
Alpha Blending and
Introduction to Geometry

15-462/662 | Computer Graphics Lecture 05 | Texturing

15-462/662 | Computer Graphics

• Alpha Blending

• The Graphics Pipeline Revisited

• Introduction to Geometry

Lecture 05 | Texturing

15-462/662 | Computer Graphics

Alpha Values

Lecture 05 | Texturing

• Another common image format: RGBA
• Alpha channel specifies ‘opacity’ of object
• Basically how transparent it is
• Most common encoding is 8-bits per

channel (0-255)

• Compositing A over B != B over A
• Consider the extreme case of two opaque

objects…

𝛼 = 3/4

𝛼 = 1/2

𝛼 = 1/4

𝛼 = 1

fully opaque

𝛼 = 0
fully transparent

[nyc over…koala?][koala over nyc]

where is
the koala…

15-462/662 | Computer Graphics

Non-Premultiplied Alpha

Lecture 05 | Texturing

𝐵 𝐴

B over A

• Goal: Composite image 𝐵 with alpha 𝛼!	over
image 𝐴 with alpha 𝛼"

𝐴 = (𝐴!, 𝐴", 𝐴#)
𝐵 = (𝐵!, 𝐵", 𝐵#)

𝐶 = 𝛼$𝐵 + (1 − 𝛼$)𝛼%𝐴

appearance of semi-
transparent B

what B lets through

appearance of semi-
transparent A

𝛼& = 𝛼$ + (1 − 𝛼$)𝛼%

• Composite RGB: • Composite Alpha:

Two different

equations is

inefficient!!

15-462/662 | Computer Graphics

Premultiplied Alpha

Lecture 05 | Texturing

𝐵 𝐴

B over A

• Goal: Composite image 𝐵 with alpha 𝛼!	over
image 𝐴 with alpha 𝛼"

𝐴' = (𝛼%𝐴!, 𝛼%𝐴", 𝛼%𝐴#, 𝛼%)
𝐵' = (𝛼$𝐵!, 𝛼$𝐵", 𝛼$𝐵#, 𝛼$)

𝐶' = 𝐵' + (1 − 𝛼$)𝐴' (𝐶!, 𝐶", 𝐶#, 𝛼&) ⟹ (𝐶!/𝛼& , 𝐶"/𝛼& , 𝐶#/𝛼&)

• Composite RGBA: • Un-Premultiply for Final Color:

15-462/662 | Computer Graphics

Why Premultiplied Matters [Upsample]

Lecture 05 | Texturing

coloralpha premultiplied

upsampled
color

upsampled
alpha

upsampled
premultiplied

new background 𝐴	(𝛼" = 1) 𝐵 over 𝐴 𝐵 over 𝐴 (premultiplied)

upsample

Something isn’t right…

Known as fringing

15-462/662 | Computer Graphics

Why Premultiplied Matters [Downsample]

Lecture 05 | Texturing

color alpha color alpha
original downsampled

composite

regular

premultiplied

[RGB] [A]

15-462/662 | Computer Graphics

Closed Under Composition

Lecture 05 | Texturing

𝐵 𝐴

B over A

• Goal: Composite bright red image 𝐵 with alpha 0.5
over bright red image 𝐴 with alpha 0.5

𝐴 = (1, 0, 0, 0.5)
𝐵 = (1, 0, 0, 0.5)

0.5 ∗ 1,0,0 + (1 − 0.5) ∗ 0.5 ∗ 1,0,0

• Non-Premultiplied: • Premultiplied:

(0.75, 0, 0)

0.5 + 1 − 0.5 ∗ 0.5 = 0.75

color

alpha

0.5 ∗ 0.5,0,0,0.5 + 1 − 0.5 ∗ 0.5,0,0,0.5

(0.75, 0, 0, 0.75)

(1, 0, 0)
divide out alpha

15-462/662 | Computer Graphics

Blend Methods

Lecture 05 | Texturing

𝐷#$!" =	𝑆#$!" + 𝐷#$!"
𝐷#$!" =	𝑆#$!" − 𝐷#$!"
𝐷#$!" =	−	𝑆#$!" + 𝐷#$!"
𝐷#$!" =	min(𝑆#$!", 	𝐷#$!")
𝐷#$!" = max(𝑆#$!", 	𝐷#$!")
𝐷#$!" =	𝑆#$!" + 𝐷#$!" ∗ (1 − 𝑆")

