Coordinate Spaces \& Transformations

- The Rasterization Pipeline
- Transformations
- Homogeneous Coordinates
- 3D Rotations

The Goal Of Graphics

- Render very high complexity 3D scenes
- Hundreds of thousands to millions to billions of triangles in a scene
- Complex vertex and fragment shader computations
- High resolution screen outputs ($\sim 10 \mathrm{Mpixel}+$ supersampling)
- 30-120 fps
- Limited hardware resources
- Can't always afford an RTX 4090
- Be efficient enough to run on commercial hardware

Unreal Engine 5 Tech Demo (2020) Epic Games

Processing The Graphics Pipeline

- Modern real time image generation based on rasterization
- INPUT:
- 3D "primitives"-essentially all triangles!
- Colors
- Textures
- OUTPUT:
- Bitmap image (possibly w/ depth, alpha, ...)

Graphics APIs

- Graphics APIs provide a way to interface with GPUs
- More than just draw calls:
- State management
- Memory management
- Bindings
- Window/GUI/Events
- Think of a graphics API as a way for the CPU to

Vulixan

 communicate with the GPU- Doesn't necessarily need to be for graphics
- Ex: compute shaders
- Common APIs:
- OpenGL (Khronos Group)
- Vulkan (Khronos Group)
- Metal (Apple)
- DirectX (Windows)

Hardware Vs Software Rasterization

Hardware

- Written to run on the GPU
- Written using one or more Graphics APIs
- No clear method to debug shaders**
- Much faster execution
- Inherently data-parallel
- Harder to write
- Branching shaders can hurt execution

Software

- Written to run on the CPU
- Modify the framebuffer pixel by pixel
- Very easy to debug
- Very slow execution
- Not parallel
- Easier to write
- Branching doesn't hurt serial execution

The Graphics Pipeline

Let's simplify things a bit

The "Simpler" Graphics Pipeline

- The Rasterization Pipeline
- Transformations
- Homogeneous Coordinates
- 3D Rotations

Transformations In Computer Graphics

- Common uses of linear transformations:
- Position/deform objects in space
- Camera movements
- Animate objects over time
- Project 3D objects onto 2D images
- Map 2D textures onto 3D objects
- Project shadows of objects onto other objects
- Today we'll focus on common transformations of space (rotation, scaling, etc.) encoded by linear maps

Super Mario 64: Camera Guy (1996) Nintendo

Review: Linear Maps

What does it mean for a map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ to be linear?

Geometrically it maps lines to lines, and preserves the origin

Algebraically it preserves vector space operations (addition \& scaling)

Review: Linear Maps

- Why do we care about linear transformations?
- Cheap to apply
- Usually pretty easy to solve for (linear systems)
- Composition of linear transformations is linear
- Product of many matrices is a single matrix
- Gives uniform representation of transformations
- Simplifies graphics algorithms, systems (e.g., GPUs \& APIs)

Types of Transformations

Invariants of Transformation

A transformation is determined by the invariants it preserves

transformation	invariants	algebraic description
linear	straight lines / origin	$f(\mathrm{ax}+\mathbf{y})=\mathrm{a} f(\mathbf{x})+f(\mathbf{y})$, $f(0)=0$
translation	differences between pairs of points	$f(\mathbf{x}-\mathbf{y})=\mathbf{x}-\mathbf{y}$
scaling	lines through the origin / direction of vectors	$f(\mathbf{x}) /\|f(\mathbf{x})\|=\mathbf{x} /\|\mathbf{x}\|$
rotation	origin / distances between points / orientation	$\|f(\mathbf{x})-f(\mathbf{y})\|=\|\mathbf{x}-\mathbf{y}\|$, $\operatorname{det}(f)>0$

Rotation

First two properties imply rotations are linear
We say that a transform preserves orientation if $\operatorname{det}(T)>0$

2D Rotations

Rotations preserve distances and the origin-hence, a 2D rotation by an angle θ maps each point x to a point $f(x)$ on the circle of radius $|x|$:

2D Rotations

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

$$
f(\mathbf{x})=x_{1}\left[\begin{array}{c}
\cos \theta \\
\sin \theta
\end{array}\right]+x_{2}\left[\begin{array}{r}
-\sin \theta \\
\cos \theta
\end{array}\right]
$$

Rotations (like all transforms) are linear maps.
We can express the transform as a change of bases:

$$
f_{\theta}(\mathbf{x})=\left[\begin{array}{rr}
\cos \theta & -\sin (\theta) \\
\sin \theta & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

3D Rotations

In 3D, keep one axis fixed and rotate the other two:
$\left[\right.$ rotate around $\left.x_{1}\right] \quad\left[\right.$ rotate around $\left.x_{2}\right] \quad\left[\right.$ rotate around x_{3}]

