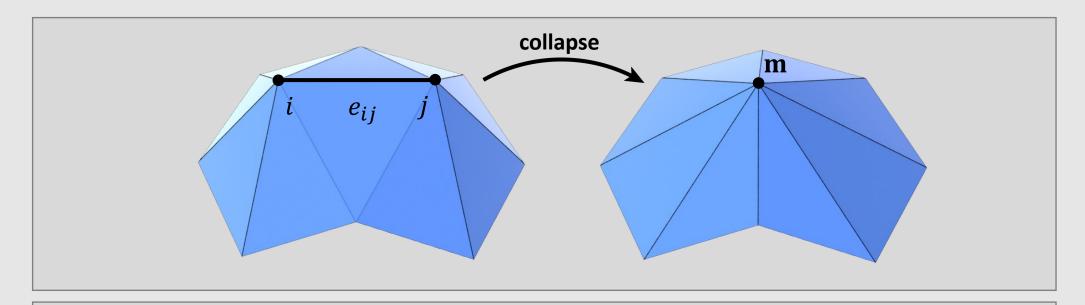


- How much does it cost to collapse an edge e_{ii}?
 - Compute midpoint **m**, measure error as

 $Q(\mathbf{m}) = \mathbf{m}^{\mathsf{T}}(K_i + K_j)\mathbf{m}$

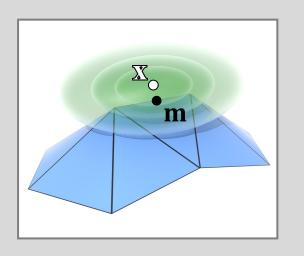
- Error becomes "score" for e_{ij} , determining priority
 - Q: where to put **m**?

Quadric Error of Edge Collapse



 $Q(\mathbf{m}) = \mathbf{m}^{\mathsf{T}}(K_i + K_j)\mathbf{m}$

- Find point **x** that minimizes error
 - Take derivatives!



How to take a derivative of a function involving matrices?

Minimizing a Quadratic Function

To find the min of a function f(x)

 $f(x) = ax^2 + bx + c$

take derivative f'(x) and set equal to 0

f'(x) = 2ax + b = 0x = -b/2a same structure

can also write any quadratic function of n variables as a symmetric matrix A consider the multivariable function

$$f(x, y) = ax^2 + bxy + cy^2 + dx + ey + g$$

we can rewrite it as:

$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} \quad A = \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix} \quad \mathbf{u} = \begin{bmatrix} d \\ e \end{bmatrix}$$
$$f(x, y) = \mathbf{x}^{\mathsf{T}} A \mathbf{x} + \mathbf{u}^{\mathsf{T}} \mathbf{x} + g$$

take derivative f'(x) and set equal to 0

$$f'(x, y) = 2A\mathbf{x} + \mathbf{u} = 0$$

$$\mathbf{x} = -\frac{1}{2}A^{-1}\mathbf{u}$$
 same structure

Positive Definite Quadratic Form

How do we know if our solution minimizes quadratic error?

 $\mathbf{x} = -\frac{1}{2}A^{-1}\mathbf{u}$

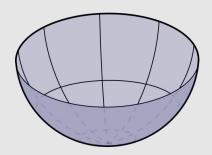
In the 1D case, we minimize the function if

$$xax = ax^2 > 0$$
$$a > 0$$

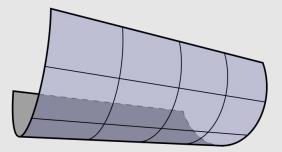
In the ND case, we minimize the function if

$$\mathbf{x}^{\mathsf{T}} A \ \mathbf{x} > 0 \quad \forall \ \mathbf{x}$$

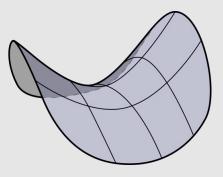
This is known as the function being positive semidefinite



[positive definite]



[positive semidefinite]



Minimizing Quadric Error

Find "best" point for edge collapse by minimizing quadratic form

$\min_{\mathbf{u}\in\mathbb{R}^4}\mathbf{u}^T K\mathbf{u}$

Already know fourth (homogeneous) coordinate for a point is 1 Break up our quadratic function into two pieces

$$\begin{bmatrix} \mathbf{x}^{\mathsf{T}} & 1 \end{bmatrix} \begin{bmatrix} B & \mathbf{w} \\ \mathbf{w}^{\mathsf{T}} & d^2 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$$
$$= \mathbf{x}^{\mathsf{T}} B \mathbf{x} + 2 \mathbf{w}^{\mathsf{T}} \mathbf{x} + d^2$$

Can minimize as before

$$2B\mathbf{x} + 2\mathbf{w} = 0$$
$$\mathbf{x} = -B^{-1}\mathbf{w}$$

Quadric Error Simplification Algorithm

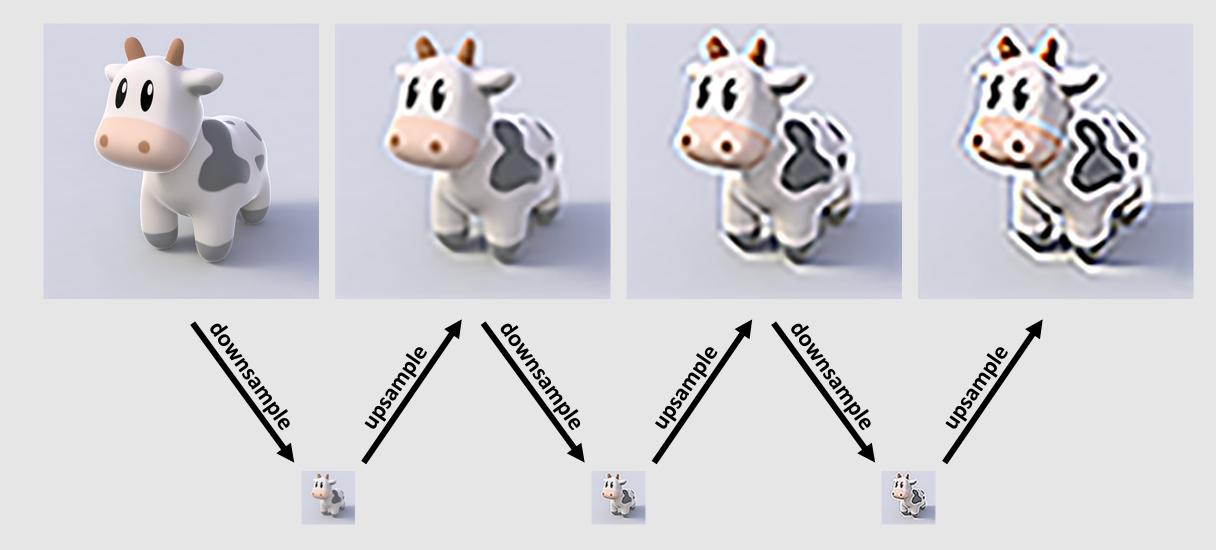
```
// compute K for each face
for(v : vertices) {
         for(f : faces) {
                  Vec4 ve(N, d);
                  f \rightarrow K = outer(ve, ve);
}
// compute K for each vertex
for(v : vertices)
         for(f : v->faces())
                  v \rightarrow K += f \rightarrow K;
// compute K for each edge
// place into priority queue
PriorityQueue pq;
for(e : edge) {
         for(v : e->vertices())
                  e - > K + = v - > K;
         pq.push(e->K, e);
```

```
// iterate until mesh is a target size
while(faces.length() > target_size) {
```

```
// collapse edge with smallest cost
e = pq.pop();
K = e->K;
v = collapse(e);
// position new vertex to optimal pos
v->pos = -B.inv() * w
// update K for vertex
```

