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The “Simpler” Graphics Pipeline

Today!
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Interpolating Values for Triangles

Lecture 05 | Texturing

• Goal: interpolate triangle vertices for any point within 
triangle

• Coordinates (𝜙! , 𝜙",𝜙#) should represent weighted average
• 𝜙! + 𝜙" + 𝜙# = 1
• Similarly, 1 − 𝜙! − 𝜙" = 𝜙#
• Gives a 2D parameterization of triangle point (𝜙! , 𝜙")

• Known as barycentric coordinates

• If each point has some attribute (𝛼! , 𝛼" , 𝛼#), can linearly 
interpolate 𝛼!𝜙! + 𝛼"𝜙" + 𝛼#𝜙#
• Example: [black]𝜙! + [green]𝜙" 	+	[red] 𝜙#

[ black ]

[ green ]

[ red ]
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Barycentric Coordinates
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• Inversely proportional to the distance between the 
target point and a point within the triangle

• Can be computed as:

• How would you compute ℎ!? 𝑑!(𝑥)? 
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Barycentric Coordinates [ Another Way ]
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• Directly proportional to the area created by the triangle 
composed of the other two target points and a point 
within the triangle

• Can be computed as:

** Interesting read of barycentric coordinates for n-gons: https://www.inf.usi.ch/hormann/barycentric/
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Perspective-Incorrect Interpolation
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• Due to perspective projection (homogeneous divide), 
barycentric interpolation of values on a triangle with 
different depths is not an affine function of screen XY 
coordinates

• Want to interpolate attribute values linearly in 3D 
object space, not image space.𝑎!

𝑎"

(𝑎! + 𝑎")/2

Halfway in real life!

Not actually halfway in screen!
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Perspective-Incorrect Interpolation
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If we compute barycentric coordinates using 2D 
(projected) coordinates, leads to (derivative) 
discontinuity in interpolation where quad was split



15-462/662 | Computer Graphics

Perspective-Correct Interpolation

Lecture 05 | Texturing

• Goal: interpolate some attribute 𝑣 at vertices
• Compute depth 𝑧 at each vertex
• Evaluate 𝑍 ∶= 	1/𝑧	and 𝑃	 ≔ 𝑣/𝑧	at each vertex
• Interpolate 𝑍 and 𝑃 using standard (2D) 

barycentric coordinates
• At each fragment, divide interpolated 𝑃 by 

interpolated 𝑍 to get final value
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Perspective-Correct Interpolation
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(0,0,1) (0,3,2)

(0,5,4)

𝜙(%,%,') = 0.2
𝜙(%,),*) = 0.1
𝜙(%,+,,) = 0.7

𝑍(%,%,') = 1
𝑍(%,),*) = 1/2
𝑍(%,+,,) = 1/4

What if z is equal to 0?

Remember the near clipping plane!

𝑃(%,%,') = (0,0,0)/1
𝑃(%,),*) = (1,0,0)/2
𝑃(%,+,,) = (0,1,0)/4

𝑃!-./01 = 0.2 ∗ [(0,0,0)/1] + 0.1 ∗ [(1,0,0)/2] ∗ 0.7 ∗ [(0,1,0)/4]
𝑃!-./01 = (0.05, 0.175, 0) 

𝑍!-./01 = 0.2 ∗ [1/1] + 0.1 ∗ [1/2] ∗ 0.7 ∗ [1/4]
𝑍!-./01 = 0.425 

𝑞 = (0.05, 0.175, 0)/0.425
𝑞 = (0.12, 0.412, 0)

q
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• The Graphics Pipeline Revisited
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The “Simpler” Graphics Pipeline

Also Today!
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Textures in Graphics

• Textures are buffers of data (images) that are read 
into the graphics pipeline and are used for:
• Coloring mapping
• Normal mapping
• Displacement mapping
• Roughness mapping
• Occlusion mapping
• Reflection mapping

