
Transparency
& Texturing

15-462/662 | Computer Graphics Lecture 05 | Texturing

15-462/662 | Computer Graphics

• Barycentric Coordinates

• Texturing Surfaces

• Depth Testing

• Alpha Blending

• The Graphics Pipeline Revisited

Lecture 05 | Texturing

15-462/662 | Computer Graphics Lecture 05 | Texturing

The “Simpler” Graphics Pipeline

Today!

15-462/662 | Computer Graphics

Interpolating Values for Triangles

Lecture 05 | Texturing

• Goal: interpolate triangle vertices for any point within
triangle

• Coordinates (𝜙! , 𝜙",𝜙#) should represent weighted average
• 𝜙! + 𝜙" + 𝜙# = 1
• Similarly, 1 − 𝜙! − 𝜙" = 𝜙#
• Gives a 2D parameterization of triangle point (𝜙! , 𝜙")

• Known as barycentric coordinates

• If each point has some attribute (𝛼! , 𝛼" , 𝛼#), can linearly
interpolate 𝛼!𝜙! + 𝛼"𝜙" + 𝛼#𝜙#
• Example: [black]𝜙! + [green]𝜙" 	+	[red] 𝜙#

[black]

[green]

[red]

15-462/662 | Computer Graphics

Barycentric Coordinates

Lecture 05 | Texturing

• Inversely proportional to the distance between the
target point and a point within the triangle

• Can be computed as:

• How would you compute ℎ!? 𝑑!(𝑥)?

15-462/662 | Computer Graphics

Barycentric Coordinates [Another Way]

Lecture 05 | Texturing

• Directly proportional to the area created by the triangle
composed of the other two target points and a point
within the triangle

• Can be computed as:

** Interesting read of barycentric coordinates for n-gons: https://www.inf.usi.ch/hormann/barycentric/

15-462/662 | Computer Graphics

Perspective-Incorrect Interpolation

Lecture 05 | Texturing

• Due to perspective projection (homogeneous divide),
barycentric interpolation of values on a triangle with
different depths is not an affine function of screen XY
coordinates

• Want to interpolate attribute values linearly in 3D
object space, not image space.𝑎!

𝑎"

(𝑎! + 𝑎")/2

Halfway in real life!

Not actually halfway in screen!

15-462/662 | Computer Graphics

Perspective-Incorrect Interpolation

Lecture 05 | Texturing

If we compute barycentric coordinates using 2D
(projected) coordinates, leads to (derivative)
discontinuity in interpolation where quad was split

15-462/662 | Computer Graphics

Perspective-Correct Interpolation

Lecture 05 | Texturing

• Goal: interpolate some attribute 𝑣 at vertices
• Compute depth 𝑧 at each vertex
• Evaluate 𝑍 ∶= 	1/𝑧	and 𝑃	 ≔ 𝑣/𝑧	at each vertex
• Interpolate 𝑍 and 𝑃 using standard (2D)

barycentric coordinates
• At each fragment, divide interpolated 𝑃 by

interpolated 𝑍 to get final value

15-462/662 | Computer Graphics

Perspective-Correct Interpolation

Lecture 05 | Texturing

(0,0,1) (0,3,2)

(0,5,4)

𝜙(%,%,') = 0.2
𝜙(%,),*) = 0.1
𝜙(%,+,,) = 0.7

𝑍(%,%,') = 1
𝑍(%,),*) = 1/2
𝑍(%,+,,) = 1/4

What if z is equal to 0?

Remember the near clipping plane!