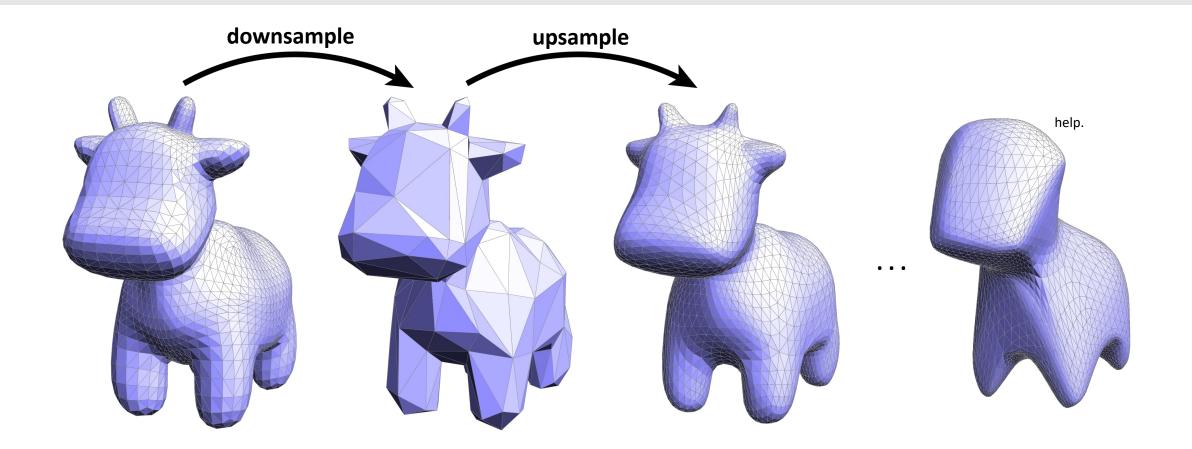
Is simplification the inverse operation of subdivision?

Dangers of Resampling



Repeatedly resampling an image degrades signal quality!

Dangers of Resampling

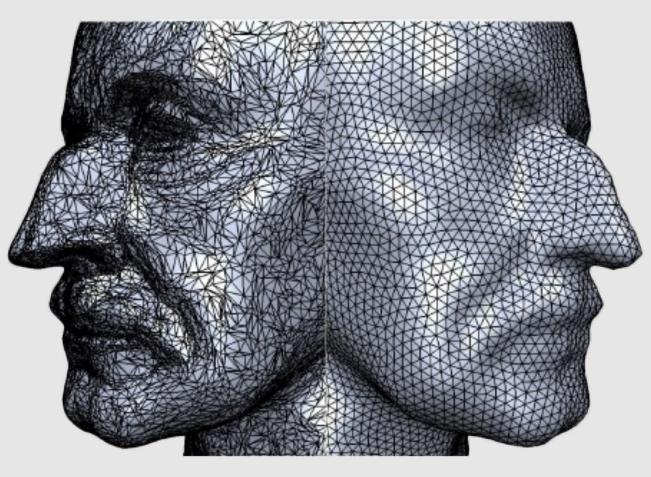


Repeatedly resampling a mesh also degrades signal quality!

- Digital Geometric Processing
 - Geometric Subdivision
 - Geometric Simplification
 - Geometric Remeshing
 - Geometric Queries

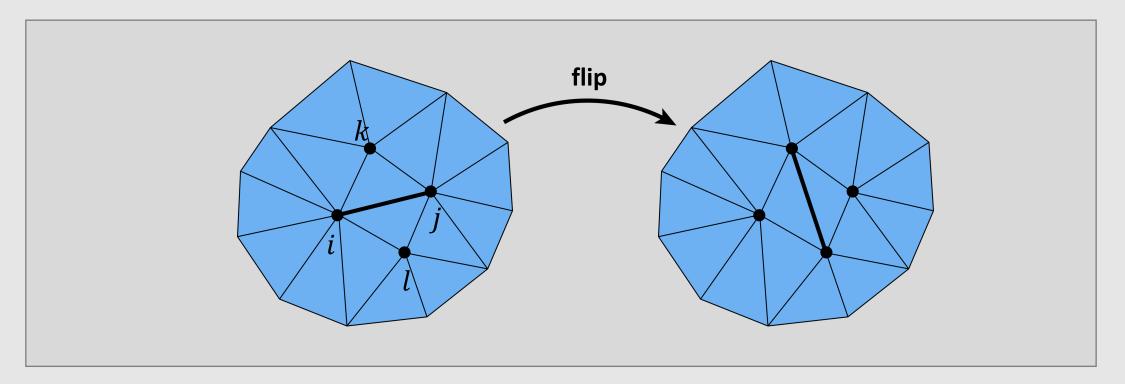
Isotropic Remeshing

- **Isotropic:** same value when measured in any direction
- **Remeshing:** a change in the mesh
 - **Goal:** change the mesh to make triangles more uniform shape and size
- Helps achieve good mesh properties:
 - Good approximation of original shape
 - Vertex degrees close to 6
 - Angles close to 60deg
 - Delaunay triangles



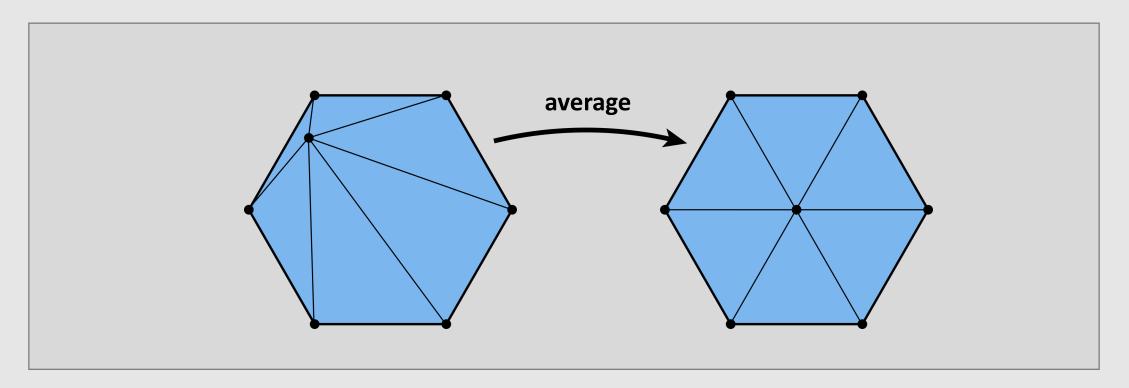
Improving Degree

Vertices with degree 6 makes triangles more regular **Deviation function:** $|d_i - 6| + |d_j - 6| + |d_k - 6| + |d_l - 6|$ If flipping an edge reduces deviation function, flip edge



