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Subdivision

• Subdivison is the process of upsampling a mesh

• General formula:
• Split Step: split faces into smaller faces
• Move Step: replace vertex positions/properties 

with weighted average of neighbors 
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Linear Subdivision [Split Step]
• Split every polygon (any # of sides) into quadrilaterals

• Each new quadrilateral now has:
• [face coords]     : 1 new vertex from the mesh face center
• [edge coords]    : 2 new vertices from the new edges 
• [vertex coords] : 1 new vertex from the original mesh face
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Linear Subdivision [Move Step]

Step 1: Step 2:Face Coords Edge Coords

Step 3: Vertex Coords

(𝑎 + 𝑏)	/	2

𝑣! = 𝑣!𝑣!
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Catmull Clark Subdivision

• In 1978, Edwin Catmull (Pixar co-founder) and Jim Clark 
wanted to create a generalization of uniform bi-cubic b-
splines for 3D meshes
• We will cover what this means in a future lecture : )

• Became ubiquitous in graphics
• Helped Catmull win an Academy Award for 

Technical Achievement in 2005 

OpenSubdiv V2 (2018) Pixar
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Catmull-Clark Subdivision [Split Step]
• Split every polygon (any # of sides) into quadrilaterals

• Each new quadrilateral now has:
• [face coords]     : 1 new vertex from the mesh face center
• [edge coords]    : 2 new vertices from the new edges 
• [vertex coords] : 1 new vertex from the original mesh face

No different than

Linear Subdivision!
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Catmull-Clark Subdivision [Move Step]

Step 1: Step 2:Face Coords Edge Coords

Step 3: Vertex Coords

- vertex degree

- average of face coords around vertex

- average of edge coords around vertex

- original vertex position
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Catmull-Clark Subdivision [Quads]

Few irregular vertices Smoothly-varying surface normals Smooth reflections/caustics
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Catmull-Clark Subdivision [Triangles]

Many irregular vertices Erratic surface normals Jagged reflections/caustics
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Is there a better subdivision scheme we can use for triangulated meshes?
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Loop Subdivision

Step 1: 

Step 2: Step 3: 

Split triangle 
into 4 triangles

Assign new coords Assign old coords
1/8

1/8

3/8 3/8

u u

u

uu

u

1 - nu

n - vertex degree
u - 3/16 if n=3
      3/(8n) otherwise
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Loop Subdivision

Step 1: 

Step 2: Step 3: 

Split triangle 
into 4 triangles

Assign new coords Assign old coords
1/8

1/8

3/8 3/8

u u

u

uu

u

1 - nu

n - vertex degree
u - 3/16 if n=3
      3/(8n) otherwise

How do we efficiently do Step 1?
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Loop Subdivision Using Local Ops

Step 1: 

Step 2: 
Flip new edges until they touch two new vertices

Split all edges in any order

flip

split
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Loop Subdivision Using Local Ops

Step 1: 

Step 2: 
Flip new edges until they touch two new vertices

Split all edges in any order

flip

split

The order we traverse the edges and split them matter!

Traversing edges forward and splitting vs traversing them 
backwards and splitting will yield different meshes
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Loop Subdivision Using Local Ops

Step 1: 

Step 2: 
Flip new edges until they touch two new vertices

Split all edges in any order

flip

split

Flipping new edges until the below criteria is met 
ensures that any order of splitting edges will still result in 
the same final mesh
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Simplification

• Simplification is the process of downsampling a mesh
• Less Storage overhead

• Smaller file sizes
• Less Processing overhead

• Less elements to iterate over
• Larger mesh modifications

• Instead of moving tens of smaller mesh 
elements, move one larger mesh element
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Simplification Algorithm Basics
• Greedy Algorithm:

• Assign each edge a cost
• Collapse edge with least cost
• Repeat until target number of elements is reached

• Particularly effective cost function: quadric error metric**

[ 300 triangles ] [ 30 triangles ][ 3,000 triangles ][ 30,000 triangles ]

**invented at CMU (Garland & Heckbert 1997)
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Quadric Error Metric
• Goal: approximate a point’s distance from a collection of triangles

• Review: what is the distance of a point 𝐱 from a plane 𝐩 with 
normal 𝐧?