• Textures can also be written into
• Think a scratch pad for data

• Useful for maximizing quality while minimizing the 
number of polygons
• Rough surfaces can be approximated by 

smooth surfaces with rough textures

• A single pixel of a texture is known as a texel

The Last of Us Part II (2020) Naughty Dog

Lecture 05 | Texturing
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Textures in Graphics
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[ fluffy geometry ] [ monochrome texture ] [ textured geometry ]+ =

preserves geometric fluffchanges the visual 
appearance (color of fur)
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Texture Coordinates

• Goal: map surface geometry coordinates to 
image coordinates

• Barycentric coordinates let us represent 3D 
geometry in 2D by their surface coordinates
• Known as surface parameterization

• Not always a 1-to-1 map!
• A surface only half the number of pixels of 

a texture may only use up half the texels**
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**We will learn ways that surfaces may use more texels than there are pixels on the surface

[ texture ] [ geometry ] [ render ]
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Texture Example

Each vertex has a coordinate (u,v) in texture space

[ texture coordinates on surface ] [ texture coordinates on texture ]

v

u

Lecture 05 | Texturing
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Texture Example
[ rendered results ] [  texture data ]

v

u

Each triangle “copies” a piece of the image back to the surface

Lecture 05 | Texturing
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Periodic Texturing

Why do you think texture coordinates might repeat over the surface?
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Periodic Texturing

Used for tiling textures

Lecture 05 | Texturing
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How Texturing Is Done

• An artist goes into a program and 
drags/paints/stretches/warps textures onto 
surfaces
• The resulting distortion of the texture on 

the surface is saved as the surface 
parameterization

• Computing the texture mapping function is 
never done by hand! 
• Always use an interactive program to do it

• Also known as uv mapping
• u and v are the two barycentric 

coordinates that we want to map onto 
texture space

Lecture 05 | Texturing

Texturing (2017) Blender
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Texture mapping maps a non-integer coordinate to another non-integer coordinate.
But textures can only be accessed via integer…

How do we know what texel(s) to sample?
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Nearest Neighbor Sampling

• Idea: Grab texel nearest to requested location in 
texture

• Requires: 
• 1 memory lookup
• 0 linear interpolations
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𝑥2 ← 𝑟𝑜𝑢𝑛𝑑 𝑥 − 0.5 , 𝑦′ ← 𝑟𝑜𝑢𝑛𝑑 𝑦 − 0.5

𝑡 ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥2, 𝑦2

𝒙’ and 𝒚’ are half-integer coordinates
Helps account for 0.5 offset from texture coordinate centers
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Bilinear Interpolation Sampling

• Idea: Grab nearest 4 texels and blend them 
together based on their inverse distance from 
the requested location
• Blend two sets of pixels along one axis, 

then blend the remaining pixels

• Requires: 
• 4 memory lookup
• 3 linear interpolations
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𝑥2 ← 𝑓𝑙𝑜𝑜𝑟 𝑥 − 0.5 , 𝑦′ ← 𝑓𝑙𝑜𝑜𝑟 𝑦 − 0.5

∆𝑥 ← 𝑥 − 𝑥′
∆𝑦 ← 𝑦 − 𝑦′

𝑡(3,4) ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥2, 𝑦2

𝑡(35',4) ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥2 + 1, 𝑦2
𝑡(3,45') ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥2, 𝑦2 + 1
𝑡(35',45') ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥2, +1	𝑦2 + 1

𝑡3 ← 1 − ∆𝑥 ∗ 𝑡(3,4) + ∆𝑥 ∗ 𝑡(35',4)
𝑡4 ← 1 − ∆𝑥 ∗ 𝑡(3,45') + ∆𝑥 ∗ 𝑡(35',45')

𝑡 ← 1 − ∆𝑦 ∗ 𝑡3	 + ∆𝑦 ∗ 𝑡4

Lerp 1 & 2 Lerp 3



15-462/662 | Computer Graphics

Minification vs. Magnification
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• Magnification [ Nearest Neighbor, Bilinear ]:
• Example: camera is very close to scene object
• Single screen pixel maps to tiny region of texture
• Can just interpolate value at screen pixel center