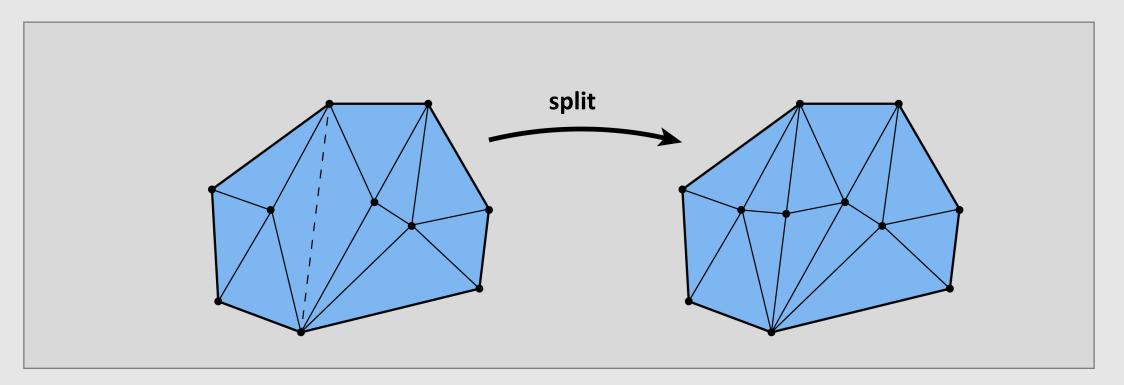
Improving Vertex Positioning

Center vertices to make triangles more even in size



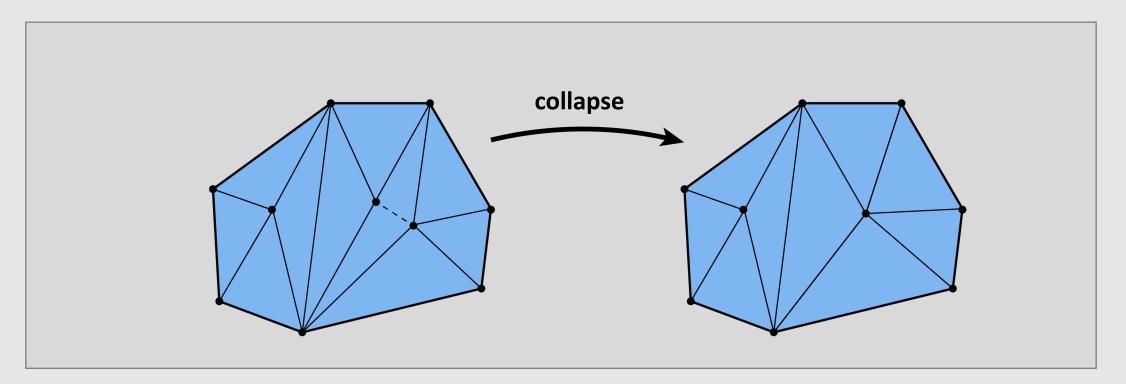
Improving Edge Length

If an edge is longer than (4/3 * mean) length, split it

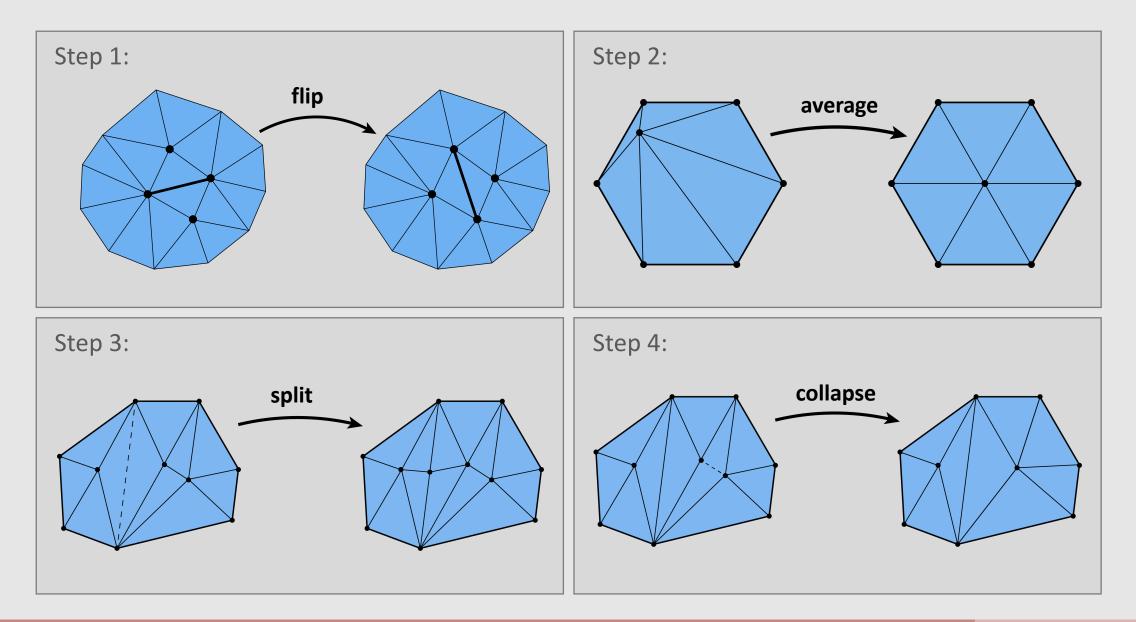


Improving Edge Length

If an edge is shorter than (4/5 * mean) length, collapse it



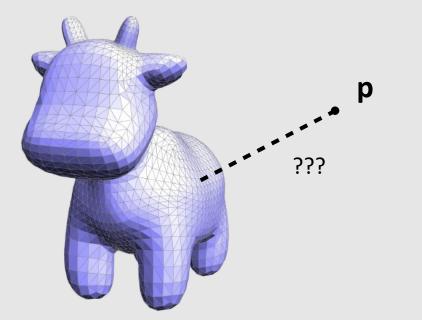
Isotropic Remeshing

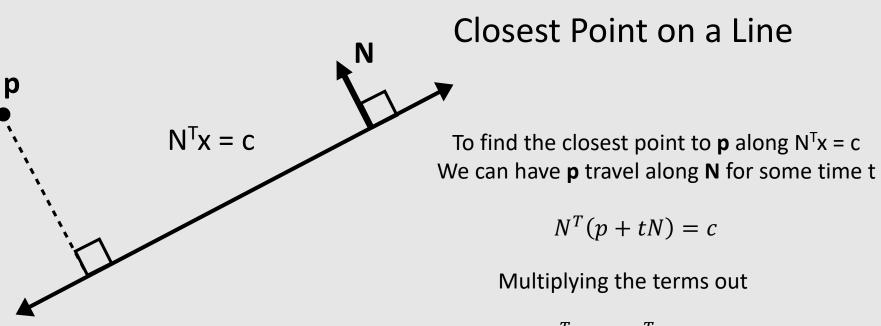


- Digital Geometric Processing
 - Geometric Subdivision
 - Geometric Simplification
 - Geometric Remeshing
 - Geometric Queries