• Quadric error is the sum of squared point-to-plane distances

dist(𝐱) = ⟨𝐧, 𝐱⟩ − ⟨𝐧, 𝐩⟩ = ⟨𝐧, 𝐱 − 𝐩⟩

𝐩

𝐱

𝐧

𝑄 = 1

𝑄 =
1
8

𝑄 =
1
2

𝑄 = 0
𝐧0

𝐧1𝐧2

𝐧3
𝐧4

𝐩

𝑄(𝐱):= ∑
!"#

$
⟨𝐧! , 𝐱 − 𝐩⟩%
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Quadric Error Metric

𝐩

𝐱

𝐧

• Given:
• Query point 𝐱 = 	 (𝑥, 𝑦, 𝑧)
• Normal 𝐧 = 	 (𝑎, 𝑏, 𝑐)
• Offset from origin 𝑒 = 𝐧, 𝐩 − 0 = 𝐧, 𝐩
• We want the negative of this value to make a plane equation

• 𝑑 = −𝑒 = − 𝐧, 𝐩
• We can rewrite in homogeneous coordinates:

• 𝐮 = 	 (𝑥, 𝑦, 𝑧, 1)
• 𝐯 = 	 (𝑎, 𝑏, 𝑐, 𝑑)

• Signed distance to plane is then just 𝐮, 𝐯 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑
• Note that it is zero in the plane!

• Squared distance is ⟨𝐮, 𝐯⟩% = 𝐮𝖳(𝐯𝐯𝖳)𝐮 =: 𝐮𝖳𝐾𝐮
• Matrix 𝐾 = 𝐯𝐯' encodes squared distance to plane

• Key Idea: sum of matrices 𝐾 represents distance to a union of planes

𝐮𝖳𝐾#𝐮 + 𝐮𝖳𝐾%𝐮 = 𝐮𝖳(𝐾# + 𝐾%)𝐮

𝐧0

𝐧1𝐧2

𝐧3
𝐧4

𝐩
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Quadric Error Metric

𝐩

𝐱

𝐧

• Given:
• Query point 𝐱 = 	 (𝑥, 𝑦, 𝑧)
• Normal 𝐧 = 𝑎, 𝑏, 𝑐
• 𝑑 = − 𝐧, 𝐩
• 𝐮 = 	 (𝑥, 𝑦, 𝑧, 1)
• 𝐯 = 	 (𝑎, 𝑏, 𝑐, 𝑑)

• Signed distance to plane is 𝐮, 𝐯 = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑

• Squared distance is ⟨𝐮, 𝐯⟩% = 𝐮𝖳(𝐯𝐯𝖳)𝐮 =: 𝐮𝖳𝐾𝐮
• Matrix 𝐾 = 𝐯𝐯' encodes squared distance to plane

• Key Idea: sum of matrices 𝐾 represents distance to a union of planes

𝐮𝖳𝐾#𝐮 + 𝐮𝖳𝐾%𝐮 = 𝐮𝖳(𝐾# + 𝐾%)𝐮

𝐧0

𝐧1𝐧2

𝐧3
𝐧4

𝐩



𝐦
𝑒!"𝑖 𝑗
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Quadric Error of Edge Collapse

• How much does it cost to collapse an edge 𝑒!(?
• Compute midpoint 𝐦, measure error as 

• Error becomes “score” for 𝑒!(, determining priority
• Q: where to put 𝐦?

𝑄(𝐦) = 𝐦𝖳(𝐾! + 𝐾()𝐦

collapse



𝐦
𝑒!"𝑖 𝑗
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Quadric Error of Edge Collapse

𝐦• Find point 𝐱 that minimizes error
• Take derivatives!

𝑄(𝐦) = 𝐦𝖳(𝐾! + 𝐾()𝐦

collapse
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How to take a derivative of a function involving matrices? 
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Minimizing a Quadratic Function

𝑓(𝑥) = 𝑎𝑥% + 𝑏𝑥 + 𝑐

𝑓) 𝑥 = 2𝑎𝑥 + 𝑏 = 0
𝑥 = −𝑏/2𝑎

To find the min of a function 𝑓(𝑥) 

take derivative 𝑓′(𝑥) and set equal to 0

can also write any quadratic function of n variables as a symmetric matrix A
consider the multivariable function

𝑓(𝑥, 𝑦) = 𝑎𝑥% + 𝑏𝑥𝑦 + 𝑐𝑦% + 𝑑𝑥 + 𝑒𝑦 + 𝑔
we can rewrite it as:

𝑓(𝑥, 𝑦) = 𝐱𝖳𝐴𝐱 + 𝐮𝖳𝐱 + 𝑔

take derivative 𝑓′(𝑥) and set equal to 0

𝑓′(𝑥, 𝑦) = 2𝐴𝐱 + 𝐮 = 0

𝐱 = −
1
2𝐴

*#𝐮

same structure

same structure
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Positive Definite Quadratic Form

How do we know if our solution minimizes quadratic error?

