Transparency
& Texturing

e Barycentric Coordinates
e Texturing Surfaces

* Depth Testing

* Alpha Blending

* The Graphics Pipeline Revisited

15-462/662 | Computer Graphics

The “Simpler” Graphics Pipeline

w, h)

] =

Z €y
(0,0)

i‘iﬁljsfonn/position objects in Project objects onto

the world the screen
Combine samples into ﬁnal Sample texture maps/ Interpolate triangle

image (depth, alpha, ... evaluate shaders 3\ attributes at covered samples / '

15-462/662 | Computer Graphics

Interpolating Values for Triangles

[green]

Goal: interpolate triangle vertices for any point within
triangle

Coordinates (¢;, ¢,) should represent weighted average
c Pit+tditor=1
* Similarly, 1 — ¢; — ¢; = ¢y
* Gives a 2D parameterization of triangle point (¢;, ¢;)
* Known as barycentric coordinates

If each point has some attribute (;, a;, i), can linearly
interpolate @;¢; + ajp; + aydi
* Example: [black]g; + [green]¢; + [red] ¢y

[black] [red]

Barycentric Coordinates

* Inversely proportional to the distance between the
target point and a point within the triangle

e Can be computed as:

¢;i(x) = di(x)/h;

* How would you compute h;? d;(x)?

X 1
Xk
¢i(x) $j(x) Pr(x) 0
Xj

15-462/662 | Computer Graphics

Barycentric Coordinates [Another Way |

* Directly proportional to the area created by the triangle
composed of the other two target points and a point

within the triangle

* Can be computed as:

area(x, xj, Xi)

Pi(x) =

area(x;, Xj, Xi)

** Interesting read of barycentric coordinates for n-gons: https://www.inf.usi.ch/hormann/barycentric/

Perspective-Incorrect Interpolation

Not actually halfway in screen!

* Due to perspective projection (homogeneous divide),
barycentric interpolation of values on a triangle with
different depths is not an affine function of screen XY
coordinates

[IERREdEN

Want to interpolate attribute values linearly in 3D
object space, not image space.

Halfway in real life!

Perspective-Incorrect Interpolation

If we compute barycentric coordinates using 2D
(projected) coordinates, leads to (derivative)
discontinuity in interpolation where quad was split

Perspective-Correct Interpolation

* Goal: interpolate some attribute v at vertices
 Compute depth z at each vertex
* Evaluate Z := 1/zand P := v/z at each vertex
* Interpolate Z and P using standard (2D)
barycentric coordinates
* At each fragment, divide interpolated P by
interpolated Z to get final value

15-462/662 | Computer Graphics

Perspective-Correct Interpolation

(0,5,4)
(p(0,0,l) = 0.2 P(O,O,l) = (07010)/1 Z(O,O,l) =1
®0,3,2 = 0.1 Peo,3,2) = (1,0,0)/2 Z32) = 1/2
4’(0,5,4) = 0.7 P(0,5,4) = (0,1,0)/4 Z(0,5,4) =1/4

Pinterp = 0.2 % [(0,0,0)/1] + 0.1 * [(1,0,0)/2] 0.7 * [(0,1,0)/4]
Pinterp = (0.05, 0.175, 0)

Zinterp = 0.2 *[1/1] + 0.1 = [1/2] * 0.7 * [1/4]
Zinterp = 0.425

(0,0,1) (0,3,2)

q = (0.05, 0.175, 0)/0.425 o
q = (0.12,0.412, 0) What if z is equal to 0?

Remember the near clipping plane!

- o C ;
e Texturing Surfaces
* Depth Testing

* Alpha Blending

* The Graphics Pipeline Revisited

15-462/662 | Computer Graphics

The “Simpler” Graphics Pipeline

w, h)

X = | @@ | @ eeefa oo

vy N\l e of @8 8 8 8 8)e

Z{{. . . . » eee————— el 000000 o A
(0,0) .

Transform/position objects in ects onto

1 :
the world 50 =

A

Interpolate triangle
attributes at covered samples

Combine samples into final
image (depth, alpha, ...)