Closest Point Queries

- **Problem:** given a point, in how do we find the closest point on a given surface?
- Several use cases:
 - Ray/mesh intersection in pathtracing
 - Kinematics/animation
 - GUI/user selection
 - When I click on a mesh, what point am I actually clicking on?





 $N^T p + t N^T N = c$

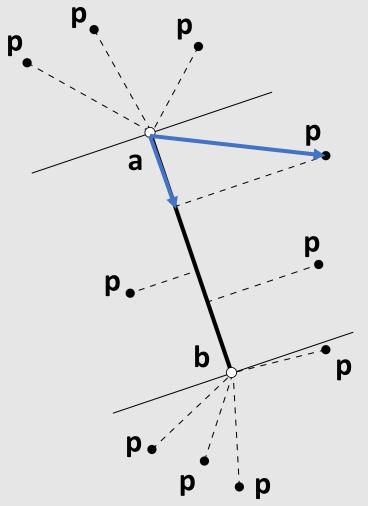
The unit norm multiplied by itself is 1 Solve for t

$$t = c - N^T p$$

Propagate **p** along **N** for time t

$$p + tN$$
$$p + (c - N^T p)N$$

Closest Point on a Line Segment



Compute the vector **p** from the line base **a** along the line

 $\langle \mathbf{p} - \mathbf{a}, \mathbf{b} - \mathbf{a} \rangle$

Normalize to get a time

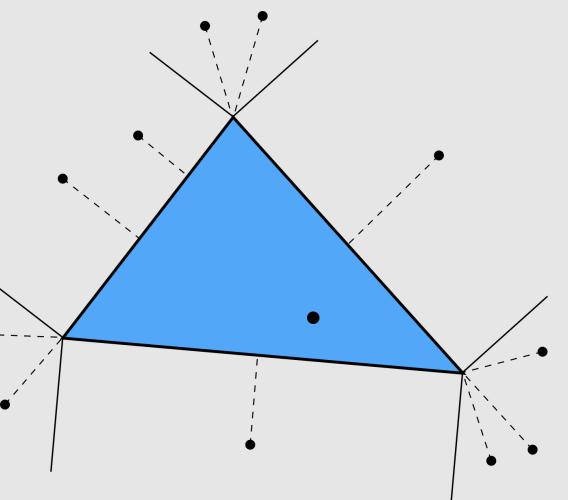
$$t = rac{\langle \mathbf{p} - \mathbf{a}, \mathbf{b} - \mathbf{a} \rangle}{\langle \mathbf{b} - \mathbf{a}, \mathbf{b} - \mathbf{a} \rangle}$$

Clip time to range [0,1] and interpolate

a + (b - a)t

Closest Point on a 2D Triangle

- Easy! Just compute closest point to each line segment
 - For each point, compute distance
 - Point with smallest distance wins
- What if the point is inside the triangle?
 - Even easier! The closest point is the point itself
 - Recall point-in-triangle tests



Closest Point on a 3D Triangle

- Method #1: Projection**
 - Construct a plane that passes through the triangle
 - Can be done using cross product of edges
 - Project the point to the closest point on the plane
 - Same expression as with a line: $p + (c N^T p)N$
 - Check if point is in triangle using half-plane test
 - Else, compute distance from each line segment in 3D
 - Same expression as with a 2D line segment
- Method #2: Rotation**
 - Translate point + triangle so that triangle vertex v1 is at the origin
 - Rotate point + triangle so that triangle vertex v2 sits on the z-axis
 - Rotate point + triangle so that triangle vertex v3 sits on the yz-axis
 - Disregard x-coordinate of point
 - Problem reduces to closest point on 2D triangle

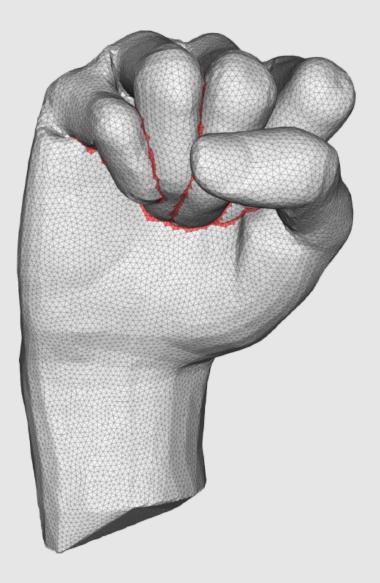
**https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.4264&rep=rep1&type=pdf

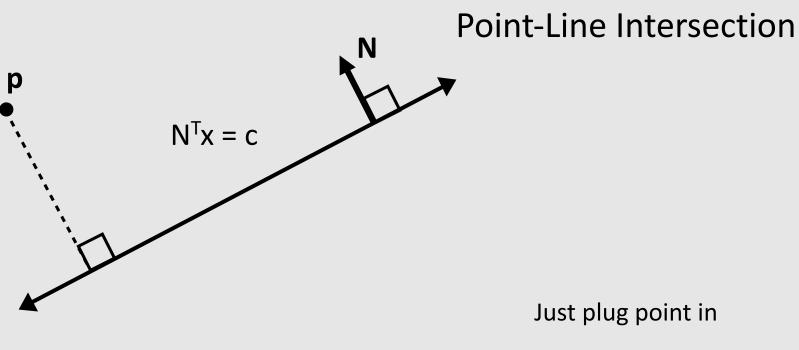
Closest Point on a 3D Triangle Mesh

- Conceptually easy!
 - Loop over every triangle
 - Compute closest point to current triangle
 - Keep track of globally closest point
- Not practical in real world
 - Meshes have billions of triangles
 - Programs make thousands of geometric queries a second
- Will look at better solutions next time