𝑃(%,%,') = (0,0,0)/1
𝑃(%,),*) = (1,0,0)/2
𝑃(%,+,,) = (0,1,0)/4

𝑃!-./01 = 0.2 ∗ [(0,0,0)/1] + 0.1 ∗ [(1,0,0)/2] ∗ 0.7 ∗ [(0,1,0)/4]
𝑃!-./01 = (0.05, 0.175, 0)

𝑍!-./01 = 0.2 ∗ [1/1] + 0.1 ∗ [1/2] ∗ 0.7 ∗ [1/4]
𝑍!-./01 = 0.425

𝑞 = (0.05, 0.175, 0)/0.425
𝑞 = (0.12, 0.412, 0)

q

15-462/662 | Computer Graphics

• Barycentric Coordinates

• Texturing Surfaces

• Depth Testing

• Alpha Blending

• The Graphics Pipeline Revisited

Lecture 05 | Texturing

15-462/662 | Computer Graphics Lecture 05 | Texturing

The “Simpler” Graphics Pipeline

Also Today!

15-462/662 | Computer Graphics

Textures in Graphics

• Textures are buffers of data (images) that are read
into the graphics pipeline and are used for:
• Coloring mapping
• Normal mapping
• Displacement mapping
• Roughness mapping
• Occlusion mapping
• Reflection mapping

• Textures can also be written into
• Think a scratch pad for data

• Useful for maximizing quality while minimizing the
number of polygons
• Rough surfaces can be approximated by

smooth surfaces with rough textures

• A single pixel of a texture is known as a texel

The Last of Us Part II (2020) Naughty Dog

Lecture 05 | Texturing

15-462/662 | Computer Graphics

Textures in Graphics

Lecture 05 | Texturing

[fluffy geometry] [monochrome texture] [textured geometry]+ =

preserves geometric fluffchanges the visual
appearance (color of fur)

15-462/662 | Computer Graphics

Texture Coordinates

• Goal: map surface geometry coordinates to
image coordinates

• Barycentric coordinates let us represent 3D
geometry in 2D by their surface coordinates
• Known as surface parameterization

• Not always a 1-to-1 map!
• A surface only half the number of pixels of

a texture may only use up half the texels**

Lecture 05 | Texturing

**We will learn ways that surfaces may use more texels than there are pixels on the surface

[texture] [geometry] [render]

15-462/662 | Computer Graphics

Texture Example

Each vertex has a coordinate (u,v) in texture space

[texture coordinates on surface] [texture coordinates on texture]

v

u

Lecture 05 | Texturing

15-462/662 | Computer Graphics

Texture Example
[rendered results] [texture data]

v

u

Each triangle “copies” a piece of the image back to the surface

Lecture 05 | Texturing

15-462/662 | Computer Graphics

Periodic Texturing

Why do you think texture coordinates might repeat over the surface?

Lecture 05 | Texturing

15-462/662 | Computer Graphics

Periodic Texturing

Used for tiling textures

Lecture 05 | Texturing

15-462/662 | Computer Graphics

How Texturing Is Done

• An artist goes into a program and
drags/paints/stretches/warps textures onto
surfaces
• The resulting distortion of the texture on

the surface is saved as the surface
parameterization

• Computing the texture mapping function is
never done by hand!
• Always use an interactive program to do it

• Also known as uv mapping
• u and v are the two barycentric

coordinates that we want to map onto
texture space

Lecture 05 | Texturing

Texturing (2017) Blender

15-462/662 | Computer Graphics Lecture 05 | Texturing

Texture mapping maps a non-integer coordinate to another non-integer coordinate.
But textures can only be accessed via integer…

How do we know what texel(s) to sample?

15-462/662 | Computer Graphics

Nearest Neighbor Sampling

• Idea: Grab texel nearest to requested location in
texture

• Requires:
• 1 memory lookup
• 0 linear interpolations

Lecture 05 | Texturing

𝑥2 ← 𝑟𝑜𝑢𝑛𝑑 𝑥 − 0.5 , 𝑦′ ← 𝑟𝑜𝑢𝑛𝑑 𝑦 − 0.5

𝑡 ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥2, 𝑦2

𝒙’ and 𝒚’ are half-integer coordinates
Helps account for 0.5 offset from texture coordinate centers

