
More Digital Geometric Processing

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

15-462/662 | Computer Graphics

• Digital Geometric Processing

• Geometric Subdivision

• Geometric Simplification

• Geometric Remeshing

• Geometric Queries

Lecture 09 | Geom Processing

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Subdivision

• Subdivison is the process of upsampling a mesh

• General formula:
• Split Step: split faces into smaller faces
• Move Step: replace vertex positions/properties

with weighted average of neighbors

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Linear Subdivision [Split Step]
• Split every polygon (any # of sides) into quadrilaterals

• Each new quadrilateral now has:
• [face coords] : 1 new vertex from the mesh face center
• [edge coords] : 2 new vertices from the new edges
• [vertex coords] : 1 new vertex from the original mesh face

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Linear Subdivision [Move Step]

Step 1: Step 2:Face Coords Edge Coords

Step 3: Vertex Coords

(𝑎 + 𝑏)	/	2

𝑣! = 𝑣!𝑣!

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Catmull Clark Subdivision

• In 1978, Edwin Catmull (Pixar co-founder) and Jim Clark
wanted to create a generalization of uniform bi-cubic b-
splines for 3D meshes
• We will cover what this means in a future lecture :)

• Became ubiquitous in graphics
• Helped Catmull win an Academy Award for

Technical Achievement in 2005

OpenSubdiv V2 (2018) Pixar

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Catmull-Clark Subdivision [Split Step]
• Split every polygon (any # of sides) into quadrilaterals

• Each new quadrilateral now has:
• [face coords] : 1 new vertex from the mesh face center
• [edge coords] : 2 new vertices from the new edges
• [vertex coords] : 1 new vertex from the original mesh face

No different than

Linear Subdivision!

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Catmull-Clark Subdivision [Move Step]

Step 1: Step 2:Face Coords Edge Coords

Step 3: Vertex Coords

- vertex degree

- average of face coords around vertex

- average of edge coords around vertex

- original vertex position

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Catmull-Clark Subdivision [Quads]

Few irregular vertices Smoothly-varying surface normals Smooth reflections/caustics

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Catmull-Clark Subdivision [Triangles]

Many irregular vertices Erratic surface normals Jagged reflections/caustics

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Is there a better subdivision scheme we can use for triangulated meshes?

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Loop Subdivision

Step 1:

Step 2: Step 3:

Split triangle
into 4 triangles

Assign new coords Assign old coords
1/8

1/8

3/8 3/8

u u

u

uu

u

1 - nu

n - vertex degree
u - 3/16 if n=3
 3/(8n) otherwise

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Loop Subdivision

Step 1:

Step 2: Step 3:

Split triangle
into 4 triangles

Assign new coords Assign old coords
1/8

1/8

3/8 3/8

u u

u

uu

u

1 - nu

n - vertex degree
u - 3/16 if n=3
 3/(8n) otherwise

How do we efficiently do Step 1?

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Loop Subdivision Using Local Ops

Step 1:

Step 2:
Flip new edges until they touch two new vertices

Split all edges in any order

flip

split

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Loop Subdivision Using Local Ops

Step 1:

Step 2:
Flip new edges until they touch two new vertices

Split all edges in any order

flip

split

The order we traverse the edges and split them matter!

Traversing edges forward and splitting vs traversing them
backwards and splitting will yield different meshes

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Loop Subdivision Using Local Ops

Step 1:

Step 2:
Flip new edges until they touch two new vertices

Split all edges in any order

flip

split

Flipping new edges until the below criteria is met
ensures that any order of splitting edges will still result in
the same final mesh

15-462/662 | Computer Graphics

• Digital Geometric Processing

• Geometric Subdivision

• Geometric Simplification

• Geometric Remeshing

• Geometric Queries

Lecture 09 | Geom Processing

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Simplification

• Simplification is the process of downsampling a mesh
• Less Storage overhead

• Smaller file sizes
• Less Processing overhead

• Less elements to iterate over
• Larger mesh modifications

• Instead of moving tens of smaller mesh
elements, move one larger mesh element

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Simplification Algorithm Basics
• Greedy Algorithm:

• Assign each edge a cost
• Collapse edge with least cost
• Repeat until target number of elements is reached

• Particularly effective cost function: quadric error metric**

[300 triangles] [30 triangles][3,000 triangles][30,000 triangles]

**invented at CMU (Garland & Heckbert 1997)

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Quadric Error Metric
• Goal: approximate a point’s distance from a collection of triangles

• Review: what is the distance of a point 𝐱 from a plane 𝐩 with
normal 𝐧?