Blend Add
Blend Subtract
Blend Reverse Subtract
Blend Min
Blend Max
Blend Over

𝑆#$!"	and 𝐷#$!" are pre-multiplied

When writing to color buffer, can use any blend method

15-462/662 | Computer Graphics

Updated Depth Buffer (Z-buffer) Sample Code

Lecture 05 | Texturing

draw_sample(x, y, d, c) //new depth d & color c at (x,y)
{

if(d < zbuffer[x][y])
{

// triangle is closest object seen so far at this
// sample point. Update depth and color buffers.
zbuffer[x][y] = d;
color[x][y] = c.rgba + (1-c.a) * color[x][y];

}
// otherwise, we’ve seen something closer already;
// don’t update color or depth

}

Assumes color[x][y] and c are both premultiplied.

Triangles must be rendered back to front!
A over B != B over A

Should we still be

doing depth writes for

alpha primitives?

15-462/662 | Computer Graphics

Blend Render Order

Lecture 05 | Texturing

• For mixtures of opaque and transparent triangles:

• Step 1: render opaque primitives (in any order)
using depth-buffered occlusion
• If pass depth test, triangle overwrites value in

color buffer at sample
• Depth READ and WRITE

• Step 2: disable depth buffer update, render semi-
transparent surfaces in back-to-front order.
• If pass depth test, triangle is composited

OVER contents of color buffer at sample
• Depth READ only

15-462/662 | Computer Graphics

• Alpha Blending

• The Graphics Pipeline Revisited

• Introduction to Geometry

Lecture 05 | Texturing

15-462/662 | Computer Graphics Lecture 05 | Texturing

The “Simpler” Graphics Pipeline

Now Let’s

Put It A
ll

Together!

15-462/662 | Computer Graphics Lecture 05 | Texturing

The Inputs

positions = {
v0x, v0y, v0z,
v1x, v1y, v1x,
v2x, v2y, v2z,
v3x, v3y, v3x,
v4x, v4y, v4z,
v5x, v5y, v5x

};

texcoords ={
v0u, v0v,
v1u, v1v,
v2u, v2v,
v3u, v3v,
v4u, v4v,
v5u, v5v

};

[vertices] [textures]

Object-to-camera-space transform 𝑇 ∈ ℝ!×!

Perspective projection transform 𝑃 ∈ ℝ!×!

Output image (𝑊,𝐻)

[camera properties] [machine]

15-462/662 | Computer Graphics Lecture 05 | Texturing

Step 1: Transform

z

x

y
Transform triangle vertices into camera space

15-462/662 | Computer Graphics Lecture 05 | Texturing

Step 2: Perspective Projection

Apply perspective projection transform to transform
triangle vertices into normalized coordinate space

[normalized space position][3D camera space position]

15-462/662 | Computer Graphics Lecture 05 | Texturing

Step 3: Clipping

Discard triangles completely outside cube.
Clip triangles partially in cube.

[post-clipping][pre-clipping]

15-462/662 | Computer Graphics Lecture 05 | Texturing

Step 4: Transform To Screen Coordinates

Perform homogeneous divide.
Transform vertex xy positions from normalized coordinates

into screen coordinates (based on screen [w, h]).

(0, 0)

(w, h)

15-462/662 | Computer Graphics Lecture 05 | Texturing

Step 5: Sample Coverage

Check if samples lie inside triangle.
Evaluate depth and barycentric coordinates at all passing samples.

15-462/662 | Computer Graphics Lecture 05 | Texturing

Step 6: Compute Color

Texture lookups, color interpolation, etc.

u

v[u(x,y), v(x,y)]

15-462/662 | Computer Graphics Lecture 05 | Texturing

Step 7: Depth Test

Check depth and update depth if closer primitive found.
(can be disabled)

PASS PASSPASS

PASS PASS PASS

PASSPASS

PASS

PASS

FAIL

FAIL

FAIL

FAIL

FAIL

FAIL

PASS

PASS

PASS

PASS

15-462/662 | Computer Graphics Lecture 05 | Texturing

Step 8: Color Blending

Update color buffer with correct blending operation.

15-462/662 | Computer Graphics Lecture 05 | Texturing

The “Real” Graphics Pipeline

Doesn’t look much different
than what we discussed…

15-462/662 | Computer Graphics

• Alpha Blending

• The Graphics Pipeline Revisited

• Introduction to Geometry

Lecture 05 | Texturing

15-462/662 | Computer Graphics

• Implicit & Explicit Geometry

• Manifold Geometry

• Local Geometric Operations

Lecture 06 | Geometry

• Alpha Blending

• The Graphics Pipeline Revisited

• Introduction to Geometry

15-462/662 | Computer Graphics Lecture 06 | Geometry

Some Motivation

“I hate meshes.
I cannot believe how hard this is.
Geometry is hard.”