15-462/662 | Computer Graphics

Bilinear Interpolation Sampling

• Idea: Grab nearest 4 texels and blend them
together based on their inverse distance from
the requested location
• Blend two sets of pixels along one axis,

then blend the remaining pixels

• Requires:
• 4 memory lookup
• 3 linear interpolations

Lecture 05 | Texturing

𝑥2 ← 𝑓𝑙𝑜𝑜𝑟 𝑥 − 0.5 , 𝑦′ ← 𝑓𝑙𝑜𝑜𝑟 𝑦 − 0.5

∆𝑥 ← 𝑥 − 𝑥′
∆𝑦 ← 𝑦 − 𝑦′

𝑡(3,4) ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥2, 𝑦2

𝑡(35',4) ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥2 + 1, 𝑦2
𝑡(3,45') ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥2, 𝑦2 + 1
𝑡(35',45') ← 𝑡𝑒𝑥. 𝑙𝑜𝑜𝑘𝑢𝑝 𝑥2, +1	𝑦2 + 1

𝑡3 ← 1 − ∆𝑥 ∗ 𝑡(3,4) + ∆𝑥 ∗ 𝑡(35',4)
𝑡4 ← 1 − ∆𝑥 ∗ 𝑡(3,45') + ∆𝑥 ∗ 𝑡(35',45')

𝑡 ← 1 − ∆𝑦 ∗ 𝑡3	 + ∆𝑦 ∗ 𝑡4

Lerp 1 & 2 Lerp 3

15-462/662 | Computer Graphics

Minification vs. Magnification

Lecture 05 | Texturing

• Magnification [Nearest Neighbor, Bilinear]:
• Example: camera is very close to scene object
• Single screen pixel maps to tiny region of texture
• Can just interpolate value at screen pixel center

• Minification [???]
• Example: scene object is very far away
• Single screen pixel maps to large region of texture
• Need to compute average texture value over pixel to avoid aliasing

15-462/662 | Computer Graphics

Aliasing Due To Minification

Lecture 05 | Texturing

15-462/662 | Computer Graphics

Pre-Filtering Texture

Lecture 05 | Texturing

15-462/662 | Computer Graphics

Texture Pre-Filtering

Lecture 05 | Texturing

• Texture aliasing occurs because a single pixel
on the screen covers many pixels of the
texture

• Ideally, want to average a bunch of texels in a
very large region (expensive!)
• Instead, we can pre-compute the

averages (once) and just look up these
averages (many times) at run-time

• Q: Which averages to pre-compute
• A: a lot of them!

15-462/662 | Computer Graphics

Mip-Map [L. Williams ‘83]

Lecture 05 | Texturing

• Rough idea: precompute a prefiltered image at
every possible scale
• The image at depth d is the result of

applying a 2x2 avg filter on the image at
depth d-1
• The image at depth 0 is the base

image

• Mip-Map generates 𝑙𝑜𝑔* min 𝑤𝑡ℎ, ℎ𝑔𝑡 + 1
levels
• Each level the width and height gets

halved

• Memory overhead: (1+1/3)x original texture

• 1 + '
,
+ '

'7
+⋯ =	∑ '

,

"
= '

'8!"
= ,

)

15-462/662 | Computer Graphics

Mip-Map [L. Williams ‘83]

Lecture 05 | Texturing

• Storing an RGB Mip-Map can be fit into an
image twice the width and twice the height of
the original image
• See diagram for proof :)
• Does not work as nicely for RGBA!

• Issue: bad spatial locality
• Requesting a texel requires lookup in 3

very different regions of an image

15-462/662 | Computer Graphics Lecture 05 | Texturing

Which mip-map level do we use?