Sample texture maps /
evaluate shaders

15-462/662 | Computer Graphics

Textures in Graphics

Textures are buffers of data (images) that are read
into the graphics pipeline and are used for:
e Coloring mapping
* Normal mapping
e Displacement mapping
* Roughness mapping
* Occlusion mapping
e Reflection mapping
e Textures can also be written into
* Think a scratch pad for data

Useful for maximizing quality while minimizing the
number of polygons
* Rough surfaces can be approximated by
smooth surfaces with rough textures

A single pixel of a texture is known as a texel

] : ’ "__'
The Last of Us Part Il (2020) Naughty Dog

Textures in Graphics

changes the visual
appearance (color of fur)

preserves geometric fluff

[fluffy geometry] + [monochrome texture] = [textured geometry]

15-462/662 | Computer Graphics

Texture Coordinates

e Goal: map surface geometry coordinates to
image coordinates

e Barycentric coordinates let us represent 3D
geometry in 2D by their surface coordinates
 Known as surface parameterization

* Not always a 1-to-1 map! Wi \ -
« A surface only half the number of pixels of [texture] [geometry] [render]
a texture may only use up half the texels**

**We will learn ways that surfaces may use more texels than there are pixels on the surface
15-462/662 | Computer Graphics

[texture coordinates on texture]

Texture Example

[texture coordinates on surface]

—
Sagzes
X

\, ,,,
. Smesaaae o=
/| SSa————eens
e
D S S e S OS AIRSISS
i“\‘ S e e SO
e S A
7 N N
RS NSRS
e N T TA VAV
e .ﬂ/ﬁwﬂﬂftﬂm
SRR
N
N

A

52
&

\Noeia e A D!
ST A7
S

3
ST A
XAIRSHAL LI A
e AVAY N ATV
2IHAASAT

Each vertex has a coordinate (u,v) in texture space

(%]
g
<

[oX

©

s
(U]

—

(O]

+—

>

Q.

(S

o
(@]
o
O
{e]
S~
o
O
<
N

Texture Example

[texture data]

[rendered results]

vAVAVA
-avAVAVAWA
25X

AV

” a piece of the image back to the surface

copies

Each triangle “

(%]
c
<

[oX

©
(O]

—

(O]
-

>

Q.

(S

o
(@]
o
O
{e]
S~
o
O
<
N
—

Periodic Texturing

Why do you think texture coordinates might repeat over the surface?

15-462/662 | Computer Graphics

Periodic Texturing

Used for tiling textures

15-462/662 | Computer Graphics

How Texturing Is Done

e An artist goes into a program and
drags/paints/stretches/warps textures onto
surfaces

e The resulting distortion of the texture on
the surface is saved as the surface
parameterization

==

%1000 ©

* Computing the texture mapping function is
never done by hand!
e Always use an interactive program to do it

e Also known as uv mapping
* uandv are the two barycentric
coordinates that we want to map onto
texture space

15-462/662 | Computer Graphics

Texture mapping maps a non-integer coordinate to another non-integer coordinate.
But textures can only be accessed via integer...

How do we know what texel(s) to sample?

gooooa |

oy

Wild MISSINGNO.
appeared® .

15-462/662 | Computer Graphics

Nearest Neighbor Sampling

* Idea: Grab texel nearest to requested location in
texture x" « round(x — 0.5), y' « round(y — 0.5)

* Requires: t « tex.lookup(x’,y’)
* 1 memory lookup
* O linear interpolations

x’ and y’ are half-integer coordinates
Helps account for 0.5 offset from texture coordinate centers

15-462/662 | Computer Graphics

Bilinear Interpolation Sampling

Idea: Grab nearest 4 texels and blend them
together based on their inverse distance from
the requested location
* Blend two sets of pixels along one axis,
then blend the remaining pixels

Requires:

e 4 memory lookup
e 3linear interpolations

Lerp1 &2

Lerp 3

oo 9o | —

x' « floor(x — 0.5), y « floor(y — 0.5)
Ax « x — x'
Ay «y—y

txy) < tex.lookup(x’,y")

tix+1,y) < tex.lookup(x" +1,y")
txy+1) < tex.lookup(x',y" + 1)
tx+1,y+1) < tex.lookup(x’,+1y" + 1)

by < (1 — AX) * t(x’y) + Ax * t(x+1,y)
ty & (1 —Ax) * trye1) + DX * Leprye1)

t— (1—-Ay)xt, +Ay=t,

Minification vs. Magnification

Image Texture
= T /’\\
/ Minification <
[]
\\ > g
Magnification

* Magnification [Nearest Neighbor, Bilinear]:
 Example: camera is very close to scene object
* Single screen pixel maps to tiny region of texture
* Canjust interpolate value at screen pixel center
* Minification [???]
 Example: scene object is very far away
* Single screen pixel maps to large region of texture
* Need to compute average texture value over pixel to avoid aliasing

Aliasing Due To Minification

Pre-Filtering Texture

15-462/662 | Computer Graphics

Texture Pre-Filtering

* Texture aliasing occurs because a single pixel
on the screen covers many pixels of the
texture

* |deally, want to average a bunch of texels in a
very large region (expensive!)
* |nstead, we can pre-compute the
averages (once) and just look up these
averages (many times) at run-time

* Q: Which averages to pre-compute
 A:alot of them!