-- David Baraff
Senior Research Scientist

Pixar Animation Studios
(also a former CMU prof.)

“why won’t you subdivide”

15-462/662 | Computer Graphics Lecture 06 | Geometry

What Is Geometry?

g e • o m • e t • r y /jēˈämətrē/ n.
1. The study of shapes, sizes, patterns, and positions.
2. The study of spaces where some quantity (lengths,
 angles, etc.) can be measured.

“Earth” “measure”

Remember that Computer Graphics is just operating on a bunch of numbers.
If we can measure it, we can represent it as numbers on our computer!

15-462/662 | Computer Graphics Lecture 06 | Geometry

How To Represent Geometry

[IMPLICIT] [EXPLICIT]

[CURVATURE]

[LINGUISTIC]

“unit circle”

[SYMMETRIC]
rotate

[DYNAMIC]
[TOMOGRAPHIC]

(constant density)
[DISCRETE]

n ➞ ∞

which is best?

15-462/662 | Computer Graphics Lecture 06 | Geometry

How To Represent Humans

15-462/662 | Computer Graphics Lecture 06 | Geometry

How To Represent Water

15-462/662 | Computer Graphics Lecture 06 | Geometry

How To Represent Cloth

15-462/662 | Computer Graphics Lecture 06 | Geometry

How To Represent Machines

15-462/662 | Computer Graphics Lecture 06 | Geometry

How To Represent This Thing

15-462/662 | Computer Graphics Lecture 06 | Geometry

Many Ways To Encode Geometry

• Explicit:
• point cloud
• polygon meshes
• subdivision surfaces
• NURBS

• Implicit:
• level set
• constructive solid geometry
• algebraic surface
• L-systems
• Fractals

• Not one best geometric representation!
• Each is suited for a different task
• Tradeoffs between:

• Accuracy
• Memory
• Performance (searching/operating)

15-462/662 | Computer Graphics Lecture 06 | Geometry

Implicit Geometry

• Points aren’t known directly, but satisfy some
relationship
• Example: unit sphere is all points such that

x2+y2+z2=1

• More generally, in the form f(x,y,z) = 0

• Finding example points is hard
• Requires solving equation

• Checking if points are inside/outside is easy
• Just evaluate the function with a given point

f(x,y)

f = 0
+1

-1

15-462/662 | Computer Graphics Lecture 06 | Geometry

Explicit Geometry

• All points are given directly

• More generally:

• Given any (𝑢, 𝑣), we can find a point on the surface
• Can limit (𝑢, 𝑣) to some range

• Example: triangle with barycentric coordinates

• Finding example points is easy
• We are given them for free

• Checking if points are inside/outside is hard
• We are given the output values and need to find

input values that satisfy the geometry

15-462/662 | Computer Graphics Lecture 06 | Geometry

What does easy and hard mean?

15-462/662 | Computer Graphics Lecture 06 | Geometry

Implicit Geometry [Hard]

• Given the unit sphere:

 𝑓 𝑥, 𝑦, 𝑧 = 𝑥% + 𝑦% + 𝑧% = 1

• Find a point that exists on it.

• Answer: (1,0,0)
• Not so difficult, but how did you arrive at the answer?
• We are given a constraint, and need to find parameters

𝑥, 𝑦, 𝑧 that satisfy the constraint
• Keep guessing and checking

15-462/662 | Computer Graphics Lecture 06 | Geometry

Implicit Geometry [Easy]

• Given the unit sphere:

 𝑓 𝑥, 𝑦, 𝑧 = 𝑥% + 𝑦% + 𝑧% = 1

• Find if the point (0.75, 0.5, 0.25) lives inside it.

• Answer: yes!
• 𝑓 0.75, 0.5, 0.25 = 0.75% + 0.5% + 0.25% = 0.875 < 1
• Easy to check! Just evaluate the sign of the function at

the desired point
(0.75, 0.5, 0.25)

15-462/662 | Computer Graphics Lecture 06 | Geometry

Explicit Geometry [Easy]

• Given the torus:

 𝑓 𝑢, 𝑣 = ((2 + cos 𝑢) cos 𝑣 , (2 + cos 𝑢) sin 𝑣	, sin 𝑢)

• Find a point that exists on it.

• Answer: (3,0,0)
• Just plug in any value of 𝑢, 𝑣 !

