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Alpha Values

Lecture 05 | Texturing

• Another common image format: RGBA
• Alpha channel specifies ‘opacity’ of object
• Basically how transparent it is
• Most common encoding is 8-bits per 

channel (0-255)

• Compositing A over B != B over A
• Consider the extreme case of two opaque 

objects…

𝛼 = 3/4

𝛼 = 1/2

𝛼 = 1/4

𝛼 = 1

fully opaque

𝛼 = 0
fully transparent

[ nyc over…koala? ][ koala over nyc ]

where is 
the koala…
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Non-Premultiplied Alpha

Lecture 05 | Texturing

𝐵 𝐴

B over A

• Goal: Composite image 𝐵 with alpha 𝛼!	over 
image 𝐴 with alpha 𝛼"

𝐴 = (𝐴!, 𝐴", 𝐴#)
𝐵 = (𝐵!, 𝐵", 𝐵#)

𝐶 = 𝛼$𝐵 + (1 − 𝛼$)𝛼%𝐴

appearance of semi-
transparent B

what B lets through

appearance of semi-
transparent A

𝛼& = 𝛼$ + (1 − 𝛼$)𝛼%

• Composite RGB: • Composite Alpha:

Two different 

equations is 

inefficient!!
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Premultiplied Alpha

Lecture 05 | Texturing

𝐵 𝐴

B over A

• Goal: Composite image 𝐵 with alpha 𝛼!	over 
image 𝐴 with alpha 𝛼"

𝐴' = (𝛼%𝐴!, 𝛼%𝐴", 𝛼%𝐴#, 𝛼%)
𝐵' = (𝛼$𝐵!, 𝛼$𝐵", 𝛼$𝐵#, 𝛼$)

𝐶' = 𝐵' + (1 − 𝛼$)𝐴' (𝐶!, 𝐶", 𝐶#, 𝛼&) ⟹ (𝐶!/𝛼& , 𝐶"/𝛼& , 𝐶#/𝛼&)

• Composite RGBA: • Un-Premultiply for Final Color:
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Why Premultiplied Matters [Upsample]

Lecture 05 | Texturing

coloralpha premultiplied

upsampled
color

upsampled
alpha

upsampled
premultiplied

new background 𝐴	(𝛼" = 1) 𝐵 over 𝐴 𝐵 over 𝐴 (premultiplied)

upsample

Something isn’t right…

Known as fringing
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Why Premultiplied Matters [Downsample]

Lecture 05 | Texturing

color alpha color alpha
original downsampled

composite

regular

premultiplied

[ RGB ] [ A ]
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Closed Under Composition

Lecture 05 | Texturing

𝐵 𝐴

B over A

• Goal: Composite bright red image 𝐵 with alpha 0.5 
over bright red image 𝐴 with alpha 0.5

𝐴 = (1, 0, 0, 0.5)
𝐵 = (1, 0, 0, 0.5)

0.5 ∗ 1,0,0 + (1 − 0.5) ∗ 0.5 ∗ 1,0,0

• Non-Premultiplied: • Premultiplied:

(0.75, 0, 0)

0.5 + 1 − 0.5 ∗ 0.5 = 0.75

color

alpha

0.5 ∗ 0.5,0,0,0.5 + 1 − 0.5 ∗ 0.5,0,0,0.5

(0.75, 0, 0, 0.75)

(1, 0, 0)
divide out alpha
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Blend Methods

Lecture 05 | Texturing

𝐷#$!" =	𝑆#$!" + 𝐷#$!"
𝐷#$!" =	𝑆#$!" − 𝐷#$!"
𝐷#$!" =	−	𝑆#$!" + 𝐷#$!"
𝐷#$!" =	min(𝑆#$!", 	𝐷#$!" )
𝐷#$!" = max(𝑆#$!", 	𝐷#$!" )
𝐷#$!" =	𝑆#$!" + 𝐷#$!" ∗ (1 − 𝑆")

Blend Add
Blend Subtract
Blend Reverse Subtract
Blend Min
Blend Max
Blend Over

𝑆#$!"	and 𝐷#$!" are pre-multiplied

When writing to color buffer, can use any blend method
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Updated Depth Buffer ( Z-buffer ) Sample Code

Lecture 05 | Texturing

draw_sample(x, y, d, c) //new depth d & color c at (x,y)
{

if(d < zbuffer[x][y])
{

// triangle is closest object seen so far at this
// sample point. Update depth and color buffers.  
zbuffer[x][y] = d;
color[x][y] = c.rgba + (1-c.a) * color[x][y];

}
// otherwise, we’ve seen something closer already;
// don’t update color or depth

}

Assumes color[x][y] and c are both premultiplied.