-

S

Mip-Map (.. williams ‘83]

* Rough idea: precompute a prefiltered image at
every possible scale

 The image at depth d is the result of A
applying a 2x2 avg filter on the image at vV
depth d-1
* The image at depth 0 is the base
image u, 1 1 .
Level 0 =128x128 Level 1 X Level 2
* Mip-Map generates log,[min(wth, hgt)] + 1
levels i
e Each level the width and height gets
halved
* Memory claverflmead: (1+1/33); O”g'?al te:ture Level 4 = 8x8 Level 5 = 4x4 Level 6=2x2 Level 7= 1x1
. 1+Z+1_6+m = ZZ = :i=§

15-462/662 | Computer Graphics

Mip-Map (L williams ‘83]

Storing an RGB Mip-Map can be fit into an
image twice the width and twice the height of
the original image

* See diagram for proof :)

* Does not work as nicely for RGBA!

Issue: bad spatial locality
* Requesting a texel requires lookup in 3
very different regions of an image

Which mip-map level do we use?

15-462/662 | Computer Graphics

Sponza Bilinear Interpolation [Level O]

Sponza Bilinear Interpolation [Level 2]

Sponza Bilinear Interpolation [Level 4]

Sponza Bilinear Interpolation [Varying Level]

f

nicely filters the!s
background

Sponza Visualization of Level

Computing MipMap Depth

* Correlation between distance of surface to camera
and level of mip-map accessed
* More specifically, correlation between screen-
space movement across the surface
compared to texture movement and level of
mip-map access

<] |

* |f moving over a pixel in screen space is a big jump
in texture space, then we call it minification
* Sample from a lower level of mip-map

* |f moving over a pixel in screen space is a small
jump in texture space, then we call it magnification
e Sample from a higher level of mip-map

Computing MipMap Depth

More formally:

du du
azum—uoo E=u01—u00
dv B dv

—— = Vp1 —V
dy 0 00

Where dx and dy measure the change in screen space
and du and dv measure the change in texture space

2 (du)z . (dv)z 2 _ (du)z . (dv)z
* o \dx dx Y \dy dy

L= \/max(Li, L%)

d = log,L

L measures the Euclidean distance of the change.

We take the max to get a single number. [final level d]

The mipmap level is not an integer...
Which level do we use?

15-462/662 | Computer Graphics

Trilinear Interpolation Sampling

* Idea: Perform bilinear interpolation on two
layers of the mip-map that represents proper
minification/magnification, blending the results
together

* Requires:
e 8 memory lookup
e 7 linear interpolations

Level ceil(d)

Bilerp (3 Lerps)

Level floor(d) Bilerp (3 Lerps) g?

— (] ([]

(1 Lerp)

L,* du” + dv’
x dx dx
L2 du? N dv
P — —_—

Yo dy dy

L « \/maX(sz,Lyz)
d < log, L

d < floor(d)
Ad «d —d

ty < tex[d']. bilinear(x,y)
tg+q1 < tex[d + 1].bilinear(x,y)
t— (1 —Ad)*ty;+Ad *tz,q

Trilinear Interpolation Sampling

* Idea: Perform bilinear interpolation on two

2 2
layers of the mip-map that represents proper sz - d_u + @
minification/magnification, blending the results)&"2 dxz
together ! dv

* Requires:

e 8 memory lookup
e 7 linear interpolations

Level ceil(d)

d' « floor(d)

Ad «d —d
. - Bilerp (3 Lerps)| - ty « tex[d']. bilinear(x,y)
erp , o
. t « tex|d 1]. bilinear(x
- Level floor(d) Bilerp (3 Lerps) el [i] (’y)
. 0 t—(1—Ad)«t; +Ad *tz,,

15-462/662 | Computer Graphics

Trilinear Assumption

Trilinear filtering assumes that samples shrink at the
same rate along u and v
e Taking the max says we would rather
overcompensate than undercompensate filtering

Bilinear and Trilinear filtering are isotropic filtering
methods
* jso-—same, tropic — direction
* Values should be same regardless of viewing
direction