• We plugged in 𝑢, 𝑣 = (0,0)

15-462/662 | Computer Graphics Lecture 06 | Geometry

Explicit Geometry [Hard]

• Given the torus:

 𝑓 𝑢, 𝑣 = ((2 + cos 𝑢) cos 𝑣 , (2 + cos 𝑢) sin 𝑣	, sin 𝑢)

• Find if the point (1.96, -0.39, 0.9) lives inside it.

• Answer: no, I’m not computing that
• We are given a constraint, and need to find parameters

𝑢, 𝑣 that satisfy the constraint
• Keep guessing and checking

(1.96, -0.39, 0.9)

15-462/662 | Computer Graphics Lecture 06 | Geometry

Let’s look at some implicit examples…

15-462/662 | Computer Graphics Lecture 06 | Geometry

Algebraic Surfaces [Implicit]

• A surface built with algebra
• Generally thought of as a surface where points are some radius
𝑟 away from another point/line/surface

• [+] Generates smooth/symmetric surfaces
• [-] Cannot generate impurities/deformations

15-462/662 | Computer Graphics Lecture 06 | Geometry

Constructive Solid Geometry [Implicit]

• Build more complicated shapes via Boolean operations
• Basic operations:

• Can be used to form complex shapes!

15-462/662 | Computer Graphics Lecture 06 | Geometry

Blobby Surfaces [Implicit]

• Instead of Booleans, gradually blend surfaces together:

• Easier to understand in 2D:

f=.5 f=.4 f=.3

(Gaussian centered at p)

(Sum of Gaussians centered at different points)

15-462/662 | Computer Graphics Lecture 06 | Geometry

Level Set Methods [Implicit]

• Store a grid of values approximating function

• Surface is found where interpolated values equal zero

• [+] Provides much more explicit control over shape
• [-] Runs into problems of aliasing!

15-462/662 | Computer Graphics Lecture 06 | Geometry

Fractals [Implicit]

• No precise definition; exhibit self-similarity, detail at all scales

• [+] New “language” for describing natural phenomena
• [-] Hard to control shape!

15-462/662 | Computer Graphics Lecture 06 | Geometry

Let’s look at some explicit examples…

15-462/662 | Computer Graphics Lecture 06 | Geometry

Point Cloud [Explicit]

• A list of points	(𝑥, 𝑦, 𝑧)
• Often augmented with normals

• [+] Easily represent any kind of geometry
• [+] Easy to draw dense cloud (>>1 point/pixel)
• [+] Easy for simulation
• [-] Large lookup time
• [-] Large memory overhead

• Hard to interpolate undersampled regions
• Hard to do processing / simulation /
• Result is just as good as the scan

15-462/662 | Computer Graphics Lecture 06 | Geometry

Triangle Mesh [Explicit]

• [+] Easy interpolation with good approximation
• Use barycentric interpolation to define points

inside triangles
• [-] Large memory overhead

• Store vertices as triples of coordinates (x,y,z)
• Store triangles as triples of indices (i,j,k)

• Polygonal Mesh: shapes do not need to be
triangles
• Ex: quads

0

1

2

3

x y z
0: -1 -1 -1
1: 1 -1 1
2: 1 1 -1
3: -1 1 1

[VERTICES]
i j k
0 2 1
0 3 2
3 0 1
3 1 2

[TRIANGLES]

15-462/662 | Computer Graphics

• Implicit & Explicit Geometry

• Manifold Geometry

• Local Geometric Operations

Lecture 06 | Geometry

• Alpha Blending

• The Graphics Pipeline Revisited

• Introduction to Geometry

15-462/662 | Computer Graphics Lecture 06 | Geometry

Manifold Assumption

• A mesh is manifold if and only if it can exist in real life
• Important for simulation/3D printing

• Everything in real life has volume to it
• Likewise, every manifold surface has some volume it encases
• Allows us to think of manifold surfaces as ‘shells’ to an inner

volume
• Example: M&Ms

• Everything in real life, when zoomed in far enough, should be able
to have a rectangular coordinate grid
• Likewise, every manifold surface should be planar when

zoomed in far enough
• Example: Planet Earth

15-462/662 | Computer Graphics Lecture 06 | Geometry

Manifold Properties

• For polygonal surfaces, check for “fins” and ”fans”