15-462/662 | Computer Graphics

Sponza Bilinear Interpolation [Level 0]

Lecture 05 | Texturing

15-462/662 | Computer Graphics

Sponza Bilinear Interpolation [Level 2]

Lecture 05 | Texturing

15-462/662 | Computer Graphics

Sponza Bilinear Interpolation [Level 4]

Lecture 05 | Texturing

15-462/662 | Computer Graphics

Sponza Bilinear Interpolation [Varying Level]

Lecture 05 | Texturing

retains detail in the
foreground

nicely filters the
background

15-462/662 | Computer Graphics

Sponza Visualization of Level

Lecture 05 | Texturing

15-462/662 | Computer Graphics

Computing MipMap Depth

Lecture 05 | Texturing

• Correlation between distance of surface to camera
and level of mip-map accessed
• More specifically, correlation between screen-

space movement across the surface
compared to texture movement and level of
mip-map access

• If moving over a pixel in screen space is a big jump
in texture space, then we call it minification
• Sample from a lower level of mip-map

• If moving over a pixel in screen space is a small
jump in texture space, then we call it magnification
• Sample from a higher level of mip-map

u

v

(𝒖, 𝒗)𝟏𝟎

(𝒖, 𝒗)𝟎𝟏

(𝒖, 𝒗)𝟎𝟎

15-462/662 | Computer Graphics

Computing MipMap Depth

Lecture 05 | Texturing

More formally:

L
du/dx

dv/dx
𝐿!

𝐿"

𝑑𝑢
𝑑𝑥 = 𝑢'% − 𝑢%%

𝑑𝑣
𝑑𝑥

= 𝑣'% − 𝑣%%

𝑑𝑢
𝑑𝑦 = 𝑢%' − 𝑢%%

𝑑𝑣
𝑑𝑦 = 𝑣%' − 𝑣%%

Where 𝑑𝑥 and 𝑑𝑦 measure the change in screen space
and 𝑑𝑢 and 𝑑𝑣 measure the change in texture space

𝐿3* =
𝑑𝑢
𝑑𝑥

*

+
𝑑𝑣
𝑑𝑥

*

𝐿4* =
𝑑𝑢
𝑑𝑦

*

+
𝑑𝑣
𝑑𝑦

*

𝐿 = 𝑚𝑎𝑥(𝐿3* , 𝐿4*)

𝐿	measures the Euclidean distance of the change.
We take the max to get a single number.

𝑑 = log*𝐿

[final level 𝑑]

15-462/662 | Computer Graphics Lecture 05 | Texturing

The mipmap level is not an integer…
Which level do we use?

15-462/662 | Computer Graphics

Trilinear Interpolation Sampling

• Idea: Perform bilinear interpolation on two
layers of the mip-map that represents proper
minification/magnification, blending the results
together

• Requires:
• 8 memory lookup
• 7 linear interpolations

Lecture 05 | Texturing

𝐿3* ←
𝑑𝑢
𝑑𝑥

*

+
𝑑𝑣
𝑑𝑥

*

𝐿4* ←
𝑑𝑢
𝑑𝑦

*

+
𝑑𝑣
𝑑𝑦

*

𝐿 ← max(𝐿3*, 𝐿4*)

𝑑 ← 𝑙𝑜𝑔*	𝐿

𝑑′ ← 𝑓𝑙𝑜𝑜𝑟(𝑑)
∆𝑑 ← 𝑑	 − 𝑑′

𝑡9 ← 𝑡𝑒𝑥[𝑑2]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡95' ← 𝑡𝑒𝑥[𝑑2 + 1]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡 ← 1 − ∆𝑑 ∗ 𝑡9 + ∆𝑑 ∗ 𝑡95'

Level ceil(d)

Level floor(d)

Bilerp (3 Lerps)

Bilerp (3 Lerps)

(1 Lerp)

15-462/662 | Computer Graphics

Trilinear Interpolation Sampling

• Idea: Perform bilinear interpolation on two
layers of the mip-map that represents proper
minification/magnification, blending the results
together

• Requires:
• 8 memory lookup
• 7 linear interpolations

Lecture 05 | Texturing

𝐿3* ←
𝑑𝑢
𝑑𝑥

*

+
𝑑𝑣
𝑑𝑥

*

𝐿4* ←
𝑑𝑢
𝑑𝑦

*

+
𝑑𝑣
𝑑𝑦

*

𝐿 ← max(𝐿3*, 𝐿4*)