What does it mean for samples to shrink at very
different rates along u and v?
e Think of a plane rotated away from the camera
 Changes in v larger than changes in u

e Biline
filterizi
. 3

les shrink at

. . .
is lile saying
ant, but we would

q\an

’
* Values should be same regardless of

viewing direction

* What does it mean for samples to shrink at very

different rates;ﬁ? ;d v?
* Think of € ted away from the

camera

* Changes in v larger than changes in u

715

25

|
>
N

Anisotropic Filtering

e Anisotropic filtering is dependent on direction
* an-not, iso —same, tropic — direction

* Idea: create a new texture map that downsamples
the x and y axis by 2 separately
* |nstead of taking the max, use each coordinate
to index into correct location in map

LM)

(dx' dy) = (logzﬂfl‘gc ’ lng L§1)

e Texture map is now a grid of downsampled textures
* Known as a RipMap

Rip Map

 Same idea as MipMap, but for anisotropic filtering
e 4x memory footprint

e New width:w' =w + %+%+"':2W
* New height:h' = h + §+%+---=2h

* New area: w'h’ = 4wh

* Fun fact: a MipMap is just the diagonal of a RipMap
* Ifdy, = d,, then we have trilinear interpolation

Isotropic vs Anisotropic Filtering

overbluring in u direction

-

-~

[isotropic (trilinear)] [anisotropic]

15-462/662 | Computer Graphics

Sampling Comparisons

[Nearest] [Bilinear] [Trilinear] [Anisotropic]
No. samples 1 4 8 16
No. interps 0 3 7 15
No. operations ~3 ~19 >54 >54
Texture locality good good bad very bad
Memory overhead 1x 1x 4/3x 4x
Anti-aliasing bad normal good great

=

Texture Sampling Pipeline

Compute u and v from screen sample (x,y) via barycentric —

interpolation

Approximate du/dx, du/dy, dv/dx, dv/dy by taking differences
of screen-adjacent samples

Compute mip map level d

Convert normalized [0,1] texture coordinate (u,v) to pixel
locations (U,V)E[W,H] in texture image

Determine addresses of texels needed for filter (e.g., eight
neighbors for trilinear)

Load texels into local registers

Perform tri-linear interpolation according to (U,V,d)
(...even more work for anisotropic filtering...)

Lot of repetitive work every time
we want to shade a pixel!

GPUs instead implement these
instructions on fixed-function
hardware.

This is why we have texture caches
and texture filtering units.

- e Coord

* Depth Testing

* Alpha Blending

* The Graphics Pipeline Revisited

15-462/662 | Computer Graphics

The “Simpler” Graphics Pipeline

w, h)

T -, | | -

Z @ sengt . . . > —_—_—— 00000 e A
(0,0

Sample triangle coverage

\

Sample texture maps/ Interpolate triangle
evaluate shaders attributes at covered samples

i‘iﬁljsfonn/position objects in Project objects onto
eworia— the screen

-

Combine samples into final
N\ image (depth, alpha, ...) //

15-462/662 | Computer Graphics

Depth Buffer (Z-buffer)

* For each sample, the depth buffer stores the depth of the
closest triangle seen so far
 Done at the sample granularity, not pixel granularity

far

Depth of a Triangle

(xi, yi)
* Atriangle is composed of 3 different 3D points,
(%, Vi) each with a depth value z
(x]-, yj) q * To get the depth at any point (x, y) inside the
______ e triangle, interpolate depth at vertices with
barycentric coordinates
‘<§ -
a d]
() I
p -
@
V)

Depth Buffer (Z-buffer)

@ — sample passed depth test
o o o o o o o o o o o o o o o . o o
O o o o o O o O O O O O e e o©
O o o o o O o O o O o o e e o
O o o o 0 O O O O e e e e
o o o O O o o o O o o o o
o o o o o o ([o o o o
o o o o [([o o o o
o o o o o o o o o o o o o o o o o
O o o o o o o o o O o o o o o o o
[color buffer] [depth buffer]

near I far

Depth Buffer (Z-buffer)

@ — sample passed depth test
o o o o o o o o o o o o .0 o o . o o
o o o 0 O o O O O e o ® @ o
o o O o O O e e e ® e o
o o 0 O o /e e e e e o
o o O o o ([([o o o o
o o ([([([o o o o
o o ([([([o o o o
o o o o o o o o o o o o o o o o o
O o o o o o o o o O o o o o o o o
[color buffer] [depth buffer]

near I far

Depth Buffer (Z-buffer)