• Every edge is contained in only two polygons (no “fins”)
• The extra 3rd or 4th or 5th or so forth polygon is the

fin of a fish

• The polygons containing each vertex make a single “fan”
• We should be able to loop around the faces around a

vertex in a clear way

15-462/662 | Computer Graphics Lecture 06 | Geometry

Manifold Check

15-462/662 | Computer Graphics Lecture 06 | Geometry

Manifold Check

**https://github.com/rlguy/Blender-FLIP-Fluids/wiki/Manifold-Meshes

15-462/662 | Computer Graphics Lecture 06 | Geometry

Planes Are Not Manifold

• Each edge of a plane only touches 1 polygon
• Breaks the “fin” constraint

• More intuitively: no notion of thickness!
• Can not be represented in real life
• Paper (best approximation of plane) still has thickness

• How to make manifold: add a second polygon that overlaps
with the first plane, connecting all the edges
• Messy, two polygon will overlap, but will fix the

manifold issue

• How to make manifold: add a new type of edge denoting it
as a boundary
• The “boundary” edge

planes aren’tmanifold

15-462/662 | Computer Graphics Lecture 06 | Geometry

Boundary Edges

• Objects in real life (Ex: pants) have boundaries
• Boundary geometry loops around to create the inner

seams of the pants
• The volume enclosed by pants are not where your

legs go, but the physical thickness of the pants

• Representing both the inside and outside of pants is
expensive!
• Use boundary edges

• A boundary edge has 1 polygon per edge

YES
• This does not mean planes are

manifold! This just gives us a way
to represent complex manifold
geometry as simpler non-
manifold geometry

15-462/662 | Computer Graphics Lecture 06 | Geometry

What are some ways to describe the connectivity of geometry?

15-462/662 | Computer Graphics Lecture 06 | Geometry

Polygon Soup

• Most basic idea imaginable:
• For each triangle, just store three coordinates
• No other information about connectivity
• Not much different from point cloud

• A “Triangle cloud”?

• Pros:
• [+] Really stupid simple

• Cons:
• [-] Really stupid
• [-] Redundant storage of vertices
• [-] Very difficult to find neighboring polygons

(x0,y0,z0)

(x1,y1,z1)

(x2,y2,z2)

(x3,y3,z3)

x0,y0,z0 x1,y1,z1 x3,y3,z3
x1,y1,z1 x2,y2,z2 x3,y3,z3

0

1

2

3

15-462/662 | Computer Graphics Lecture 06 | Geometry

Adjacency List

• A little more complicated:
• Store triples of coordinates (x,y,z)
• Store tuples of indices referencing the coordinates

needed to build each triangle

• Pros:
• [+] No duplicate coordinates
• [+] Lower memory footprint
• [+] Easy to keep geometry manifold
• [+] Supports nonmanifold geometry
• [+] Easy to change connectivity of geometry

• Cons:
• [-] Very difficult to find neighboring polygons
• [-] Difficult to add/remove mesh elements

x y z
0: -1 -1 -1
1: 1 -1 1
2: 1 1 -1
3: -1 1 1

VERTICES
i j k
0 2 1
0 3 2
3 0 1
3 1 2

POLYGONS

15-462/662 | Computer Graphics Lecture 06 | Geometry

Incidence Matrices

• If we want to know our neighbors, let’s store them:
• Store triples of coordinates (x,y,z) Store incidence

matrix between vertices + edges, and edges + faces
• 1 means touch, 0 means no touch
• Store as sparse matrix

• Pros:
• [+] No duplicate coordinates
• [+] Finding neighbors is O(1)
• [+] Easy to keep geometry manifold
• [+] Supports nonmanifold geometry

• Cons:
• [-] Larger memory footprint
• [-] Hard to change connectivity with fixed indices
• [-] Difficult to add/remove mesh elements

v0 v1 v2 v3
e0 1 1 0 0
e1 0 1 1 0
e2 1 0 1 0
e3 1 0 0 1
e4 0 0 1 1
e5 0 1 0 1

VERTEX⬌EDGE
e0 e1 e2 e3 e4 e5

f0 1 0 0 1 0 1
f1 0 1 0 0 1 1
f2 1 1 1 0 0 0
f3 0 0 1 1 1 0

EDGE⬌FACE

15-462/662 | Computer Graphics Lecture 06 | Geometry

Halfedge Data Structure

• Let’s store a little, but not a lot, about our neighbors:
• Halfedge data structure added to our geometry
• Each edge gets 2 halfedges

• Each halfedge ”glues” an edge to a face

• Pros:
• [+] No duplicate coordinates
• [+] Finding neighbors is O(1)
• [+] Easy to traverse geometry
• [+] Easy to change mesh connectivity
• [+] Easy to add/remove mesh elements
• [+] Easy to keep geometry manifold