𝑑 ← 𝑙𝑜𝑔*	𝐿

𝑑′ ← 𝑓𝑙𝑜𝑜𝑟(𝑑)
∆𝑑 ← 𝑑	 − 𝑑′

𝑡9 ← 𝑡𝑒𝑥[𝑑2]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡95' ← 𝑡𝑒𝑥[𝑑2 + 1]. 𝑏𝑖𝑙𝑖𝑛𝑒𝑎𝑟 𝑥, 𝑦
𝑡 ← 1 − ∆𝑑 ∗ 𝑡9 + ∆𝑑 ∗ 𝑡95'

Level ceil(d)

Level floor(d)

Bilerp (3 Lerps)

Bilerp (3 Lerps)

(1 Lerp)

why are we taking the max?

15-462/662 | Computer Graphics

Trilinear Assumption

• Trilinear filtering assumes that samples shrink at the
same rate along 𝑢 and 𝑣
• Taking the max says we would rather

overcompensate than undercompensate filtering

• Bilinear and Trilinear filtering are isotropic filtering
methods
• iso – same, tropic – direction
• Values should be same regardless of viewing

direction

• What does it mean for samples to shrink at very
different rates along 𝑢 and 𝑣?
• Think of a plane rotated away from the camera

• Changes in 𝑣 larger than changes in 𝑢

Lecture 05 | Texturing

𝑢

𝑣
.25

.5
.75

.5 .75.25

L

L

15-462/662 | Computer Graphics

Anisotropic Filtering

• Anisotropic filtering is dependent on direction
• an – not, iso – same, tropic – direction

• Idea: create a new texture map that downsamples
the x and y axis by 2 separately
• Instead of taking the max, use each coordinate

to index into correct location in map

Lecture 05 | Texturing

𝐿 = 𝑚𝑎𝑥(𝐿3* , 𝐿4*)

(𝑑3 , 𝑑4) = (𝑙𝑜𝑔* 𝐿3* , 𝑙𝑜𝑔* 𝐿4*)

• Texture map is now a grid of downsampled textures
• Known as a RipMap

15-462/662 | Computer Graphics

Rip Map

Lecture 05 | Texturing

• Same idea as MipMap, but for anisotropic filtering
• 4x memory footprint
• New width: 𝑤2 = 𝑤 + :

*
+ :

,
+⋯ = 2𝑤

• New height: ℎ2 = ℎ + ;
*
+ ;

,
+⋯ = 2ℎ

• New area: 𝑤2ℎ2 = 4𝑤ℎ

• Fun fact: a MipMap is just the diagonal of a RipMap
• If 𝑑3 = 𝑑4, then we have trilinear interpolation

15-462/662 | Computer Graphics

Isotropic vs Anisotropic Filtering

Lecture 05 | Texturing

overbluring in 𝑢 direction

[isotropic (trilinear)] [anisotropic]

15-462/662 | Computer Graphics

Sampling Comparisons

Lecture 05 | Texturing

[Nearest] [Bilinear] [Trilinear]

No. samples

No. interps

1 4 8

0 3 7

Texture locality good good bad

Memory overhead 1x 1x 4/3x

No. operations ~3 ~19 >54

[Anisotropic]

>54

15

very bad

4x

16

Anti-aliasing bad normal good great

15-462/662 | Computer Graphics

Texture Sampling Pipeline

Lecture 05 | Texturing

1. Compute 𝑢 and 𝑣 from screen sample (𝑥,𝑦) via barycentric
interpolation

2. Approximate 𝑑𝑢/𝑑𝑥, 𝑑𝑢/𝑑𝑦, 𝑑𝑣/𝑑𝑥, 𝑑𝑣/𝑑𝑦 by taking differences
of screen-adjacent samples

3. Compute mip map level 𝑑
4. Convert normalized [0,1] texture coordinate (𝑢,𝑣) to pixel

locations (𝑈,𝑉)∈[𝑊,𝐻] in texture image
5. Determine addresses of texels needed for filter (e.g., eight

neighbors for trilinear)
6. Load texels into local registers
7. Perform tri-linear interpolation according to (𝑈,𝑉,𝑑)
8. (…even more work for anisotropic filtering…)

Lot of repetitive work every time
we want to shade a pixel!