@ — sample passed depth test
o o o o o o o o o o o o .0 o040 O o©
o o o O o o o o « ‘e ®» @8 o©
o o O o o o & e e e e o
o o 0 O O @ e e e o o
o o O o o [[o o o o
o o [[([o o o o
o o [([([o o o o
o o o o o o o o o o o o o o o o o
O o o o o o o o o O o o o o o o o
[color buffer] [depth buffer]

near I far

Depth Buffer (Z-buffer)

@ — sample passed depth test
o o o o o o o o o o o o o o o o o
o o o O o O o O © e e e o©
o o O o O O © e e e e ©
o o 0 O O e e e e o o
o (@) (@) O O o o o o o o
(@) O o o o o o o o
(@) O o o o o o o o
o o o o o o o o o o o o o o o o o
O o o o o o o o o O o o o o o o o
[color buffer] [depth buffer]

near [N far

Depth Buffer (Z-buffer) Per Sample

Depth Buffer (Z-buffer) Per Sample

Able to capture triangle intersections by performing tests per sample

15-462/662 | Computer Graphics

Depth Buffer (Z-buffer) Sample Code

draw sample(x, y, d, c) //new depth d & color c at (x,V)

{
1f (d < zbuffer([x][y])

{

// triangle is closest object seen so far at this
// sample point. Update depth and color buffers.
zbuffer[x] [y] = d; // update zbuffer

color[x][y] = c; // update color buffer
}

// otherwise, we’ve seen something closer already;
// don’t update color or depth

Why is it that we first shade the pixel and then assign the resulting color after depth check?
Deferred shading (advanced algorithm) fixes this issue.

15-462/662 | Computer Graphics

o Dogthtestng
* Alpha Blending

* The Graphics Pipeline Revisited

15-462/662 | Computer Graphics

Alpha Values

fully opaque

Another common image format: RGBA
* Alpha channel specifies ‘opacity’ of object
* Basically how transparent it is a=3/4

* Most common encoding is 8-bits per
channel (0-255)

a=1/2
* Compositing A over B |=B over A a=1/4
e Consider the extreme case of two opaque
objects [koala over nyc] [nyc over...koala?] a=20

it i,@

fully transparent

where is
the koala...

15-462/662 | Computer Graphics

Non-Premultiplied Alpha

Goal: Composite image B with alpha ap over
image A with alpha ay4

B
= (AT"A Ab)
= (Br, Bb)
B over A
e Composite RGB: what B lets through Composite Alpha:
C=agB+ (1 —ap)ayA ac =ag+ (1 —ag)ay
1 : ccarent
appearance of semi- diffe
TWO ™ i
transparent B uath ns o
. . ".-
appearance of semi- “eﬁ\c\e\’\

transparent A

15-462/662 | Computer Graphics

Premultiplied Alpha

* Goal: Composite image B with alpha ap over
image A with alpha a, A

A = ((ZAAT, aAAg, C(AAb, aA)

B' = (apB,, apB,, arB), a
(Br BPg “BPb B) B over A

e Composite RGBA: e Un-Premultiply for Final Color:

C'=B"+(1—ag)A (0% Cg» Cp, ac) = (C-/ac, Cg/aCr Cp/ac)

Why Premultiplied Matters [Upsample]

D . . o | ‘ . .

alpha color premultiplied
[1qt:3
pnown 2@ as frin upsampled upsampled upsampled

alpha color premultiplied
. Something isn’t right...

new background A (a, = B over A B over A (premultiplied)

Why Premultiplied Matters [Downsample]

[RGB] [A]

original downsampled
color alpha color alpha composite

Closed Under Composition

e Goal: Composite bright red image B with alpha 0.5
over bright red image A with alpha 0.5

A= (1, 0,0, 0.5)
B = (1, 0,0, 0.5)
B over A
* Non-Premultiplied: * Premultiplied:

0.5*(1,0,0) + (1 —0.5) *0.5*(1,0,0) 0.5 *(0.5,0,0,0.5) + (1 — 0.5) = (0.5,0,0,0.5)

color 1 1

(0.75,0,0) (0.75,0,0,0.75)
1 divide out alpha
alpha 0.5+ (1 —0.5) * 0.5 = 0.75 (1,0,0)

15-462/662 | Computer Graphics

Blend Methods

When writing to color buffer, can use any blend method

Dreea = Sreea T+ DreBa Blend Add

Dreea = Srga — Prcpa Blend Subtract

Drega = — Sreea + Drgpa Blend Reverse Subtract
Drega = min(Sggpar Drepa) Blend Min