𝐱 = −
1
2𝐴

*#𝐮

𝑥𝑎𝑥 = 𝑎𝑥% > 0
𝑎 > 0

[ positive definite ]

[ positive semidefinite ]

[ indefinite ]

In the 1D case, we minimize the function if 

In the ND case, we minimize the function if

This is known as the function being positive semidefinite
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Minimizing Quadric Error

Find “best” point for edge collapse by minimizing quadratic form

𝑚𝑖𝑛
𝐮∈ℝ!

𝐮&𝐾𝐮

Already know fourth (homogeneous) coordinate for a point is 1
Break up our quadratic function into two pieces

= 𝐱𝖳𝐵𝐱 + 2𝐰𝖳𝐱 + 𝑑(

Can minimize as before

2𝐵𝐱 + 2𝐰 = 0
𝐱 = −𝐵*#𝐰
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Quadric Error Simplification Algorithm

// compute K for each face
for(v : vertices) {
 for(f : faces) {
  Vec4 ve(N, d);
  f->K = outer(ve, ve);
 }
}

// compute K for each vertex
for(v : vertices)
 for(f : v->faces())
  v->K += f->K;

// compute K for each edge
// place into priority queue
PriorityQueue pq;
for(e : edge) {
 for(v : e->vertices())
  e->K += v->K;
 pq.push(e->K, e);
}

// iterate until mesh is a target size
while(faces.length() > target_size) {

 // collapse edge with smallest cost
 e = pq.pop();
 K = e->K;
 v = collapse(e);

 // position new vertex to optimal pos
 v->pos = -B.inv() * w

 // update K for vertex 
 // update K for edges touching vertex 
 v->K = K;
 for(e2 : v->edges()) {
  e2->K = 0
  for(v2 : e2->vertices())
   e2->K += v2->K;
 }
}
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Is simplification the inverse operation of subdivision?
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Dangers of Resampling

downsam
ple up

sa
m

pl
e

downsam
ple up

sa
m

pl
e

downsam
ple up

sa
m

pl
e

Repeatedly resampling an image degrades signal quality!
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Dangers of Resampling

. . .

downsample upsample

help.

Repeatedly resampling a mesh also degrades signal quality!
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Isotropic Remeshing

• Isotropic: same value when measured in any direction
• Remeshing: a change in the mesh

• Goal: change the mesh to make triangles more 
uniform shape and size

• Helps achieve good mesh properties:
• Good approximation of original shape
• Vertex degrees close to 6
• Angles close to 60deg
• Delaunay triangles
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Improving Degree

𝑖
𝑗

𝑘

𝑙

flip

Vertices with degree 6 makes triangles more regular
Deviation function: |𝑑! − 6| + |𝑑( − 6| + |𝑑$ − 6| + |𝑑+ − 6|

 If flipping an edge reduces deviation function, flip edge
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Improving Vertex Positioning

average

Center vertices to make triangles more even in size
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Improving Edge Length

split

If an edge is longer than (4/3 * mean) length, split it
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Improving Edge Length

collapse

If an edge is shorter than (4/5 * mean) length, collapse it
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Isotropic Remeshing

Step 1: Step 2: 

Step 3: Step 4: 

collapsesplit

flip average
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Closest Point Queries

???

p

• Problem: given a point, in how do we find the closest 
point on a given surface?

• Several use cases:
• Ray/mesh intersection in pathtracing
• Kinematics/animation
• GUI/user selection

• When I click on a mesh, what point am I 
actually clicking on?
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Closest Point on a Line

NTx = c

p
N

To find the closest point to p along NTx = c
We can have p travel along N for some time t

𝑁' 𝑝 + 𝑡𝑁 = 𝑐

Multiplying the terms out

𝑁'𝑝 + 𝑡𝑁'𝑁 = 𝑐

The unit norm multiplied by itself is 1
Solve for t

𝑡 = 𝑐 − 𝑁'𝑝

Propagate p along N for time t

𝑝 + 𝑡𝑁
𝑝 + (𝑐 − 𝑁'𝑝)𝑁
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Closest Point on a Line Segment

Compute the vector p from the line base a along the line

⟨𝐩 − 𝐚, 𝐛 − 𝐚⟩

Normalize to get a time

𝑡 =
⟨𝐩 − 𝐚, 𝐛 − 𝐚⟩
⟨𝐛 − 𝐚, 𝐛 − 𝐚⟩

Clip time to range [0,1]and interpolate

p
p p

p

p

p

pp
p

p

a

b

𝒂 + (𝐛 − 𝐚)𝑡
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Closest Point on a 2D Triangle