• Minification [ ??? ]
• Example: scene object is very far away
• Single screen pixel maps to large region of texture
• Need to compute average texture value over pixel to avoid aliasing
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Aliasing Due To Minification

Lecture 05 | Texturing
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Pre-Filtering Texture

Lecture 05 | Texturing
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Texture Pre-Filtering

Lecture 05 | Texturing

• Texture aliasing occurs because a single pixel 
on the screen covers many pixels of the 
texture

• Ideally, want to average a bunch of texels in a 
very large region (expensive!)
• Instead, we can pre-compute the 

averages (once) and just look up these 
averages (many times) at run-time

• Q: Which averages to pre-compute
• A: a lot of them!



15-462/662 | Computer Graphics

Mip-Map [L. Williams ‘83]
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• Rough idea: precompute a prefiltered image at 
every possible scale
• The image at depth d is the result of 

applying a 2x2 avg filter on the image at 
depth d-1
• The image at depth 0 is the base 

image

• Mip-Map generates 𝑙𝑜𝑔* min 𝑤𝑡ℎ, ℎ𝑔𝑡 + 1 
levels
• Each level the width and height gets 

halved 

• Memory overhead: (1+1/3)x original texture

• 1 + '
,
+ '

'7
+⋯ =	∑ '

,

"
= '

'8!"
= ,

)
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Mip-Map [L. Williams ‘83]
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• Storing an RGB Mip-Map can be fit into an 
image twice the width and twice the height of 
the original image
• See diagram for proof : )
• Does not work as nicely for RGBA!

• Issue: bad spatial locality
• Requesting a texel requires lookup in 3 

very different regions of an image
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Which mip-map level do we use?
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Sponza Bilinear Interpolation [ Level 0 ]

Lecture 05 | Texturing
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Sponza Bilinear Interpolation [ Level 2 ]
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Sponza Bilinear Interpolation [ Level 4 ]
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Sponza Bilinear Interpolation [ Varying Level ]
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retains detail in the 
foreground

nicely filters the 
background
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Sponza Visualization of Level
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Computing MipMap Depth
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• Correlation between distance of surface to camera 
and level of mip-map accessed 
• More specifically, correlation between screen-

space movement across the surface 
compared to texture movement and level of 
mip-map access

• If moving over a pixel in screen space is a big jump 
in texture space, then we call it minification
• Sample from a lower level of mip-map

• If moving over a pixel in screen space is a small 
jump in texture space, then we call it magnification
• Sample from a higher level of mip-map

u

v



(𝒖, 𝒗)𝟏𝟎

(𝒖, 𝒗)𝟎𝟏

(𝒖, 𝒗)𝟎𝟎
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Computing MipMap Depth
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More formally:

L
du/dx

dv/dx
𝐿!

𝐿"

𝑑𝑢
𝑑𝑥 = 𝑢'% − 𝑢%%

𝑑𝑣
𝑑𝑥

= 𝑣'% − 𝑣%%

𝑑𝑢
𝑑𝑦 = 𝑢%' − 𝑢%%

𝑑𝑣
𝑑𝑦 = 𝑣%' − 𝑣%%

Where 𝑑𝑥 and 𝑑𝑦 measure the change in screen space 
and 𝑑𝑢 and 𝑑𝑣 measure the change in texture space

𝐿3* =
𝑑𝑢
𝑑𝑥

*

+
𝑑𝑣
𝑑𝑥

*

𝐿4* =
𝑑𝑢
𝑑𝑦

*

+
𝑑𝑣
𝑑𝑦

*

𝐿 = 𝑚𝑎𝑥(𝐿3* , 𝐿4* )

𝐿	measures the Euclidean distance of the change.
We take the max to get a single number.