Mesh-Mesh Intersections

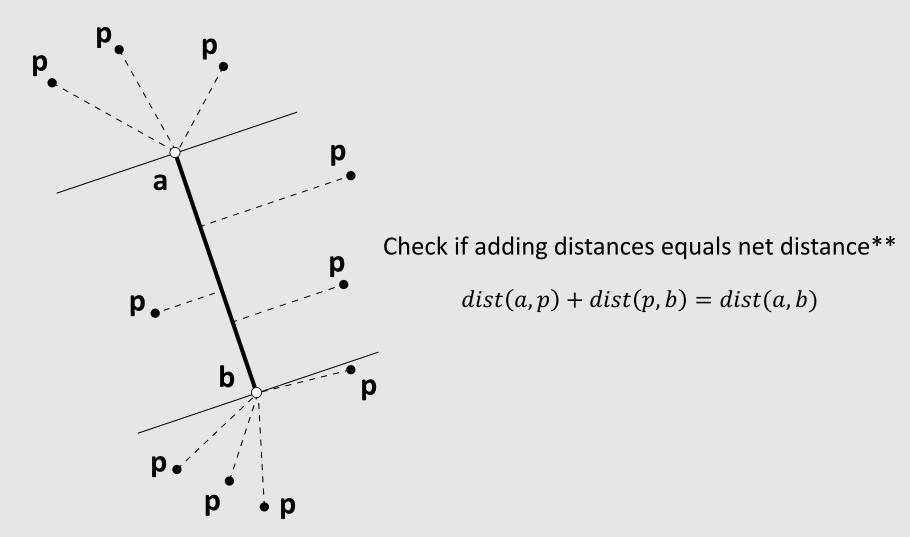
- Sometimes when editing geometry, a mesh will intersect with itself
- Likewise, sometimes when animating geometry, meshes will collide
- How do we check for/prevent collisions?





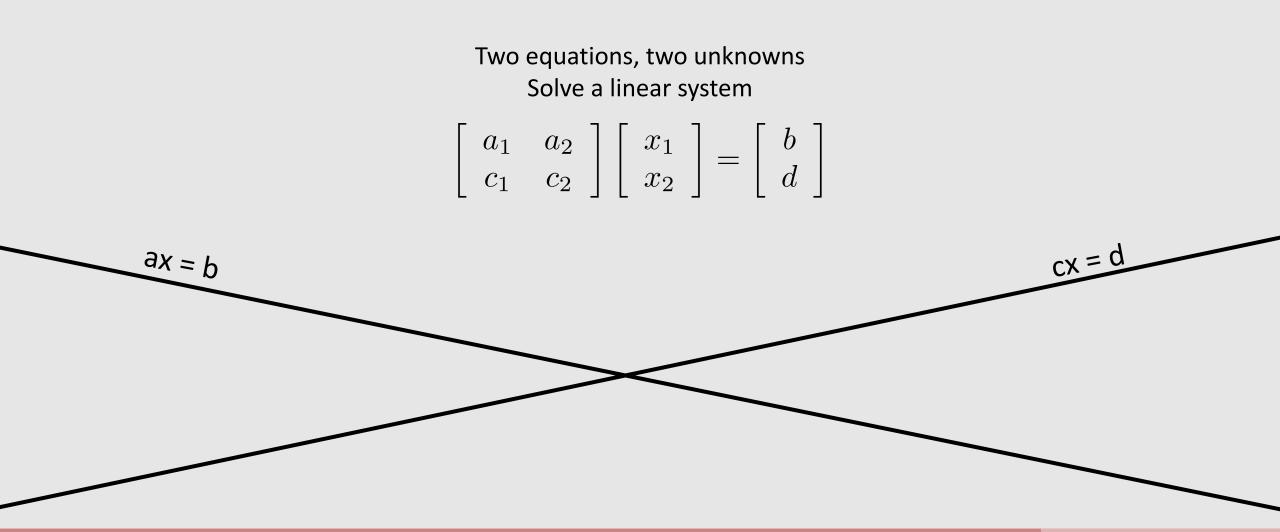
 $N^T p = c?$

Point-Line Segment Intersection

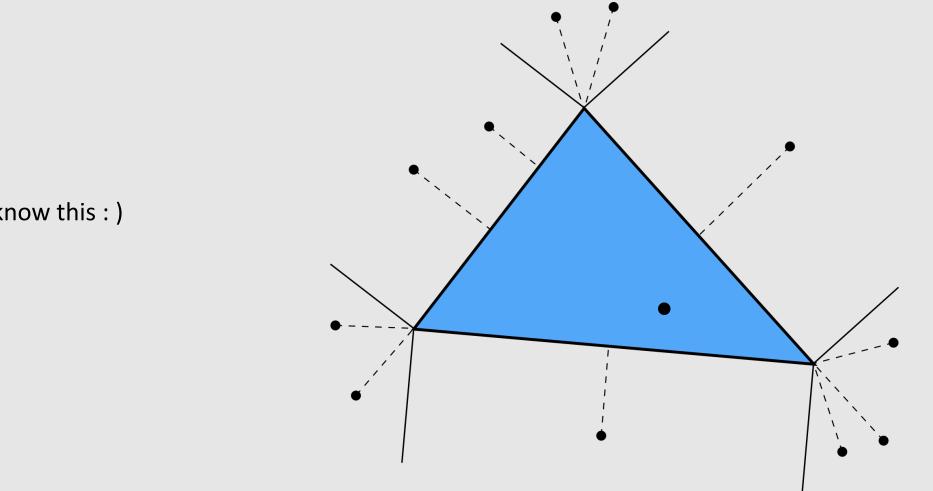


**Potential numeric stability issues

Line-Line Intersection



Point-Triangle Intersection



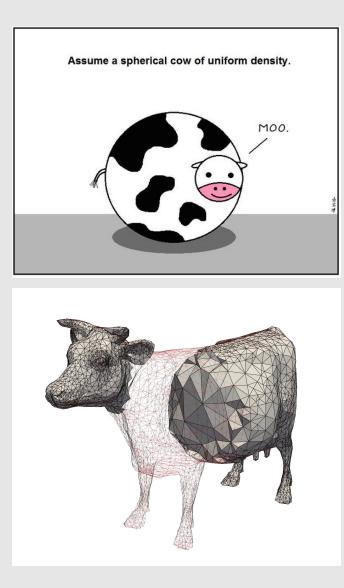
You know this :)

Special Topics in A2: Geometric Representations

- Marching Cubes
- Signed Distance Fields
- NERFs

Explicit vs Implicit

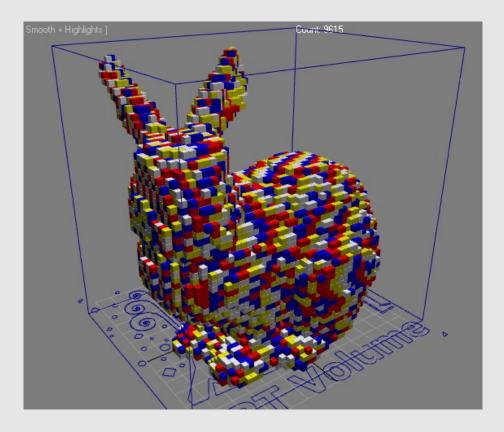
- Not one ideal geometry
- Explicit:
 - [+] finding any point on the surface
 - [-] finding if a given point lies on the surface
- Implicit:
 - [-] finding any point on the surface
 - [+] finding if a given point lies on the surface
- Pick the geometry best for the task at hand!