• Easy! Just compute closest point to each line segment
• For each point, compute distance
• Point with smallest distance wins

• What if the point is inside the triangle?
• Even easier! The closest point is the point itself
• Recall point-in-triangle tests
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Closest Point on a 3D Triangle

• Method #1: Projection**
• Construct a plane that passes through the triangle

• Can be done using cross product of edges
• Project the point to the closest point on the plane

• Same expression as with a line: 𝑝 + (𝑐 − 𝑁'𝑝)𝑁
• Check if point is in triangle using half-plane test

• Else, compute distance from each line segment in 3D
•  Same expression as with a 2D line segment

• Method #2: Rotation**
• Translate point + triangle so that triangle vertex v1 is at the origin
• Rotate point + triangle so that triangle vertex v2 sits on the z-axis
• Rotate point + triangle so that triangle vertex v3 sits on the yz-axis
• Disregard x-coordinate of point

• Problem reduces to closest point on 2D triangle

**https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.104.4264&rep=rep1&type=pdf
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Closest Point on a 3D Triangle Mesh

• Conceptually easy! 
• Loop over every triangle
• Compute closest point to current triangle
• Keep track of globally closest point

• Not practical in real world
• Meshes have billions of triangles
• Programs make thousands of geometric 

queries a second

• Will look at better solutions next time
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Mesh-Mesh Intersections

• Sometimes when editing geometry, a mesh will 
intersect with itself

• Likewise, sometimes when animating geometry, 
meshes will collide

• How do we check for/prevent collisions?
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Point-Line Intersection

NTx = c

p
N

Just plug point in

𝑁'𝑝 = 𝑐?



15-462/662 | Computer Graphics Lecture 09 | Geom Processing

Point-Line Segment Intersection

Check if adding distances equals net distance**

𝑑𝑖𝑠𝑡 𝑎, 𝑝 + 𝑑𝑖𝑠𝑡 𝑝, 𝑏 = 𝑑𝑖𝑠𝑡(𝑎, 𝑏)

p
p p

p

p

p

pp
p

p

a

b

**Potential numeric stability issues
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Line-Line Intersection

ax = b cx = d

Two equations, two unknowns
Solve a linear system
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Point-Triangle Intersection

You know this : )
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Explicit vs Implicit

• Not one ideal geometry

• Explicit:
• [+] finding any point on the surface
• [-] finding if a given point lies on the surface

• Implicit:
• [-] finding any point on the surface
• [+] finding if a given point lies on the surface

• Pick the geometry best for the task at hand!
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How do we convert implicit geometry to explicit geometry?



Voxel Grid

• Idea: for an implicit function 𝑓 𝑥, 𝑦, 𝑧 , sample points 
uniformly along the function’s domain
• Plot points where 𝑓 𝑥, 𝑦, 𝑧 = 0
• Results in point cloud

• Issue: how many samples to take
• More samples lead to higher precision, but are 

more expensive to compute

• Issue: does not include any info on connectivity
• Difficult to interpolate data
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Marching Cubes
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• Marching cubes is an algorithm for converting 
implicit geometry to explicit
• Adds both positional (vertices) and 

connectivity (edges)

This is not the marching cubes algorithm.
This is literally cubes marching.



Marching Cubes
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• Idea: march a cube though the scene, checking if 
each of the vertices in the cube lie inside or outside 
the implicit function 𝑓 𝑥, 𝑦, 𝑧
• 8 vertices, 8 checks
• Can encode as an 8-bit number
• Generate geometry that makes sure inside 

vertices are enclosed by the geometry, and 
outside geometry are kept out

• Issue: how big of a cube to use
• A smaller cube leads to finer details
• A smaller cube also requires more samples



Marching Cubes Vertices

15-462/662 | Computer Graphics Lecture S02 | Representations

• Each cube has 8 vertices

• Check if each vertex lies inside or 
outside the implicit function 𝑓 𝑥, 𝑦, 𝑧
• Can be encoded as an 8-bit number

• 1 – inside
• 0 - outside



Marching Cubes Edges

15-462/662 | Computer Graphics Lecture S02 | Representations

• Each cube has 12 edges

• Goal is to create geometry with vertices 
along the edges of the cube that 
enclose inside vertices and excludes 
outside vertices



Marching Cubes Geometry
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• 2, = 256 possible configurations

• How do we know which one to use?



Marching Cubes Lookup Table

15-462/662 | Computer Graphics Lecture S02 | Representations

• Just use a lookup table!