𝑑 = log*𝐿

[ final level 𝑑 ]
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The mipmap level is not an integer…
Which level do we use?
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Trilinear Interpolation Sampling

• Idea: Perform bilinear interpolation on two 
layers of the mip-map that represents proper 
minification/magnification, blending the results 
together

• Requires: 
• 8 memory lookup
• 7 linear interpolations

Lecture 05 | Texturing

𝐿3* ←
𝑑𝑢
𝑑𝑥

*

+
𝑑𝑣
𝑑𝑥

*

𝐿4* ←
𝑑𝑢
𝑑𝑦

*

+
𝑑𝑣
𝑑𝑦

*

𝐿 ← max(𝐿3*, 𝐿4*)

𝑑 ← 𝑙𝑜𝑔*	𝐿

𝑑′ ← 𝑓𝑙𝑜𝑜𝑟(𝑑)
∆𝑑 ← 𝑑	 − 𝑑′

𝑡9 ← 𝑡𝑒𝑥[𝑑2]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡95' ← 𝑡𝑒𝑥[𝑑2 + 1]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡 ← 1 − ∆𝑑 ∗ 𝑡9 + ∆𝑑 ∗ 𝑡95'

Level ceil(d)

Level floor(d)

Bilerp (3 Lerps)

Bilerp (3 Lerps)

(1 Lerp)
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Trilinear Interpolation Sampling

• Idea: Perform bilinear interpolation on two 
layers of the mip-map that represents proper 
minification/magnification, blending the results 
together

• Requires: 
• 8 memory lookup
• 7 linear interpolations
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𝐿3* ←
𝑑𝑢
𝑑𝑥

*

+
𝑑𝑣
𝑑𝑥

*

𝐿4* ←
𝑑𝑢
𝑑𝑦

*

+
𝑑𝑣
𝑑𝑦

*

𝐿 ← max(𝐿3*, 𝐿4*)

𝑑 ← 𝑙𝑜𝑔*	𝐿

𝑑′ ← 𝑓𝑙𝑜𝑜𝑟(𝑑)
∆𝑑 ← 𝑑	 − 𝑑′

𝑡9 ← 𝑡𝑒𝑥[𝑑2]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡95' ← 𝑡𝑒𝑥[𝑑2 + 1]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡 ← 1 − ∆𝑑 ∗ 𝑡9 + ∆𝑑 ∗ 𝑡95'

Level ceil(d)

Level floor(d)

Bilerp (3 Lerps)

Bilerp (3 Lerps)

(1 Lerp)

why are we taking the max?
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Trilinear Assumption

• Trilinear filtering assumes that samples shrink at the 
same rate along 𝑢 and 𝑣
• Taking the max says we would rather 

overcompensate than undercompensate filtering

• Bilinear and Trilinear filtering are isotropic filtering 
methods
• iso – same, tropic – direction
• Values should be same regardless of viewing 

direction

• What does it mean for samples to shrink at very 
different rates along 𝑢 and 𝑣?
• Think of a plane rotated away from the camera

• Changes in 𝑣 larger than changes in 𝑢 
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𝑢

𝑣
.25

.5
.75

.5 .75.25

L

L
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Anisotropic Filtering

• Anisotropic filtering is dependent on direction
• an – not, iso – same, tropic – direction

• Idea: create a new texture map that downsamples 
the x and y axis by 2 separately
• Instead of taking the max, use each coordinate 

to index into correct location in map
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𝐿 = 𝑚𝑎𝑥(𝐿3* , 𝐿4* )

(𝑑3 , 𝑑4) = (	𝑙𝑜𝑔* 𝐿3* , 𝑙𝑜𝑔* 𝐿4* )

• Texture map is now a grid of downsampled textures
• Known as a RipMap 
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Rip Map
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• Same idea as MipMap, but for anisotropic filtering
• 4x memory footprint
• New width: 𝑤2 = 𝑤 + :

*
+ :