GPUs instead implement these
instructions on fixed-function
hardware.

This is why we have texture caches
and texture filtering units.

15-462/662 | Computer Graphics

• Barycentric Coordinates

• Texturing Surfaces

• Depth Testing

• Alpha Blending

• The Graphics Pipeline Revisited

Lecture 05 | Texturing

15-462/662 | Computer Graphics Lecture 05 | Texturing

The “Simpler” Graphics Pipeline

Last Step!

15-462/662 | Computer Graphics

Depth Buffer (Z-buffer)

Lecture 05 | Texturing

• For each sample, the depth buffer stores the depth of the
closest triangle seen so far
• Done at the sample granularity, not pixel granularity

farnear

15-462/662 | Computer Graphics

Depth of a Triangle

Lecture 05 | Texturing

• A triangle is composed of 3 different 3D points,
each with a depth value 𝑧

• To get the depth at any point (𝑥, 𝑦) inside the
triangle, interpolate depth at vertices with
barycentric coordinates

sc
re
en

15-462/662 | Computer Graphics

Depth Buffer (Z-buffer)

Lecture 05 | Texturing

[depth buffer][color buffer]

— sample passed depth test

farnear

15-462/662 | Computer Graphics

Depth Buffer (Z-buffer)

Lecture 05 | Texturing

[depth buffer][color buffer]

— sample passed depth test

farnear

15-462/662 | Computer Graphics

Depth Buffer (Z-buffer)

Lecture 05 | Texturing

[depth buffer][color buffer]

— sample passed depth test

farnear

15-462/662 | Computer Graphics

Depth Buffer (Z-buffer)

Lecture 05 | Texturing

[depth buffer][color buffer]

— sample passed depth test

farnear

15-462/662 | Computer Graphics

Depth Buffer (Z-buffer) Per Sample

Lecture 05 | Texturing

15-462/662 | Computer Graphics

Depth Buffer (Z-buffer) Per Sample

Lecture 05 | Texturing

Able to capture triangle intersections by performing tests per sample

15-462/662 | Computer Graphics

Depth Buffer (Z-buffer) Sample Code

Lecture 05 | Texturing

draw_sample(x, y, d, c) //new depth d & color c at (x,y)
{

if(d < zbuffer[x][y])
{

// triangle is closest object seen so far at this
// sample point. Update depth and color buffers.
zbuffer[x][y] = d; // update zbuffer
color[x][y] = c; // update color buffer

}
// otherwise, we’ve seen something closer already;
// don’t update color or depth

}

Why is it that we first shade the pixel and then assign the resulting color after depth check?
Deferred shading (advanced algorithm) fixes this issue.

15-462/662 | Computer Graphics

• Barycentric Coordinates

• Texturing Surfaces

• Depth Testing

• Alpha Blending

• The Graphics Pipeline Revisited

Lecture 05 | Texturing

15-462/662 | Computer Graphics

Alpha Values

Lecture 05 | Texturing

• Another common image format: RGBA
• Alpha channel specifies ‘opacity’ of object
• Basically how transparent it is
• Most common encoding is 8-bits per

channel (0-255)