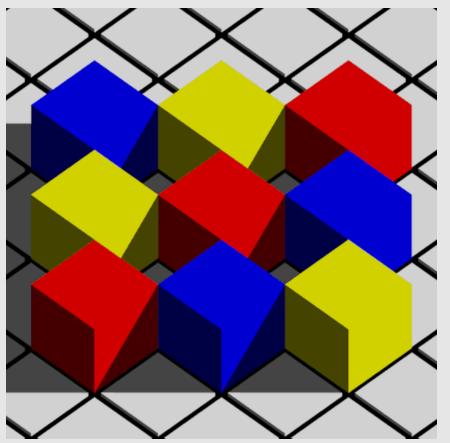
How do we convert implicit geometry to explicit geometry?

Voxel Grid

- Idea: for an implicit function f(x, y, z), sample points uniformly along the function's domain
 - Plot points where f(x, y, z) = 0
 - Results in point cloud
- **Issue:** how many samples to take
 - More samples lead to higher precision, but are more expensive to compute
- **Issue:** does not include any info on connectivity
 - Difficult to interpolate data



Marching Cubes

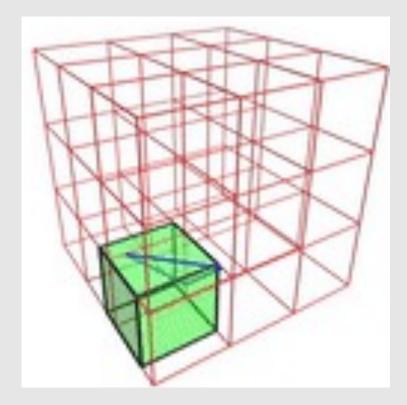


This is not the marching cubes algorithm. This is literally cubes marching.

- Marching cubes is an algorithm for converting implicit geometry to explicit
 - Adds both positional (vertices) and connectivity (edges)

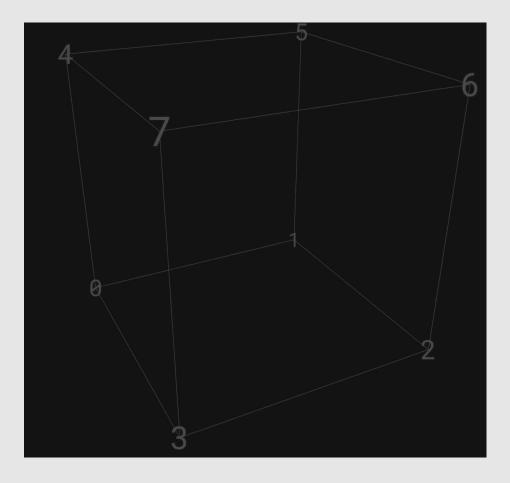
Marching Cubes

- Idea: march a cube though the scene, checking if each of the vertices in the cube lie inside or outside the implicit function f (x, y, z)
 - 8 vertices, 8 checks
 - Can encode as an 8-bit number
 - Generate geometry that makes sure inside vertices are enclosed by the geometry, and outside geometry are kept out
- Issue: how big of a cube to use
 - A smaller cube leads to finer details
 - A smaller cube also requires more samples



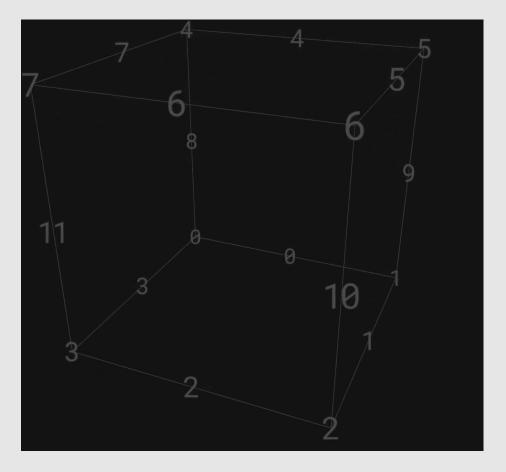
Marching Cubes Vertices

- Each cube has 8 vertices
- Check if each vertex lies inside or outside the implicit function f (x, y, z)
 - Can be encoded as an 8-bit number
 - 1 inside
 - 0 outside

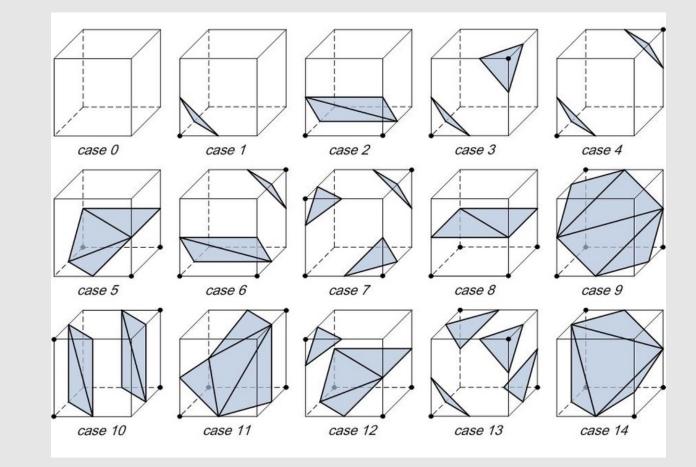


Marching Cubes Edges

- Each cube has 12 edges
- Goal is to create geometry with vertices along the edges of the cube that enclose inside vertices and excludes outside vertices



Marching Cubes Geometry



- $2^8 = 256$ possible configurations
- How do we know which one to use?