• Quadric error is the sum of squared point-to-plane distances

dist(𝐱) = ⟨𝐧, 𝐱⟩ − ⟨𝐧, 𝐩⟩ = ⟨𝐧, 𝐱 − 𝐩⟩

𝐩

𝐱

𝐧

𝑄 = 1

𝑄 =
1
8

𝑄 =
1
2

𝑄 = 0
𝐧0

𝐧1𝐧2

𝐧3
𝐧4

𝐩

𝑄(𝐱):= ∑
!"#

$
⟨𝐧! , 𝐱 − 𝐩⟩%

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Quadric Error Metric

𝐩

𝐱

𝐧

• Given:
• Query point 𝐱 = 	 (𝑥, 𝑦, 𝑧)
• Normal 𝐧 = 	 (𝑎, 𝑏, 𝑐)
• Offset from origin 𝑒 = 𝐧, 𝐩 − 0 = 𝐧, 𝐩
• We want the negative of this value to make a plane equation

• 𝑑 = −𝑒 = − 𝐧, 𝐩
• We can rewrite in homogeneous coordinates:

• 𝐮 = 	 (𝑥, 𝑦, 𝑧, 1)
• 𝐯 = 	 (𝑎, 𝑏, 𝑐, 𝑑)

• Signed distance to plane is then just 𝐮, 𝐯 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑
• Note that it is zero in the plane!

• Squared distance is ⟨𝐮, 𝐯⟩% = 𝐮𝖳(𝐯𝐯𝖳)𝐮 =: 𝐮𝖳𝐾𝐮
• Matrix 𝐾 = 𝐯𝐯' encodes squared distance to plane

• Key Idea: sum of matrices 𝐾 represents distance to a union of planes

𝐮𝖳𝐾#𝐮 + 𝐮𝖳𝐾%𝐮 = 𝐮𝖳(𝐾# + 𝐾%)𝐮

𝐧0

𝐧1𝐧2

𝐧3
𝐧4

𝐩

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Quadric Error Metric

𝐩

𝐱

𝐧

• Given:
• Query point 𝐱 = 	 (𝑥, 𝑦, 𝑧)
• Normal 𝐧 = 𝑎, 𝑏, 𝑐
• 𝑑 = − 𝐧, 𝐩
• 𝐮 = 	 (𝑥, 𝑦, 𝑧, 1)
• 𝐯 = 	 (𝑎, 𝑏, 𝑐, 𝑑)

• Signed distance to plane is 𝐮, 𝐯 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑

• Squared distance is ⟨𝐮, 𝐯⟩% = 𝐮𝖳(𝐯𝐯𝖳)𝐮 =: 𝐮𝖳𝐾𝐮
• Matrix 𝐾 = 𝐯𝐯' encodes squared distance to plane

• Key Idea: sum of matrices 𝐾 represents distance to a union of planes

𝐮𝖳𝐾#𝐮 + 𝐮𝖳𝐾%𝐮 = 𝐮𝖳(𝐾# + 𝐾%)𝐮

𝐧0

𝐧1𝐧2

𝐧3
𝐧4

𝐩

𝐦
𝑒!"𝑖 𝑗

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Quadric Error of Edge Collapse

• How much does it cost to collapse an edge 𝑒!(?
• Compute midpoint 𝐦, measure error as

• Error becomes “score” for 𝑒!(, determining priority
• Q: where to put 𝐦?

𝑄(𝐦) = 𝐦𝖳(𝐾! + 𝐾()𝐦

collapse

𝐦
𝑒!"𝑖 𝑗

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Quadric Error of Edge Collapse

𝐦• Find point 𝐱 that minimizes error
• Take derivatives!

𝑄(𝐦) = 𝐦𝖳(𝐾! + 𝐾()𝐦

collapse

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

How to take a derivative of a function involving matrices?