Triangles must be rendered back to front!
A over B != B over A

Should we still be 

doing depth writes for 

alpha primitives?
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Blend Render Order

Lecture 05 | Texturing

• For mixtures of opaque and transparent triangles:

• Step 1: render opaque primitives (in any order) 
using depth-buffered occlusion
• If pass depth test, triangle overwrites value in 

color buffer at sample
• Depth READ and WRITE

• Step 2: disable depth buffer update, render semi-
transparent surfaces in back-to-front order.
• If pass depth test, triangle is composited 

OVER contents of color buffer at sample
• Depth READ only
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The “Simpler” Graphics Pipeline

Now Let’s

Put It A
ll

Together!
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The Inputs

positions = {
v0x, v0y, v0z, 
v1x, v1y, v1x,
v2x, v2y, v2z,
v3x, v3y, v3x,
v4x, v4y, v4z,
v5x, v5y, v5x

};

texcoords ={
v0u, v0v, 
v1u, v1v,
v2u, v2v,
v3u, v3v,
v4u, v4v,
v5u, v5v

};

[ vertices ] [ textures ]

Object-to-camera-space transform 𝑇 ∈ ℝ!×!

Perspective projection transform 𝑃 ∈ ℝ!×!

Output image (𝑊,𝐻) 

[ camera properties ] [ machine ]
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Step 1: Transform

z

x

y
Transform triangle vertices into camera space
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Step 2: Perspective Projection 

Apply perspective projection transform to transform 
triangle vertices into normalized coordinate space

[ normalized space position ][ 3D camera space position ]
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Step 3: Clipping

Discard triangles completely outside cube.
Clip triangles partially in cube.

[ post-clipping ][ pre-clipping ]
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Step 4: Transform To Screen Coordinates

Perform homogeneous divide.
Transform vertex xy positions from normalized coordinates 

into screen coordinates (based on screen [w, h]).

(0, 0)

(w, h)
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Step 5: Sample Coverage

Check if samples lie inside triangle.
Evaluate depth and barycentric coordinates at all passing samples.
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Step 6: Compute Color

Texture lookups, color interpolation, etc.

u

v[ u(x,y), v(x,y) ]
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Step 7: Depth Test

Check depth and update depth if closer primitive found.
(can be disabled)

PASS PASSPASS

PASS PASS PASS

PASSPASS

PASS

PASS

FAIL

FAIL

FAIL

FAIL

FAIL

FAIL

PASS

PASS

PASS

PASS
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Step 8: Color Blending

Update color buffer with correct blending operation.
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The “Real” Graphics Pipeline

Doesn’t look much different 
than what we discussed…
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• Implicit & Explicit Geometry

• Manifold Geometry

• Local Geometric Operations

Lecture 06 | Geometry

• Alpha Blending

• The Graphics Pipeline Revisited

• Introduction to Geometry
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Some Motivation

“I hate meshes. 
I cannot believe how hard this is. 
Geometry is hard.”

-- David Baraff
Senior Research Scientist

Pixar Animation Studios
(also a former CMU prof.)

“why won’t you subdivide”
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What Is Geometry?

g  e • o m • e t • r y   /jēˈämətrē/ n.
1. The study of shapes, sizes, patterns, and positions.
2. The study of spaces where some quantity (lengths,
    angles, etc.) can be measured.

“Earth” “measure”

Remember that Computer Graphics is just operating on a bunch of numbers.
If we can measure it, we can represent it as numbers on our computer!
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How To Represent Geometry

[ IMPLICIT ] [ EXPLICIT ]

[ CURVATURE ]

[ LINGUISTIC ]

“unit circle”

[ SYMMETRIC ]
rotate

[ DYNAMIC ]
[ TOMOGRAPHIC ]

(constant density)
[ DISCRETE ]

n ➞ ∞

which is best?
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How To Represent Humans
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How To Represent Water
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How To Represent Cloth
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How To Represent Machines
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How To Represent This Thing
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Many Ways To Encode Geometry

• Explicit:
• point cloud
• polygon meshes
• subdivision surfaces
• NURBS

• Implicit:
• level set
• constructive solid geometry
• algebraic surface
• L-systems
• Fractals

• Not one best geometric representation!
• Each is suited for a different task
• Tradeoffs between:

• Accuracy
• Memory
• Performance (searching/operating)
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Implicit Geometry

• Points aren’t known directly, but satisfy some 
relationship
• Example: unit sphere is all points such that 

x2+y2+z2=1

• More generally, in the form f(x,y,z) = 0

• Finding example points is hard
• Requires solving equation

• Checking if points are inside/outside is easy
• Just evaluate the function with a given point

f(x,y)

f = 0
+1

-1
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Explicit Geometry

• All points are given directly

• More generally:

• Given any (𝑢, 𝑣), we can find a point on the surface
• Can limit (𝑢, 𝑣) to some range

• Example: triangle with barycentric coordinates

• Finding example points is easy
• We are given them for free

• Checking if points are inside/outside is hard
• We are given the output values and need to find 

input values that satisfy the geometry
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What does easy and hard mean?
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Implicit Geometry [Hard]

• Given the unit sphere:

  𝑓 𝑥, 𝑦, 𝑧 = 𝑥% + 𝑦% + 𝑧% = 1

• Find a point that exists on it.

• Answer: (1,0,0)
• Not so difficult, but how did you arrive at the answer?
• We are given a constraint, and need to find parameters 

𝑥, 𝑦, 𝑧  that satisfy the constraint
• Keep guessing and checking
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Implicit Geometry [Easy]

• Given the unit sphere:

  𝑓 𝑥, 𝑦, 𝑧 = 𝑥% + 𝑦% + 𝑧% = 1

• Find if the point (0.75, 0.5, 0.25) lives inside it.

• Answer: yes!
•  𝑓 0.75, 0.5, 0.25 = 0.75% + 0.5% + 0.25% = 0.875 < 1
• Easy to check! Just evaluate the sign of the function at 

the desired point
(0.75, 0.5, 0.25) 
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Explicit Geometry [Easy]

• Given the torus:

  𝑓 𝑢, 𝑣 = ((2 + cos 𝑢) cos 𝑣 , (2 + cos 𝑢) sin 𝑣	, sin 𝑢)

• Find a point that exists on it.

• Answer: (3,0,0)
• Just plug in any value of 𝑢, 𝑣 !

• We plugged in 𝑢, 𝑣 = (0,0)
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Explicit Geometry [Hard]

• Given the torus:

  𝑓 𝑢, 𝑣 = ((2 + cos 𝑢) cos 𝑣 , (2 + cos 𝑢) sin 𝑣	, sin 𝑢)

• Find if the point (1.96, -0.39, 0.9) lives inside it.

• Answer: no, I’m not computing that
• We are given a constraint, and need to find parameters 

𝑢, 𝑣  that satisfy the constraint
• Keep guessing and checking

(1.96, -0.39, 0.9)
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Let’s look at some implicit examples…
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Algebraic Surfaces [Implicit]

• A surface built with algebra
• Generally thought of as a surface where points are some radius 
𝑟 away from another point/line/surface

• [+] Generates smooth/symmetric surfaces
• [-] Cannot generate impurities/deformations
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Constructive Solid Geometry [Implicit]

• Build more complicated shapes via Boolean operations
• Basic operations:

• Can be used to form complex shapes!
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Blobby Surfaces [Implicit]

• Instead of Booleans, gradually blend surfaces together:

• Easier to understand in 2D:

f=.5 f=.4 f=.3

(Gaussian centered at p)

(Sum of Gaussians centered at different points)
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Level Set Methods [Implicit]

• Store a grid of values approximating function

• Surface is found where interpolated values equal zero

• [+] Provides much more explicit control over shape
• [-] Runs into problems of aliasing!
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Fractals [Implicit]

• No precise definition; exhibit self-similarity, detail at all scales

• [+] New “language” for describing natural phenomena
• [-] Hard to control shape!
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Let’s look at some explicit examples…
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Point Cloud [Explicit]

• A list of points	(𝑥, 𝑦, 𝑧)
• Often augmented with normals

• [+] Easily represent any kind of geometry
• [+] Easy to draw dense cloud (>>1 point/pixel)
• [+] Easy for simulation
• [-] Large lookup time
• [-] Large memory overhead

• Hard to interpolate undersampled regions
• Hard to do processing / simulation /
• Result is just as good as the scan
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Triangle Mesh [Explicit]

• [+] Easy interpolation with good approximation
• Use barycentric interpolation to define points 

inside triangles
• [-] Large memory overhead

• Store vertices as triples of coordinates (x,y,z)
• Store triangles as triples of indices (i,j,k)