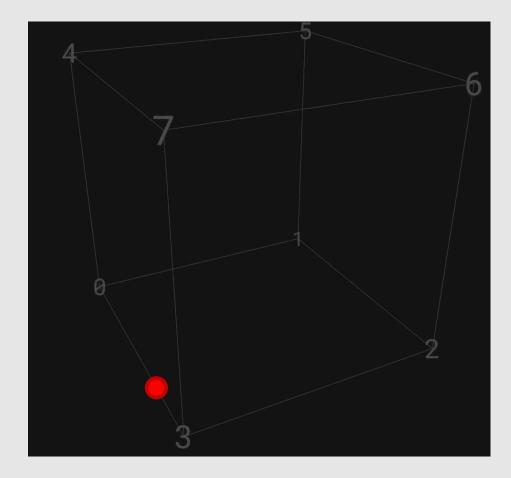
Marching Cubes Lookup Table

// For each MC case, a list of triangles, specified as triples of edge indices, terminated by -1const TriangleTable = [[-1], [0, 3, 8, -1], [0, 9, 1, -1], [3, 8, 1, 1, 8, 9, -1], [2, 11, 3, -1], [8, 0, 11, 11, 0, 2, -1], [3, 2, 11, 1, 0, 9, -1],[11, 1, 2, 11, 9, 1, 11, 8, 9, -1], [1, 10, 2, -1], [0, 3, 8, 2, 1, 10, -1], [10, 2, 9, 9, 2, 0, -1], [8, 2, 3, 8, 10, 2, 8, 9, 10, -1], [11, 3, 10, 10, 3, 1, -1], [10, 0, 1, 10, 8, 0, 10, 11, 8, -1], [9, 3, 0, 9, 11, 3, 9, 10, 11, -1], [8, 9, 11, 11, 9, 10, -1], [4, 8, 7, -1], [7,4,3,3,4,0,-1], [4, 8, 7, 0, 9, 1, -1], [1, 4, 9, 1, 7, 4, 1, 3, 7, -1], [8, 7, 4, 11, 3, 2, -1], [4, 11, 7, 4, 2, 11, 4, 0, 2, -1], [0, 9, 1, 8, 7, 4, 11, 3, 2, -1], [7, 4, 11, 11, 4, 2, 2, 4, 9, 2, 9, 1, -1], [4, 8, 7, 2, 1, 10, -1], [7, 4, 3, 3, 4, 0, 10, 2, 1, -1], [10, 2, 9, 9, 2, 0, 7, 4, 8, -1], [10, 2, 3, 10, 3, 4, 3, 7, 4, 9, 10, 4, -1], [1, 10, 3, 3, 10, 11, 4, 8, 7, -1],[10, 11, 1, 11, 7, 4, 1, 11, 4, 1, 4, 0, -1], [7, 4, 8, 9, 3, 0, 9, 11, 3, 9, 10, 11, -1], [7, 4, 11, 4, 9, 11, 9, 10, 11, -1], [9, 4, 5, -1], [9, 4, 5, 8, 0, 3, -1], [4, 5, 0, 0, 5, 1, -1], [5, 8, 4, 5, 3, 8, 5, 1, 3, -1],

Just use a lookup table!

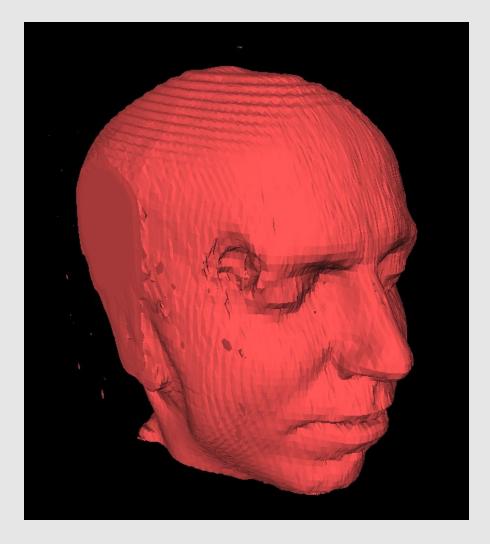
Marching Cubes Linear Interpolation

- **Issue:** lookup table only tells us on what edges to place vertices and how to connect them
 - Does not tell us the specific location of vertices
- When placing vertices, can linearly interpolate them on the edges depending on the evaluated values on the cube vertices
- Example:
 - $f(x_0, y_0, z_0) = -0.75$
 - $f(x_3, y_3, z_3) = +0.25$
 - Vertex is placed ¼ distance away from corner 3, ¾ distance from corner 0



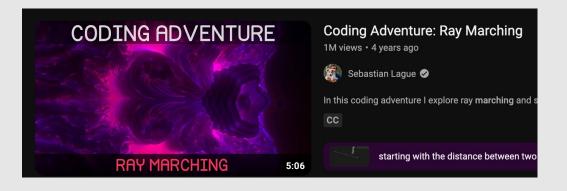
Marching Cubes Examples

- **Issue:** very cube-like
 - Easy to see cube artifacts
- How to fix?
 - Run refinement
 - Run denoising
 - Run remeshing



Marching Cubes Application

- Terrain generation
- Implicitly generate terrain with algebraic surfaces and noise
 - Convert to explicit mesh for easy rendering



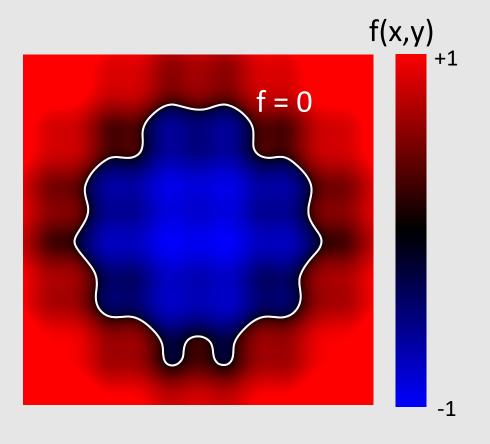
Marching Cubes

- Signed Distance Fields
- NERFs

How do we convert explicit geometry to implicit geometry?

Signed Distance Fields

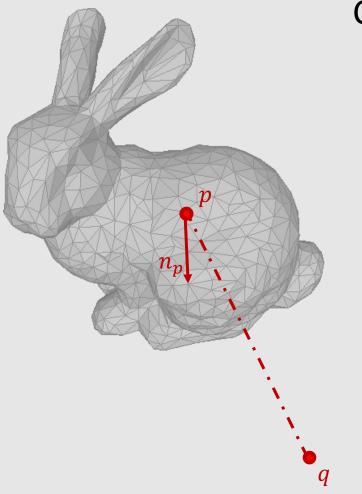
- Signed distance fields are implicit functions f (x, y, z) that tell us the sign (inside/outside) and the distance away from the boundary
 - Gradient $\nabla f(x, y, z)$ makes finding the boundary easier
- SDFs make it easy to check where and how far a point is from a surface



Converting Mesh To SDF

- Idea: SDF of a mesh should be proportional to the closest point p on a mesh to some query point q
- **Issue:** how to accelerate computing the closest point on the mesh
 - Accelerated geometric queries

For a given query point q: Compute the closest point on the mesh p Compute the normal np for p Project the vector (q-p) onto np



Converting Mesh To SDF

For a given query point q:

Compute the closest point on the mesh p

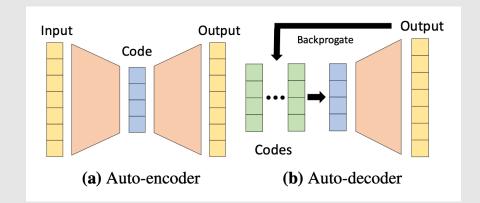
Compute the normal np for p

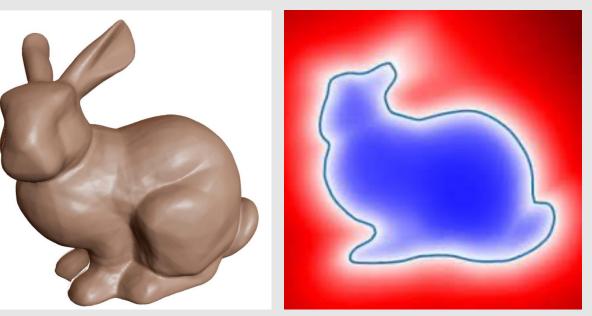
Project the vector (q-p) onto np

- **Distance** encoded by |q p|
- Sign encoded by $(q-p) \cdot n_p$

Neural SDFs

- Constructing a SDF can be difficult/expensive
- Throw a bunch of evaluated samples into an autoencoder
 - Learn a SDF representation of the data
- Neural net maps (x,y,z) to a signed distance
 - Can be used same way as an SDF





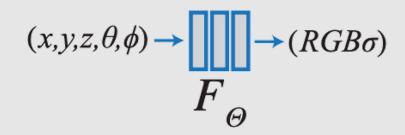
DeepSDF (2019) Park et al.