• Compositing A over B != B over A
• Consider the extreme case of two opaque

objects…

𝛼 = 3/4

𝛼 = 1/2

𝛼 = 1/4

𝛼 = 1

fully opaque

𝛼 = 0
fully transparent

[nyc over…koala?][koala over nyc]

where is
the koala…

15-462/662 | Computer Graphics

Non-Premultiplied Alpha

Lecture 05 | Texturing

𝐵 𝐴

B over A

• Goal: Composite image 𝐵 with alpha 𝛼<	over
image 𝐴 with alpha 𝛼=

𝐴 = (𝐴#, 𝐴$, 𝐴%)
𝐵 = (𝐵#, 𝐵$, 𝐵%)

𝐶 = 𝛼&𝐵 + (1 − 𝛼&)𝛼'𝐴

appearance of semi-
transparent B

what B lets through

appearance of semi-
transparent A

𝛼(= 𝛼& + (1 − 𝛼&)𝛼'

• Composite RGB: • Composite Alpha:

Two different

equations is

inefficient!!

15-462/662 | Computer Graphics

Premultiplied Alpha

Lecture 05 | Texturing

𝐵 𝐴

B over A

• Goal: Composite image 𝐵 with alpha 𝛼<	over
image 𝐴 with alpha 𝛼=

𝐴) = (𝛼'𝐴#, 𝛼'𝐴$, 𝛼'𝐴%, 𝛼')
𝐵) = (𝛼&𝐵#, 𝛼&𝐵$, 𝛼&𝐵%, 𝛼&)

𝐶) = 𝐵) + (1 − 𝛼&)𝐴) (𝐶#, 𝐶$, 𝐶%, 𝛼() ⟹ (𝐶#/𝛼(, 𝐶$/𝛼(, 𝐶%/𝛼()

• Composite RGBA: • Un-Premultiply for Final Color:

15-462/662 | Computer Graphics

Why Premultiplied Matters [Upsample]

Lecture 05 | Texturing

coloralpha premultiplied

upsampled
color

upsampled
alpha

upsampled
premultiplied

new background 𝐴	(𝛼= = 1) 𝐵 over 𝐴 𝐵 over 𝐴 (premultiplied)

upsample

Something isn’t right…

Known as fringing

15-462/662 | Computer Graphics

Why Premultiplied Matters [Downsample]

Lecture 05 | Texturing

color alpha color alpha
original downsampled

composite

regular

premultiplied

[RGB] [A]

15-462/662 | Computer Graphics

Closed Under Composition

Lecture 05 | Texturing

𝐵 𝐴

B over A

• Goal: Composite bright red image 𝐵 with alpha 0.5
over bright red image 𝐴 with alpha 0.5

𝐴 = (1, 0, 0, 0.5)
𝐵 = (1, 0, 0, 0.5)

0.5 ∗ 1,0,0 + (1 − 0.5) ∗ 0.5 ∗ 1,0,0

• Non-Premultiplied: • Premultiplied:

(0.75, 0, 0)

0.5 + 1 − 0.5 ∗ 0.5 = 0.75

color

alpha

0.5 ∗ 0.5,0,0,0.5 + 1 − 0.5 ∗ 0.5,0,0,0.5

(0.75, 0, 0, 0.75)

(1, 0, 0)
divide out alpha

15-462/662 | Computer Graphics

Blend Methods

Lecture 05 | Texturing

𝐷>?<= =	𝑆>?<= + 𝐷>?<=
𝐷>?<= =	𝑆>?<= − 𝐷>?<=
𝐷>?<= =	−	𝑆>?<= + 𝐷>?<=
𝐷>?<= =	min(𝑆>?<=, 	𝐷>?<=)
𝐷>?<= = max(𝑆>?<=, 	𝐷>?<=)
𝐷>?<= =	𝑆>?<= + 𝐷>?<= ∗ (1 − 𝑆=)

Blend Add
Blend Subtract
Blend Reverse Subtract
Blend Min
Blend Max
Blend Over

𝑆>?<=	and 𝐷>?<= are pre-multiplied

When writing to color buffer, can use any blend method

15-462/662 | Computer Graphics

Updated Depth Buffer (Z-buffer) Sample Code

Lecture 05 | Texturing

draw_sample(x, y, d, c) //new depth d & color c at (x,y)
{

if(d < zbuffer[x][y])
{

// triangle is closest object seen so far at this
// sample point. Update depth and color buffers.
zbuffer[x][y] = d;
color[x][y] = c.rgba + (1-c.a) * color[x][y];

}
// otherwise, we’ve seen something closer already;
// don’t update color or depth

}

Assumes color[x][y] and c are both premultiplied.