• Polygonal Mesh: shapes do not need to be 
triangles
• Ex: quads

0

1

2

3

x  y  z
0: -1 -1 -1
1:  1 -1  1
2:  1  1 -1
3: -1  1  1

[ VERTICES ]
i j k
0  2  1
0  3  2
3  0  1
3  1  2

[ TRIANGLES ]
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Manifold Assumption

• A mesh is manifold if and only if it can exist in real life
• Important for simulation/3D printing

• Everything in real life has volume to it
• Likewise, every manifold surface has some volume it encases
• Allows us to think of manifold surfaces as ‘shells’ to an inner 

volume
• Example: M&Ms

• Everything in real life, when zoomed in far enough, should be able 
to have a rectangular coordinate grid
• Likewise, every manifold surface should be planar when 

zoomed in far enough
• Example: Planet Earth
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Manifold Properties

• For polygonal surfaces, check for “fins” and ”fans”

• Every edge is contained in only two polygons (no “fins”)
• The extra 3rd or 4th or 5th or so forth polygon is the 

fin of a fish

• The polygons containing each vertex make a single “fan”
• We should be able to loop around the faces around a 

vertex in a clear way
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Manifold Check
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Manifold Check

**https://github.com/rlguy/Blender-FLIP-Fluids/wiki/Manifold-Meshes
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Planes Are Not Manifold

• Each edge of a plane only touches 1 polygon
• Breaks the “fin” constraint

• More intuitively: no notion of thickness!
• Can not be represented in real life
• Paper (best approximation of plane) still has thickness

• How to make manifold: add a second polygon that overlaps 
with the first plane, connecting all the edges
• Messy, two polygon will overlap, but will fix the 

manifold issue

• How to make manifold: add a new type of edge denoting it 
as a boundary
• The “boundary” edge

planes aren’tmanifold
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Boundary Edges

• Objects in real life (Ex: pants) have boundaries
• Boundary geometry loops around to create the inner 

seams of the pants
• The volume enclosed by pants are not where your 

legs go, but the physical thickness of the pants

• Representing both the inside and outside of pants is 
expensive!
• Use boundary edges

• A boundary edge has 1 polygon per edge

YES
• This does not mean planes are 

manifold! This just gives us a way 
to represent complex manifold 
geometry as simpler non-
manifold geometry
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What are some ways to describe the connectivity of geometry?
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Polygon Soup

• Most basic idea imaginable:
• For each triangle, just store three coordinates
• No other information about connectivity
• Not much different from point cloud

• A “Triangle cloud”?

• Pros:
• [+] Really stupid simple

• Cons:
• [-] Really stupid
• [-] Redundant storage of vertices
• [-] Very difficult to find neighboring polygons

(x0,y0,z0)

(x1,y1,z1)

(x2,y2,z2)

(x3,y3,z3)

x0,y0,z0  x1,y1,z1  x3,y3,z3
x1,y1,z1  x2,y2,z2  x3,y3,z3



0

1

2

3
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Adjacency List

• A little more complicated:
• Store triples of coordinates (x,y,z)
• Store tuples of indices referencing the coordinates 

needed to build each triangle

• Pros: 
• [+] No duplicate coordinates
• [+] Lower memory footprint
• [+] Easy to keep geometry manifold
• [+] Supports nonmanifold geometry
• [+] Easy to change connectivity of geometry

• Cons:
• [-] Very difficult to find neighboring polygons
• [-] Difficult to add/remove mesh elements

x  y  z
0: -1 -1 -1
1:  1 -1  1
2:  1  1 -1
3: -1  1  1

VERTICES
i j  k
0  2  1
0  3  2
3  0  1
3  1  2

POLYGONS
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Incidence Matrices

• If we want to know our neighbors, let’s store them:
• Store triples of coordinates (x,y,z) Store incidence 

matrix between vertices + edges, and edges + faces
• 1 means touch, 0 means no touch
• Store as sparse matrix

• Pros: 
• [+] No duplicate coordinates 
• [+] Finding neighbors is O(1)
• [+] Easy to keep geometry manifold
• [+] Supports nonmanifold geometry

• Cons:
• [-] Larger memory footprint
• [-] Hard to change connectivity with fixed indices 
• [-] Difficult to add/remove mesh elements

v0 v1 v2 v3
e0 1  1  0  0
e1 0  1  1  0
e2 1  0  1  0
e3 1  0  0  1
e4 0  0  1  1
e5 0  1  0  1