,
+⋯ = 2𝑤

• New height: ℎ2 = ℎ + ;
*
+ ;

,
+⋯ = 2ℎ

• New area: 𝑤2ℎ2 = 4𝑤ℎ

• Fun fact: a MipMap is just the diagonal of a RipMap
• If 𝑑3 = 𝑑4, then we have trilinear interpolation
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Isotropic vs Anisotropic Filtering
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overbluring in 𝑢 direction

[ isotropic (trilinear) ] [ anisotropic ]
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Sampling Comparisons
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[ Nearest ] [ Bilinear ] [ Trilinear ]

No. samples

No. interps

1 4 8

0 3 7

Texture locality good good bad

Memory overhead 1x 1x 4/3x

No. operations ~3 ~19 >54

[ Anisotropic ]

>54

15

very bad

4x

16

Anti-aliasing bad normal good great
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Texture Sampling Pipeline
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1. Compute 𝑢 and 𝑣 from screen sample (𝑥,𝑦) via barycentric 
interpolation

2. Approximate 𝑑𝑢/𝑑𝑥, 𝑑𝑢/𝑑𝑦, 𝑑𝑣/𝑑𝑥, 𝑑𝑣/𝑑𝑦 by taking differences 
of screen-adjacent samples

3. Compute mip map level 𝑑
4. Convert normalized [0,1] texture coordinate (𝑢,𝑣) to pixel 

locations (𝑈,𝑉)∈[𝑊,𝐻] in texture image
5. Determine addresses of texels needed for filter (e.g., eight 

neighbors for trilinear)
6. Load texels into local registers
7. Perform tri-linear interpolation according to (𝑈,𝑉,𝑑)
8. (…even more work for anisotropic filtering…)

Lot of repetitive work every time 
we want to shade a pixel!

GPUs instead implement these 
instructions on fixed-function 
hardware.

This is why we have texture caches 
and texture filtering units.
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• Barycentric Coordinates

• Texturing Surfaces

• Depth Testing

• Alpha Blending

• The Graphics Pipeline Revisited

Lecture 05 | Texturing
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The “Simpler” Graphics Pipeline

Last Step!
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Depth Buffer ( Z-buffer )

Lecture 05 | Texturing

• For each sample, the depth buffer stores the depth of the 
closest triangle seen so far
• Done at the sample granularity, not pixel granularity

farnear
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Depth of a Triangle

Lecture 05 | Texturing

• A triangle is composed of 3 different 3D points, 
each with a depth value 𝑧

• To get the depth at any point (𝑥, 𝑦) inside the 
triangle, interpolate depth at vertices with 
barycentric coordinates

sc
re
en
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Depth Buffer ( Z-buffer )

Lecture 05 | Texturing

[ depth buffer ][ color buffer ]

— sample passed depth test

farnear
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Depth Buffer ( Z-buffer )
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[ depth buffer ][ color buffer ]

— sample passed depth test

farnear
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Depth Buffer ( Z-buffer )
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[ depth buffer ][ color buffer ]

— sample passed depth test

farnear
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Depth Buffer ( Z-buffer )

Lecture 05 | Texturing

[ depth buffer ][ color buffer ]

— sample passed depth test

farnear
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Depth Buffer ( Z-buffer ) Per Sample

Lecture 05 | Texturing
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Depth Buffer ( Z-buffer ) Per Sample

Lecture 05 | Texturing

Able to capture triangle intersections by performing tests per sample
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Depth Buffer ( Z-buffer ) Sample Code

Lecture 05 | Texturing

draw_sample(x, y, d, c) //new depth d & color c at (x,y)
{

if(d < zbuffer[x][y])
{

// triangle is closest object seen so far at this
// sample point. Update depth and color buffers.  
zbuffer[x][y] = d;  // update zbuffer
color[x][y] = c;   // update color buffer

}
// otherwise, we’ve seen something closer already;
// don’t update color or depth