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Minimizing a Quadratic Function

𝑓(𝑥) = 𝑎𝑥% + 𝑏𝑥 + 𝑐

𝑓) 𝑥 = 2𝑎𝑥 + 𝑏 = 0
𝑥 = −𝑏/2𝑎

To find the min of a function 𝑓(𝑥)

take derivative 𝑓′(𝑥) and set equal to 0

can also write any quadratic function of n variables as a symmetric matrix A
consider the multivariable function

𝑓(𝑥, 𝑦) = 𝑎𝑥% + 𝑏𝑥𝑦 + 𝑐𝑦% + 𝑑𝑥 + 𝑒𝑦 + 𝑔
we can rewrite it as:

𝑓(𝑥, 𝑦) = 𝐱𝖳𝐴𝐱 + 𝐮𝖳𝐱 + 𝑔

take derivative 𝑓′(𝑥) and set equal to 0

𝑓′(𝑥, 𝑦) = 2𝐴𝐱 + 𝐮 = 0

𝐱 = −
1
2𝐴

*#𝐮

same structure

same structure

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Positive Definite Quadratic Form

How do we know if our solution minimizes quadratic error?

𝐱 = −
1
2𝐴

*#𝐮

𝑥𝑎𝑥 = 𝑎𝑥% > 0
𝑎 > 0

[positive definite]

[positive semidefinite]

[indefinite]

In the 1D case, we minimize the function if

In the ND case, we minimize the function if

This is known as the function being positive semidefinite

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Minimizing Quadric Error

Find “best” point for edge collapse by minimizing quadratic form

𝑚𝑖𝑛
𝐮∈ℝ!

𝐮&𝐾𝐮

Already know fourth (homogeneous) coordinate for a point is 1
Break up our quadratic function into two pieces

= 𝐱𝖳𝐵𝐱 + 2𝐰𝖳𝐱 + 𝑑(

Can minimize as before

2𝐵𝐱 + 2𝐰 = 0
𝐱 = −𝐵*#𝐰

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Quadric Error Simplification Algorithm

// compute K for each face
for(v : vertices) {
 for(f : faces) {
 Vec4 ve(N, d);
 f->K = outer(ve, ve);
 }
}

// compute K for each vertex
for(v : vertices)
 for(f : v->faces())
 v->K += f->K;

// compute K for each edge
// place into priority queue
PriorityQueue pq;
for(e : edge) {
 for(v : e->vertices())
 e->K += v->K;
 pq.push(e->K, e);
}

// iterate until mesh is a target size
while(faces.length() > target_size) {

 // collapse edge with smallest cost
 e = pq.pop();
 K = e->K;
 v = collapse(e);

 // position new vertex to optimal pos
 v->pos = -B.inv() * w

 // update K for vertex
 // update K for edges touching vertex
 v->K = K;
 for(e2 : v->edges()) {
 e2->K = 0
 for(v2 : e2->vertices())
 e2->K += v2->K;
 }
}

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Is simplification the inverse operation of subdivision?

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Dangers of Resampling

downsam
ple up

sa
m

pl
e

downsam
ple up

sa
m

pl
e

downsam
ple up

sa
m

pl
e

Repeatedly resampling an image degrades signal quality!

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Dangers of Resampling

. . .

downsample upsample

help.

Repeatedly resampling a mesh also degrades signal quality!

15-462/662 | Computer Graphics

• Digital Geometric Processing

• Geometric Subdivision

• Geometric Simplification

• Geometric Remeshing

• Geometric Queries

Lecture 09 | Geom Processing

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Isotropic Remeshing

• Isotropic: same value when measured in any direction
• Remeshing: a change in the mesh

• Goal: change the mesh to make triangles more
uniform shape and size

• Helps achieve good mesh properties:
• Good approximation of original shape
• Vertex degrees close to 6
• Angles close to 60deg
• Delaunay triangles

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Improving Degree

𝑖
𝑗

𝑘

𝑙

flip

Vertices with degree 6 makes triangles more regular
Deviation function: |𝑑! − 6| + |𝑑(− 6| + |𝑑$ − 6| + |𝑑+ − 6|