Triangles must be rendered back to front!
A over B != B over A

Should we still be

doing depth writes for

alpha primitives?

15-462/662 | Computer Graphics

Blend Render Order

Lecture 05 | Texturing

• For mixtures of opaque and transparent triangles:

• Step 1: render opaque primitives (in any order)
using depth-buffered occlusion
• If pass depth test, triangle overwrites value in

color buffer at sample
• Depth READ and WRITE

• Step 2: disable depth buffer update, render semi-
transparent surfaces in back-to-front order.
• If pass depth test, triangle is composited

OVER contents of color buffer at sample
• Depth READ only

15-462/662 | Computer Graphics

• Barycentric Coordinates

• Texturing Surfaces

• Depth Testing

• Alpha Blending

• The Graphics Pipeline Revisited

Lecture 05 | Texturing

15-462/662 | Computer Graphics Lecture 05 | Texturing

The “Simpler” Graphics Pipeline

Now Let’s

Put It A
ll

Together!

15-462/662 | Computer Graphics Lecture 05 | Texturing

The Inputs

positions = {
v0x, v0y, v0z,
v1x, v1y, v1x,
v2x, v2y, v2z,
v3x, v3y, v3x,
v4x, v4y, v4z,
v5x, v5y, v5x

};

texcoords ={
v0u, v0v,
v1u, v1v,
v2u, v2v,
v3u, v3v,
v4u, v4v,
v5u, v5v

};

[vertices] [textures]

Object-to-camera-space transform 𝑇 ∈ ℝ!×!

Perspective projection transform 𝑃 ∈ ℝ!×!

Output image (𝑊,𝐻)

[camera properties] [machine]

15-462/662 | Computer Graphics Lecture 05 | Texturing

Step 1: Transform

z

x

y
Transform triangle vertices into camera space

15-462/662 | Computer Graphics Lecture 05 | Texturing

Step 2: Perspective Projection

Apply perspective projection transform to transform
triangle vertices into normalized coordinate space

[normalized space position][3D camera space position]

15-462/662 | Computer Graphics Lecture 05 | Texturing

Step 3: Clipping

Discard triangles completely outside cube.
Clip triangles partially in cube.

[post-clipping][pre-clipping]

15-462/662 | Computer Graphics Lecture 05 | Texturing

Step 4: Transform To Screen Coordinates

Perform homogeneous divide.
Transform vertex xy positions from normalized coordinates

into screen coordinates (based on screen [w, h]).

(0, 0)

(w, h)

15-462/662 | Computer Graphics Lecture 05 | Texturing

Step 5: Sample Coverage

Check if samples lie inside triangle.
Evaluate depth and barycentric coordinates at all passing samples.

15-462/662 | Computer Graphics Lecture 05 | Texturing

Step 6: Compute Color

Texture lookups, color interpolation, etc.

u

v[u(x,y), v(x,y)]

15-462/662 | Computer Graphics Lecture 05 | Texturing

Step 7: Depth Test

Check depth and update depth if closer primitive found.
(can be disabled)

PASS PASSPASS

PASS PASS PASS

PASSPASS

PASS

PASS

FAIL

FAIL

FAIL

FAIL

FAIL

FAIL

PASS

PASS

PASS

PASS

15-462/662 | Computer Graphics Lecture 05 | Texturing

Step 8: Color Blending

Update color buffer with correct blending operation.

15-462/662 | Computer Graphics Lecture 05 | Texturing

The “Real” Graphics Pipeline

Doesn’t look much different
than what we discussed…