}

Why is it that we first shade the pixel and then assign the resulting color after depth check?
Deferred shading (advanced algorithm) fixes this issue.
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• Barycentric Coordinates

• Texturing Surfaces

• Depth Testing

• Alpha Blending

• The Graphics Pipeline Revisited

Lecture 05 | Texturing



15-462/662 | Computer Graphics

Alpha Values

Lecture 05 | Texturing

• Another common image format: RGBA
• Alpha channel specifies ‘opacity’ of object
• Basically how transparent it is
• Most common encoding is 8-bits per 

channel (0-255)

• Compositing A over B != B over A
• Consider the extreme case of two opaque 

objects…

𝛼 = 3/4

𝛼 = 1/2

𝛼 = 1/4

𝛼 = 1

fully opaque

𝛼 = 0
fully transparent

[ nyc over…koala? ][ koala over nyc ]

where is 
the koala…
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Non-Premultiplied Alpha

Lecture 05 | Texturing

𝐵 𝐴

B over A

• Goal: Composite image 𝐵 with alpha 𝛼<	over 
image 𝐴 with alpha 𝛼=

𝐴 = (𝐴#, 𝐴$, 𝐴%)
𝐵 = (𝐵#, 𝐵$, 𝐵%)

𝐶 = 𝛼&𝐵 + (1 − 𝛼&)𝛼'𝐴

appearance of semi-
transparent B

what B lets through

appearance of semi-
transparent A

𝛼( = 𝛼& + (1 − 𝛼&)𝛼'

• Composite RGB: • Composite Alpha:

Two different 

equations is 

inefficient!!
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Premultiplied Alpha
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𝐵 𝐴

B over A

• Goal: Composite image 𝐵 with alpha 𝛼<	over 
image 𝐴 with alpha 𝛼=

𝐴) = (𝛼'𝐴#, 𝛼'𝐴$, 𝛼'𝐴%, 𝛼')
𝐵) = (𝛼&𝐵#, 𝛼&𝐵$, 𝛼&𝐵%, 𝛼&)

𝐶) = 𝐵) + (1 − 𝛼&)𝐴) (𝐶#, 𝐶$, 𝐶%, 𝛼() ⟹ (𝐶#/𝛼( , 𝐶$/𝛼( , 𝐶%/𝛼()

• Composite RGBA: • Un-Premultiply for Final Color:



15-462/662 | Computer Graphics

Why Premultiplied Matters [Upsample]

Lecture 05 | Texturing

coloralpha premultiplied

upsampled
color

upsampled
alpha

upsampled
premultiplied

new background 𝐴	(𝛼= = 1) 𝐵 over 𝐴 𝐵 over 𝐴 (premultiplied)

upsample

Something isn’t right…

Known as fringing
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Why Premultiplied Matters [Downsample]

Lecture 05 | Texturing

color alpha color alpha
original downsampled

composite

regular

premultiplied

[ RGB ] [ A ]
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Closed Under Composition

Lecture 05 | Texturing

𝐵 𝐴

B over A

• Goal: Composite bright red image 𝐵 with alpha 0.5 
over bright red image 𝐴 with alpha 0.5

𝐴 = (1, 0, 0, 0.5)
𝐵 = (1, 0, 0, 0.5)

0.5 ∗ 1,0,0 + (1 − 0.5) ∗ 0.5 ∗ 1,0,0

• Non-Premultiplied: • Premultiplied:

(0.75, 0, 0)

0.5 + 1 − 0.5 ∗ 0.5 = 0.75

color

alpha

0.5 ∗ 0.5,0,0,0.5 + 1 − 0.5 ∗ 0.5,0,0,0.5

(0.75, 0, 0, 0.75)

(1, 0, 0)
divide out alpha
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Blend Methods