 If flipping an edge reduces deviation function, flip edge

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Improving Vertex Positioning

average

Center vertices to make triangles more even in size

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Improving Edge Length

split

If an edge is longer than (4/3 * mean) length, split it

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Improving Edge Length

collapse

If an edge is shorter than (4/5 * mean) length, collapse it

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Isotropic Remeshing

Step 1: Step 2:

Step 3: Step 4:

collapsesplit

flip average

15-462/662 | Computer Graphics

• Digital Geometric Processing

• Geometric Subdivision

• Geometric Simplification

• Geometric Remeshing

• Geometric Queries

Lecture 09 | Geom Processing

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Closest Point Queries

???

p

• Problem: given a point, in how do we find the closest
point on a given surface?

• Several use cases:
• Ray/mesh intersection in pathtracing
• Kinematics/animation
• GUI/user selection

• When I click on a mesh, what point am I
actually clicking on?

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Closest Point on a Line

NTx = c

p
N

To find the closest point to p along NTx = c
We can have p travel along N for some time t

𝑁' 𝑝 + 𝑡𝑁 = 𝑐

Multiplying the terms out

𝑁'𝑝 + 𝑡𝑁'𝑁 = 𝑐

The unit norm multiplied by itself is 1
Solve for t

𝑡 = 𝑐 − 𝑁'𝑝

Propagate p along N for time t

𝑝 + 𝑡𝑁
𝑝 + (𝑐 − 𝑁'𝑝)𝑁

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Closest Point on a Line Segment

Compute the vector p from the line base a along the line

⟨𝐩 − 𝐚, 𝐛 − 𝐚⟩

Normalize to get a time

𝑡 =
⟨𝐩 − 𝐚, 𝐛 − 𝐚⟩
⟨𝐛 − 𝐚, 𝐛 − 𝐚⟩

Clip time to range [0,1]and interpolate

p
p p

p

p

p

pp
p

p

a

b

𝒂 + (𝐛 − 𝐚)𝑡

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Closest Point on a 2D Triangle

• Easy! Just compute closest point to each line segment
• For each point, compute distance
• Point with smallest distance wins

• What if the point is inside the triangle?
• Even easier! The closest point is the point itself
• Recall point-in-triangle tests

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Closest Point on a 3D Triangle

• Method #1: Projection**
• Construct a plane that passes through the triangle

• Can be done using cross product of edges
• Project the point to the closest point on the plane

• Same expression as with a line: 𝑝 + (𝑐 − 𝑁'𝑝)𝑁
• Check if point is in triangle using half-plane test

• Else, compute distance from each line segment in 3D
• Same expression as with a 2D line segment

• Method #2: Rotation**
• Translate point + triangle so that triangle vertex v1 is at the origin
• Rotate point + triangle so that triangle vertex v2 sits on the z-axis
• Rotate point + triangle so that triangle vertex v3 sits on the yz-axis
• Disregard x-coordinate of point

• Problem reduces to closest point on 2D triangle

**https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.4264&rep=rep1&type=pdf

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Closest Point on a 3D Triangle Mesh

• Conceptually easy!
• Loop over every triangle
• Compute closest point to current triangle
• Keep track of globally closest point

• Not practical in real world
• Meshes have billions of triangles
• Programs make thousands of geometric

queries a second

• Will look at better solutions next time

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Mesh-Mesh Intersections

• Sometimes when editing geometry, a mesh will
intersect with itself

• Likewise, sometimes when animating geometry,
meshes will collide

• How do we check for/prevent collisions?

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Point-Line Intersection

NTx = c

p
N

Just plug point in

𝑁'𝑝 = 𝑐?

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Point-Line Segment Intersection

Check if adding distances equals net distance**

𝑑𝑖𝑠𝑡 𝑎, 𝑝 + 𝑑𝑖𝑠𝑡 𝑝, 𝑏 = 𝑑𝑖𝑠𝑡(𝑎, 𝑏)

p
p p

p

p

p

pp
p

p

a

b

**Potential numeric stability issues

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Line-Line Intersection

ax = b cx = d

Two equations, two unknowns
Solve a linear system

15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Point-Triangle Intersection

You know this :)

Special Topics in A2:
Geometric Representations

15-462/662 | Computer Graphics Lecture S02 | Representations

15-462/662 | Computer Graphics

• Marching Cubes

• Signed Distance Fields

• NERFs

Lecture S02 | Representations

Explicit vs Implicit

• Not one ideal geometry

• Explicit:
• [+] finding any point on the surface
• [-] finding if a given point lies on the surface

• Implicit:
• [-] finding any point on the surface
• [+] finding if a given point lies on the surface

• Pick the geometry best for the task at hand!