• Cons:
• [-] Does not support nonmanifold geometry

struct Halfedge
{

Halfedge* twin;
Halfedge* next;
Vertex* vertex;
Edge* edge;
Face* face;

};

15-462/662 | Computer Graphics Lecture 06 | Geometry

Halfedge Data Structure

• Makes mesh traversal easy
• Use “twin” and “next” pointers to move around the mesh
• Use “vertex”, “edge”, and “face” pointers to grab element

Halfedge* h = f->halfedge;
do {

h = h->next;
// do something w/ h->vertex

}
while(h != f->halfedge);

Halfedge* h = v->halfedge;
do {

h = h->twin->next;
}
while(h != v->halfedge);

Example: visit all vertices in a face Example: visit all neighbors of a vertex

Note: only makes sense if mesh is manifold!

struct Halfedge
{

Halfedge* twin;
Halfedge* next;
Vertex* vertex;
Edge* edge;
Face* face;

};

15-462/662 | Computer Graphics Lecture 06 | Geometry

Halfedge Data Structure

• Halfedge meshes are always manifold!

• Halfedge data structures have the following constraints:

h->twin->twin == h // my twin’s twin is me
h->twin != h // I am not my own twin
h2->next = h //every h’s is someone’s “next”

• Keep following next and you’ll traverse a face
• Keep following twin and you’ll traverse an edge
• Keep following next->twin and you’ll traverse a vertex

• Q: Why, therefore, is it impossible to encode the red figures?
• First shape violates first 2 conditions
• Second shape violates 3rd condition

15-462/662 | Computer Graphics Lecture 06 | Geometry

Connectivity vs Geometry
• Recall manifold conditions (fans not fins):

• These conditions say nothing about vertex positions! Just
connectivity

• Can have perfectly good (manifold) connectivity, even if
geometry is awful
• Can have perfectly good manifold connectivity for which

any vertex positions give “bad” geometry!

• Leads to confusion when debugging:
• Mesh looks “bad”, even though connectivity is fine

same connectivity,
random vertex

positions
cube
(manifold)

non manifold
connectivity?

…or just a really
skinny triangle?

15-462/662 | Computer Graphics

• Implicit & Explicit Geometry

• Manifold Geometry

• Local Geometric Operations

Lecture 06 | Geometry

• Alpha Blending

• The Graphics Pipeline Revisited

• Introduction to Geometry

15-462/662 | Computer Graphics Lecture 06 | Geometry

Edge Flip

Goal: Move edge e around faces adjacent to it:

• No elements created/destroyed, just pointer reassignment
• Flipping the same edge multiple times yields original results

15-462/662 | Computer Graphics Lecture 06 | Geometry

Edge Flip

// collect
h = e->halfedge;
t = h->twin;
v1 = h->next->vertex;
v2 = t->next->vertex;
v3 = h->next->next->vertex;
v4 = t->next->next->vertex;
f1 = h->face;
f2 = t->face;

// disconnect
v1->halfedge = h->next;
v2->halfedge = t->next;
f1->halfedge = h;
f2->halfedge = t;

// connect
t->vertex = v3;
h->vertex = v4;
f1->halfedge = h;
f2->halfedge = t;

f1

f2

15-462/662 | Computer Graphics Lecture 06 | Geometry

Edge Vertex Split

Goal: Insert edge between vertex v and midpoint of edge e:

• Creates a new vertex, new edge, and new face
• Involves much more pointer reassignments

15-462/662 | Computer Graphics Lecture 06 | Geometry

Edge Collapse

Goal: Replace edge (c,d) with a single vertex m:

• Deletes a vertex, (up to) 3 edges, and (up to) 2 faces
• Depends on the degree of the original faces

15-462/662 | Computer Graphics Lecture 06 | Geometry

Local Operations

Many other local operations you will explore in your homework…

15-462/662 | Computer Graphics Lecture 06 | Geometry

Local Operation Tips
• Always draw out a diagram

• We’ve given you some unlabeled diagrams
• With pen + paper, label the elements you’ll need to

collect/create

• Stage your code in the following way:
• Create
• Collect
• Disconnect
• Connect
• Delete

• Write asserts around your code
• Check if elements that should be deleted were deleted
• Make sure there are no dangling references to anything

that has been deleted
• Make sure every element that you disconnected or

reconnected is still valid
• What it means for a vertex to be valid is not the same

as what it means for an edge to be valid, etc.