Lecture 05 | Texturing

𝐷>?<= =	𝑆>?<= + 𝐷>?<=
𝐷>?<= =	𝑆>?<= − 𝐷>?<=
𝐷>?<= =	−	𝑆>?<= + 𝐷>?<=
𝐷>?<= =	min(𝑆>?<=, 	𝐷>?<= )
𝐷>?<= = max(𝑆>?<=, 	𝐷>?<= )
𝐷>?<= =	𝑆>?<= + 𝐷>?<= ∗ (1 − 𝑆=)

Blend Add
Blend Subtract
Blend Reverse Subtract
Blend Min
Blend Max
Blend Over

𝑆>?<=	and 𝐷>?<= are pre-multiplied

When writing to color buffer, can use any blend method
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Updated Depth Buffer ( Z-buffer ) Sample Code

Lecture 05 | Texturing

draw_sample(x, y, d, c) //new depth d & color c at (x,y)
{

if(d < zbuffer[x][y])
{

// triangle is closest object seen so far at this
// sample point. Update depth and color buffers.  
zbuffer[x][y] = d;
color[x][y] = c.rgba + (1-c.a) * color[x][y];

}
// otherwise, we’ve seen something closer already;
// don’t update color or depth

}

Assumes color[x][y] and c are both premultiplied.

Triangles must be rendered back to front!
A over B != B over A

Should we still be 

doing depth writes for 

alpha primitives?
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Blend Render Order

Lecture 05 | Texturing

• For mixtures of opaque and transparent triangles:

• Step 1: render opaque primitives (in any order) 
using depth-buffered occlusion
• If pass depth test, triangle overwrites value in 

color buffer at sample
• Depth READ and WRITE

• Step 2: disable depth buffer update, render semi-
transparent surfaces in back-to-front order.
• If pass depth test, triangle is composited 

OVER contents of color buffer at sample
• Depth READ only
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• Barycentric Coordinates

• Texturing Surfaces

• Depth Testing

• Alpha Blending

• The Graphics Pipeline Revisited

Lecture 05 | Texturing
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The “Simpler” Graphics Pipeline

Now Let’s

Put It A
ll

Together!
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The Inputs

positions = {
v0x, v0y, v0z, 
v1x, v1y, v1x,
v2x, v2y, v2z,
v3x, v3y, v3x,
v4x, v4y, v4z,
v5x, v5y, v5x

};

texcoords ={
v0u, v0v, 
v1u, v1v,
v2u, v2v,
v3u, v3v,
v4u, v4v,
v5u, v5v

};

[ vertices ] [ textures ]

Object-to-camera-space transform 𝑇 ∈ ℝ!×!

Perspective projection transform 𝑃 ∈ ℝ!×!

Output image (𝑊,𝐻) 

[ camera properties ] [ machine ]
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Step 1: Transform

z

x

y
Transform triangle vertices into camera space
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Step 2: Perspective Projection 

Apply perspective projection transform to transform 
triangle vertices into normalized coordinate space

[ normalized space position ][ 3D camera space position ]
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Step 3: Clipping

Discard triangles completely outside cube.
Clip triangles partially in cube.

[ post-clipping ][ pre-clipping ]
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Step 4: Transform To Screen Coordinates

Perform homogeneous divide.
Transform vertex xy positions from normalized coordinates 

into screen coordinates (based on screen [w, h]).

(0, 0)

(w, h)
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Step 5: Sample Coverage

Check if samples lie inside triangle.
Evaluate depth and barycentric coordinates at all passing samples.
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Step 6: Compute Color

Texture lookups, color interpolation, etc.

u

v[ u(x,y), v(x,y) ]
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Step 7: Depth Test

Check depth and update depth if closer primitive found.
(can be disabled)

PASS PASSPASS

PASS PASS PASS

PASSPASS

PASS

PASS

FAIL

FAIL

FAIL

FAIL

FAIL

FAIL

PASS

PASS

PASS

PASS
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Step 8: Color Blending

Update color buffer with correct blending operation.



15-462/662 | Computer Graphics Lecture 05 | Texturing

The “Real” Graphics Pipeline

Doesn’t look much different 
than what we discussed…