15-462/662 | Computer Graphics Lecture S02 | Representations

15-462/662 | Computer Graphics Lecture S02 | Representations

How do we convert implicit geometry to explicit geometry?

Voxel Grid

• Idea: for an implicit function 𝑓 𝑥, 𝑦, 𝑧 , sample points
uniformly along the function’s domain
• Plot points where 𝑓 𝑥, 𝑦, 𝑧 = 0
• Results in point cloud

• Issue: how many samples to take
• More samples lead to higher precision, but are

more expensive to compute

• Issue: does not include any info on connectivity
• Difficult to interpolate data

15-462/662 | Computer Graphics Lecture S02 | Representations

Marching Cubes

15-462/662 | Computer Graphics Lecture S02 | Representations

• Marching cubes is an algorithm for converting
implicit geometry to explicit
• Adds both positional (vertices) and

connectivity (edges)

This is not the marching cubes algorithm.
This is literally cubes marching.

Marching Cubes

15-462/662 | Computer Graphics Lecture S02 | Representations

• Idea: march a cube though the scene, checking if
each of the vertices in the cube lie inside or outside
the implicit function 𝑓 𝑥, 𝑦, 𝑧
• 8 vertices, 8 checks
• Can encode as an 8-bit number
• Generate geometry that makes sure inside

vertices are enclosed by the geometry, and
outside geometry are kept out

• Issue: how big of a cube to use
• A smaller cube leads to finer details
• A smaller cube also requires more samples

Marching Cubes Vertices

15-462/662 | Computer Graphics Lecture S02 | Representations

• Each cube has 8 vertices

• Check if each vertex lies inside or
outside the implicit function 𝑓 𝑥, 𝑦, 𝑧
• Can be encoded as an 8-bit number

• 1 – inside
• 0 - outside

Marching Cubes Edges

15-462/662 | Computer Graphics Lecture S02 | Representations

• Each cube has 12 edges

• Goal is to create geometry with vertices
along the edges of the cube that
enclose inside vertices and excludes
outside vertices

Marching Cubes Geometry

15-462/662 | Computer Graphics Lecture S02 | Representations

• 2, = 256 possible configurations

• How do we know which one to use?

Marching Cubes Lookup Table

15-462/662 | Computer Graphics Lecture S02 | Representations

• Just use a lookup table!

Marching Cubes Linear Interpolation

15-462/662 | Computer Graphics Lecture S02 | Representations

• Issue: lookup table only tells us on what edges to
place vertices and how to connect them
• Does not tell us the specific location of

vertices

• When placing vertices, can linearly interpolate
them on the edges depending on the evaluated
values on the cube vertices

• Example:
• 𝑓 𝑥-, 𝑦-, 𝑧- = −0.75
• 𝑓 𝑥., 𝑦., 𝑧. = +0.25

• Vertex is placed ¼ distance away from
corner 3, ¾ distance from corner 0

Marching Cubes Examples

15-462/662 | Computer Graphics Lecture S02 | Representations

• Issue: very cube-like
• Easy to see cube artifacts

• How to fix?
• Run refinement
• Run denoising
• Run remeshing

Marching Cubes Application

15-462/662 | Computer Graphics Lecture S02 | Representations

• Terrain generation

• Implicitly generate terrain with algebraic
surfaces and noise
• Convert to explicit mesh for easy

rendering

15-462/662 | Computer Graphics

• Marching Cubes

• Signed Distance Fields

• NERFs

Lecture S02 | Representations

15-462/662 | Computer Graphics Lecture S02 | Representations

How do we convert explicit geometry to implicit geometry?