VERTEX⬌EDGE
e0 e1 e2 e3 e4 e5

f0 1  0  0  1  0  1
f1 0  1  0  0  1  1
f2 1  1  1  0  0  0
f3 0  0  1  1  1  0

EDGE⬌FACE
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Halfedge Data Structure

• Let’s store a little, but not a lot, about our neighbors:
• Halfedge data structure added to our geometry
• Each edge gets 2 halfedges

• Each halfedge ”glues” an edge to a face

• Pros: 
• [+] No duplicate coordinates 
• [+] Finding neighbors is O(1)
• [+] Easy to traverse geometry
• [+] Easy to change mesh connectivity
• [+] Easy to add/remove mesh elements
• [+] Easy to keep geometry manifold

• Cons: 
• [-] Does not support nonmanifold geometry

struct Halfedge
{

Halfedge* twin;
Halfedge* next;
Vertex* vertex;
Edge* edge;
Face* face;

};
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Halfedge Data Structure

• Makes mesh traversal easy
• Use “twin” and “next” pointers to move around the mesh
• Use “vertex”, “edge”, and “face” pointers to grab element

Halfedge* h = f->halfedge;
do {

h = h->next;
// do something w/ h->vertex

}
while( h != f->halfedge );

Halfedge* h = v->halfedge;
do {

h = h->twin->next;
}
while( h != v->halfedge );

Example: visit all vertices in a face Example: visit all neighbors of a vertex

Note: only makes sense if mesh is manifold!

struct Halfedge
{

Halfedge* twin;
Halfedge* next;
Vertex* vertex;
Edge* edge;
Face* face;

};
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Halfedge Data Structure

• Halfedge meshes are always manifold!

• Halfedge data structures have the following constraints:

h->twin->twin == h // my twin’s twin is me
h->twin != h // I am not my own twin
h2->next = h //every h’s is someone’s “next”

• Keep following next and you’ll traverse a face
• Keep following twin and you’ll traverse an edge
• Keep following next->twin and you’ll traverse a vertex

• Q: Why, therefore, is it impossible to encode the red figures?
• First shape violates first 2 conditions
• Second shape violates 3rd condition
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Connectivity vs Geometry
• Recall manifold conditions (fans not fins):

• These conditions say nothing about vertex positions! Just 
connectivity

• Can have perfectly good (manifold) connectivity, even if 
geometry is awful 
• Can have perfectly good manifold connectivity for which 

any vertex positions give “bad” geometry!

• Leads to confusion when debugging: 
• Mesh looks “bad”, even though connectivity is fine

same connectivity, 
random vertex 

positions
cube 
(manifold)

non manifold 
connectivity?

…or just a really 
skinny triangle?
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Edge Flip

Goal: Move edge e around faces adjacent to it:

• No elements created/destroyed, just pointer reassignment
• Flipping the same edge multiple times yields original results
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Edge Flip

// collect
h = e->halfedge;
t = h->twin; 
v1 = h->next->vertex;
v2 = t->next->vertex;
v3 = h->next->next->vertex;
v4 = t->next->next->vertex;
f1 = h->face;
f2 = t->face;

// disconnect
v1->halfedge = h->next; 
v2->halfedge = t->next; 
f1->halfedge = h;
f2->halfedge = t;

// connect
t->vertex = v3;
h->vertex = v4;
f1->halfedge = h;
f2->halfedge = t;

f1

f2
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Edge Vertex Split

Goal: Insert edge between vertex v and midpoint of edge e:

• Creates a new vertex, new edge, and new face
• Involves much more pointer reassignments
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Edge Collapse

Goal: Replace edge (c,d) with a single vertex m:

• Deletes a vertex, (up to) 3 edges, and (up to) 2 faces
• Depends on the degree of the original faces
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Local Operations

Many other local operations you will explore in your homework…



15-462/662 | Computer Graphics Lecture 06 | Geometry

Local Operation Tips
• Always draw out a diagram

• We’ve given you some unlabeled diagrams
• With pen + paper, label the elements you’ll need to 

collect/create

• Stage your code in the following way:
• Create
• Collect
• Disconnect
• Connect
• Delete

• Write asserts around your code
• Check if elements that should be deleted were deleted
• Make sure there are no dangling references to anything 

that has been deleted
• Make sure every element that you disconnected or 

reconnected is still valid
• What it means for a vertex to be valid is not the same 

as what it means for an edge to be valid, etc.