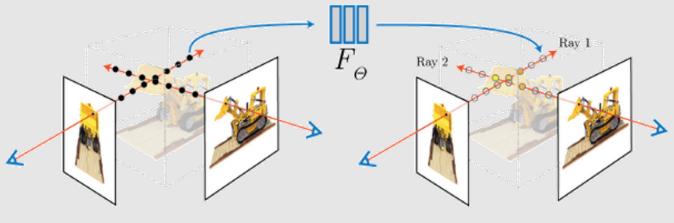
Marching Cubes

• Signed Distance Fields

• NERFs

Neural Radiance Fields





B. Mildenhall (2020)

- Train neural network F on multiple images
 - Training data: (x,y,z) of pixel + view angle + RGB
 - Depth of pixel must be known
 - Test data: (x,y,z) of requested pixel + view angle
 - Outputs RGB
 - What if we don't know the z we want?
 - Just grab the nearest z
 - No different than 0-depth ray tracing
 - To train properly, need multiple images each from a different view angle
 - Key Assumption: images must rotate about a fixed origin
 - Hence only 2 d.o.f with view angle

Neural Radiance Fields

- We are building a field of radiance values
 - In case that wasn't clear :)
- Output RGB depends on depth
 - Think of it as a slice in a ray's direction
 - Optimize known (depth, RGB) pairs along a ray
 - Model learns to interpolate to unseen RGB values
- Key Assumption: lighting should remain constant between scenes
 - Q: What would the distribution look like if not?



View-Dependent Appearances

- Some changes in lighting are inevitable
 - Mirror reflections
 - Glass refractions
 - Anisotropic materials
- Idea: treat these as normal pixels
 - View-dependent lighting will get baked into the model
 - Recall, when evaluating our model, we pass in the view direction
 - View-dependent lighting will only be present if same view angle passed into neural network

B. Mildenhall (2020)

Extra Features

B. Mildenhall (2020)

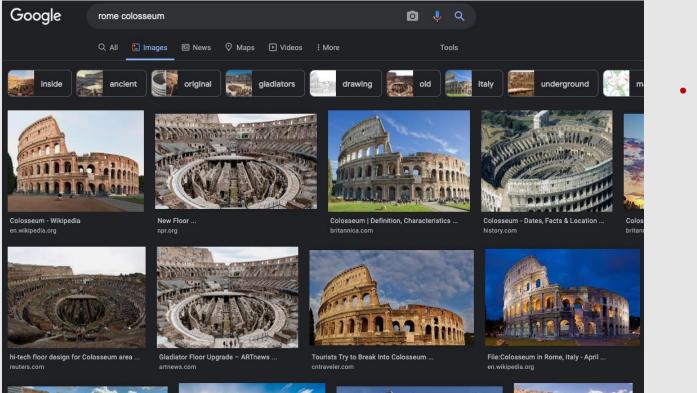
- What can we use NERFs for?
 - Depth Maps
 - Image Relighting
 - Object insertion

https://www.matthewtancik.com/nerf

NeRF In The Wild

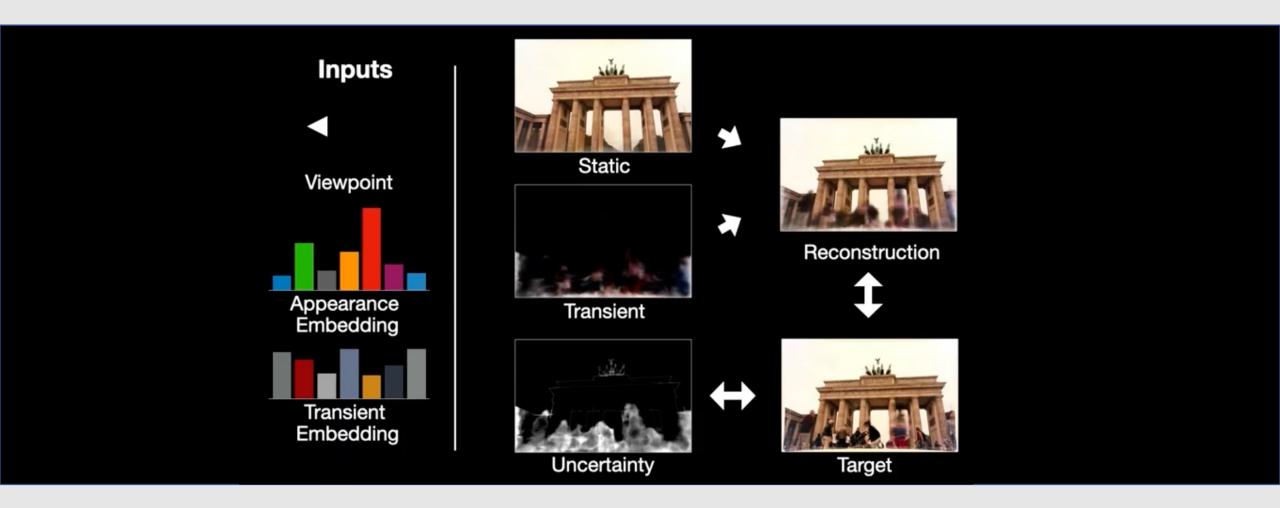
R. Martin-Brualla (2021) Google

Image Databases



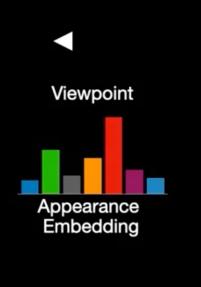
- Key Idea: photos for scene reconstruction are not always taken by the same user in the same conditions
 - Dealing with large database of image requires understanding of static properties and transient properties
 - Transient properties include:
 - People and object occlusions
 - Weather
 - Time of day

Removing Transient Features



• Learn Appearance and transient embedding that minimizes reconstruction error

Removing Transient Features



- Modify appearance embedding to change weather and lighting
 - Allows multiple photos to share same global properties
- Now we have an image set to perform NeRF on
 - Recall viewport given