15-462/662 | Computer Graphics Lecture 06 | Geometry

Signed Distance Fields

• Signed distance fields are implicit functions 𝑓 𝑥, 𝑦, 𝑧
that tell us the sign (inside/outside) and the distance
away from the boundary
• Gradient ∇𝑓 𝑥, 𝑦, 𝑧 makes finding the boundary

easier

• SDFs make it easy to check where and how far a point
is from a surface

f(x,y)

f = 0
+1

-1

15-462/662 | Computer Graphics Lecture 06 | Geometry

Converting Mesh To SDF

• Idea: SDF of a mesh should be
proportional to the closest point 𝑝
on a mesh to some query point 𝑞

• Issue: how to accelerate computing
the closest point on the mesh
• Accelerated geometric queries

For a given query point q:

 Compute the closest point on the mesh p

 Compute the normal np for p

 Project the vector (q-p) onto np

15-462/662 | Computer Graphics Lecture 06 | Geometry

Converting Mesh To SDF

For a given query point q:

 Compute the closest point on the mesh p

 Compute the normal np for p

 Project the vector (q-p) onto np

𝑞

𝑝

𝑛/

• Distance encoded by |𝑞 − 𝑝|
• Sign encoded by (𝑞 − 𝑝) 	 b 	𝑛/

Neural SDFs

• Constructing a SDF can be difficult/expensive

• Throw a bunch of evaluated samples into an
autoencoder
• Learn a SDF representation of the data

• Neural net maps (x,y,z) to a signed distance
• Can be used same way as an SDF

15-462/662 | Computer Graphics Lecture S02 | Representations

DeepSDF (2019) Park et al.

15-462/662 | Computer Graphics

• Marching Cubes

• Signed Distance Fields

• NERFs

Lecture S02 | Representations

Neural Radiance Fields

• Train neural network F on multiple images
• Training data: (x,y,z) of pixel + view angle + RGB

• Depth of pixel must be known
• Test data: (x,y,z) of requested pixel + view angle

• Outputs RGB
• What if we don’t know the z we want?

• Just grab the nearest z
• No different than 0-depth ray tracing

• To train properly, need multiple images
each from a different view angle
• Key Assumption: images must rotate

about a fixed origin
• Hence only 2 d.o.f with view angle

B. Mildenhall (2020)

15-462/662 | Computer Graphics Lecture S02 | Representations

Neural Radiance Fields

• We are building a field of radiance values
• In case that wasn’t clear :)

• Output RGB depends on depth
• Think of it as a slice in a ray’s direction
• Optimize known (depth, RGB) pairs along a ray

• Model learns to interpolate to unseen RGB
values

• Key Assumption: lighting should remain constant
between scenes
• Q: What would the distribution look like if not?

B. Mildenhall (2020)

15-462/662 | Computer Graphics Lecture S02 | Representations

View-Dependent Appearances

• Some changes in lighting are inevitable
• Mirror reflections
• Glass refractions
• Anisotropic materials

• Idea: treat these as normal pixels
• View-dependent lighting will get

baked into the model
• Recall, when evaluating our

model, we pass in the view
direction
• View-dependent lighting

will only be present if same
view angle passed into
neural network

B. Mildenhall (2020)

15-462/662 | Computer Graphics Lecture S02 | Representations

Extra Features

B. Mildenhall (2020)

• What can we use NERFs for?
• Depth Maps
• Image Relighting
• Object insertion

15-462/662 | Computer Graphics Lecture S02 | Representations

https://www.matthewtancik.com/nerf

NeRF In The Wild

R. Martin-Brualla (2021) Google

15-462/662 | Computer Graphics Lecture S02 | Representations

Image Databases

• Key Idea: photos for scene reconstruction
are not always taken by the same user in
the same conditions
• Dealing with large database of image

requires understanding of static
properties and transient properties
• Transient properties include:

• People and object occlusions
• Weather
• Time of day

15-462/662 | Computer Graphics Lecture S02 | Representations

Removing Transient Features

• Learn Appearance and transient embedding
that minimizes reconstruction error

15-462/662 | Computer Graphics Lecture S02 | Representations

Removing Transient Features

• Modify appearance embedding to change
weather and lighting
• Allows multiple photos to share same

global properties

• Now we have an image set to perform
NeRF on
• Recall viewport given

15-462/662 | Computer Graphics Lecture S02 | Representations