Drgpa = max(Sggpar Drepa) Blend Max

Dreea = Sreea + Drgpa * (1 — S4) Blend Over

Sreea and Dpcp4 are pre-multiplied

Updated Depth Buffer (Z-buffer) Sample Code

draw_sample(x, y, d, c¢) //new depth d & color c at (x,V)
{ g;“\be
S“d\ﬁddwg Z b']‘ié§ £0Y x]

(\O\“é // ﬁm\;mgele 1s closest object seen so far at this

a\P“/a/p ple point. date depth and color buffers.
uffer[x] [y] = d;
co .rgba + (l-c.a) * color([x]l[yl:;

}

// otherwise, we’ve seen something closer already;
// don’t update color or depth

}

Assumes color[x][y] and c are both premultiplied.

Triangles must be rendered back to front!
A over B |=B over A

15-462/662 | Computer Graphics

Blend Render Order

* For mixtures of opaque and transparent triangles:

e Step 1: render opaque primitives (in any order)
using depth-buffered occlusion
e |If pass depth test, triangle overwrites value in
color buffer at sample
e Depth READ and WRITE

e Step 2: disable depth buffer update, render semi-
transparent surfaces in back-to-front order.
* If pass depth test, triangle is composited
OVER contents of color buffer at sample
e Depth READ only

15-462/662 | Computer Graphics

o blekaBlopding
* The Graphics Pipeline Revisited

15-462/662 | Computer Graphics

The “Simpler” Graphics Pipeline

‘w' h)

X g 1 | e e e AR .
. e - Il e fea e w A e S
’g Transform/position objects in Project objects onto

\et

“Q\N P*\\ the world the screen Sample triangle coverage
\~
Put T et
10%3‘“6‘
Combine samples into fmal Sample texture maps/ Interpolate triangle
image (depth, alpha, .. evaluate shaders attributes at covered samples

15-462/662 | Computer Graphics

The Inputs

positions = { texcoords =/{
vOx, v0y, v0z, vOu, vO0v,
vix, vly, vlx, viu, vlv,
vV2x, Vv2y, Vv2z, vZ2u, v2v,
v3x, v3y, Vv3x, v3u, v3v,
vidx, viy, viz, vdu, viv,
vbx, vby, vdx vbu, vdv
I ¥
[vertices] [textures]

Object-to-camera-space transform T € R**4

Perspective projection transform P € R**#
Output image (W, H)

[camera properties] [machine]

15-462/662 | Computer Graphics

Step 1: Transform

Transform triangle vertices into camera space

4y

15-462/662 | Computer Graphics

Step 2: Perspective Projection

Apply perspective projection transform to transform
triangle vertices into normalized coordinate space

[3D camera space position] [normalized space position]

Step 3: Clipping

Discard triangles completely outside cube.
Clip triangles partially in cube.

X3

X2

[pre-clipping] [post-clipping]

Step 4: Transform To Screen Coordinates

Perform homogeneous divide.
Transform vertex xy positions from normalized coordinates
into screen coordinates (based on screen [w, h]).

(w, h)

Step 5: Sample Coverage

Check if samples lie inside triangle.
Evaluate depth and barycentric coordinates at all passing samples.

Step 6: Compute Color

Texture lookups, color interpolation, etc.

| SRS | 01 TR0
IA 0
7""‘; ™7

® o o o e i

[uloy), vixy) =

15-462/662 | Computer Graphics

Step 7: Depth Test

Check depth and update depth if closer primitive found.
(can be disabled)

o
PASS

® e
PASS PASS

(}
FAlL PASS PASS

FAIL PASS PASS PASS

FAIL FAIL PASS PASS PASS

FAIL FAIL ~ PASS PASS PASS

15-462/662 | Computer Graphics

Step 8: Color Blending

Update color buffer with correct blending operation.

15-462/662 | Computer Graphics

The “Real” Graphics Pipeline

°3
o3
Vertex Generation °4 Verticesin 3D space

. Vertex stream °2
Vertices !

Vertex Processing prrTemmesesessesesees '

Vertex stream ° Vertices in positioned on screen

Primitive Generation

Primitive stream Doesn’t look much different

Primitive Processing than what we discussed...
: . Triangles positioned on screen

Primitives

Primitive stream

Fragment Generation

(Rasterization) -
Fragments D % %’ Fragments (one per pixel covered by triangle *)

Fragment Processing

i

Fragment stream

Shaded fragments

Pixels Pixel Operations

. Outputimage (pixels)

15-462/662 | Computer Graphics