Marching Cubes Linear Interpolation
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• Issue: lookup table only tells us on what edges to 
place vertices and how to connect them
• Does not tell us the specific location of 

vertices

• When placing vertices, can linearly interpolate 
them on the edges depending on the evaluated 
values on the cube vertices

• Example:
• 𝑓 𝑥-, 𝑦-, 𝑧- = −0.75
• 𝑓 𝑥., 𝑦., 𝑧. = +0.25

• Vertex is placed ¼ distance away from 
corner 3, ¾ distance from corner 0



Marching Cubes Examples
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• Issue: very cube-like
• Easy to see cube artifacts

• How to fix?
• Run refinement
• Run denoising
• Run remeshing



Marching Cubes Application
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• Terrain generation

• Implicitly generate terrain with algebraic 
surfaces and noise
• Convert to explicit mesh for easy 

rendering
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How do we convert explicit geometry to implicit geometry?
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Signed Distance Fields

• Signed distance fields are  implicit functions 𝑓 𝑥, 𝑦, 𝑧  
that tell us the sign (inside/outside) and the distance 
away from the boundary
• Gradient ∇𝑓 𝑥, 𝑦, 𝑧  makes finding the boundary 

easier 

• SDFs make it easy to check where and how far a point 
is from a surface

f(x,y)

f = 0
+1

-1
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Converting Mesh To SDF

• Idea: SDF of a mesh should be 
proportional to the closest point 𝑝 
on a mesh to some query point 𝑞

• Issue: how to accelerate computing 
the closest point on the mesh
• Accelerated geometric queries

For a given query point q:

   Compute the closest point on the mesh p

   Compute the normal np for p

   Project the vector (q-p) onto np
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Converting Mesh To SDF

For a given query point q:

   Compute the closest point on the mesh p

   Compute the normal np for p

   Project the vector (q-p) onto np

𝑞

𝑝

𝑛/

• Distance encoded by |𝑞 − 𝑝|
• Sign encoded by (𝑞 − 𝑝) 	 b 	𝑛/



Neural SDFs

• Constructing a SDF can be difficult/expensive

• Throw a bunch of evaluated samples into an 
autoencoder
• Learn a SDF representation of the data

• Neural net maps (x,y,z) to a signed distance
• Can be used same way as an SDF
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DeepSDF (2019) Park et al.
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Neural Radiance Fields

• Train neural network F on multiple images
• Training data: (x,y,z) of pixel + view angle + RGB

• Depth of pixel must be known
• Test data: (x,y,z) of requested pixel + view angle

• Outputs RGB
• What if we don’t know the z we want?

• Just grab the nearest z
• No different than 0-depth ray tracing

• To train properly, need multiple images 
each from a different view angle
• Key Assumption: images must rotate 

about a fixed origin
• Hence only 2 d.o.f with view angle

B. Mildenhall (2020)
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Neural Radiance Fields

• We are building a field of radiance values
• In case that wasn’t clear : )

• Output RGB depends on depth
• Think of it as a slice in a ray’s direction
• Optimize known (depth, RGB) pairs along a ray 

• Model learns to interpolate to unseen RGB 
values

• Key Assumption: lighting should remain constant 
between scenes
• Q: What would the distribution look like if not?

B. Mildenhall (2020)

15-462/662 | Computer Graphics Lecture S02 | Representations



View-Dependent Appearances

• Some changes in lighting are inevitable
• Mirror reflections
• Glass refractions
• Anisotropic materials

• Idea: treat these as normal pixels
• View-dependent lighting will get 

baked into the model
• Recall, when evaluating our 

model, we pass in the view 
direction
• View-dependent lighting 

will only be present if same 
view angle passed into 
neural network

B. Mildenhall (2020)
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Extra Features

B. Mildenhall (2020)

• What can we use NERFs for?
• Depth Maps
• Image Relighting
• Object insertion
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https://www.matthewtancik.com/nerf



NeRF In The Wild

R. Martin-Brualla (2021) Google
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Image Databases

• Key Idea: photos for scene reconstruction 
are not always taken by the same user in 
the same conditions
• Dealing with large database of image 

requires understanding of static 
properties and transient properties
• Transient properties include:

• People and object occlusions
• Weather
• Time of day
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Removing Transient Features

• Learn Appearance and transient embedding 
that minimizes reconstruction error
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Removing Transient Features

• Modify appearance embedding to change 
weather and lighting
• Allows multiple photos to share same 

global properties

• Now we have an image set to perform 
NeRF on
• Recall viewport given
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