3D Inverse Rotations

Reflections

- Does every matrix $Q^{\top} Q=I$ represent a rotation?
- Must preserve:
- Origin
- Distance
- Orientation
- Consider:

$$
Q=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

- Just like rotations, Q has nice inverse properties:

$$
Q^{\top} Q=\left[\begin{array}{cc}
(-1)^{2} & 0 \\
0 & 1
\end{array}\right]=I
$$

- But the determinant is negative!
- Not orientation preserving

Scaling

- Each vector u gets scaled by some scalar a

$$
f(\mathbf{u})=a \mathbf{u}, a \in \mathbb{R}
$$

- Scaling is a linear transformation
- Addition:

$$
f(b \mathbf{u})=a b \mathbf{u}=b a \mathbf{u}=b f(\mathbf{u})
$$

- Multiplication:

$$
\begin{gathered}
f(\mathbf{u}+\mathbf{v})= \\
a(\mathbf{u}+\mathbf{v})= \\
a \mathbf{u}+a \mathbf{v}= \\
f(\mathbf{u})+f(\mathbf{v})
\end{gathered}
$$

Negative Scaling

Can think of negative scaling as a series of reflections

$$
\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Also works in 3D:

$$
\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]=\underset{[\text { flip } \mathrm{x}]}{\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \underset{[\text { flip } \mathrm{y}]}{\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]} \underset{[\text { flip } \mathrm{z}]}{\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]}
$$

In 2D, reflection reverses orientation twice $(\operatorname{det}(T)>0)$ In 3D, reflection reverses orientation thrice $(\operatorname{det}(T)<0)$

Non-Uniform Scaling

- To scale a vector u by a non-uniform amount (a, b, c) :

$$
\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
a u_{1} \\
b u_{2} \\
c u_{3}
\end{array}\right]
$$

- The above works only if scaling is axis-aligned. What if it isn't?
- Idea:
- Rotate to a new axis R
- Perform axis-aligned scaling D
- Rotate back to original axis R^{T}

$$
A:=R^{T} D R
$$

- Resulting transform A is a symmetric matrix
- Q: Do all symmetric matrices represent non-uniform scaling?

Spectral Theorem

- Spectral theorem says a symmetric matrix $A=A^{T}$ has:
- Orthonormal eigenvectors $e_{1}, \ldots, e_{n} \in \mathbb{R}^{n}$
- Real eigenvalues $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$
- Eigenvalues represent the diagonals of the scalar transform
- Eigenvectors are axis which we are scaling about
- Can be represented as a rotation transform

$$
R=\left[\begin{array}{lll}
e_{1} & \cdots & e_{n}
\end{array}\right] \quad D=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]
$$

- Can write the relationship as $A R=R D$
- Equivalently, $A=R D R^{\top}$

WHAT GIVES PEOPLE
FEELINGS OF POWER

- Hence, every symmetric matrix performs a non-uniform scaling along some set of orthogonal axes

Shear

- A shear displaces each point x in a direction u according to its distance along a fixed vector v :

$$
f_{\mathbf{u}, \mathbf{v}}(\mathbf{x})=\mathbf{x}+\langle\mathbf{v}, \mathbf{x}\rangle \mathbf{u}
$$

- Still a linear transformation-can be rewritten as:

$$
A_{\mathbf{u}, \mathbf{v}}=I+\mathbf{u v}^{\top}
$$

- Example:

$$
\begin{aligned}
& \mathbf{u}=(\cos (t), 0,0) \\
& \mathbf{v}=(0,1,0)
\end{aligned} \quad A_{\mathbf{u}, \mathbf{v}}=\left[\begin{array}{ccc}
1 & \cos (t) & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Composing Transforms

We can now build up composite transformations via matrix multiplication

Composing Transforms

- Order matters when compositing transforms!

Composing Transforms

How would you perform these transformations?**

Rotating About A Point

Decomposing Transforms

- In general, no unique way to write a given linear transformation as a composition of basic transformations!
- However, there are many useful decompositions:
- Singular value decomposition
- Good for signal processing
- LU factorization
- Good for solving linear systems
- Polar decomposition
- Good for spatial transformations

$$
A=\left[\begin{array}{rrr}
.34 & -.11 & -.89 \\
-.65 & .52 & -.70 \\
.25 & .23 & -.69
\end{array}\right]
$$

Polar \& Single Value Decomposition

Polar decomposition decomposes any matrix A into orthogonal matrix Q and symmetric positive-semidefinite matrix P

Since P is symmetric, can take this further via the spectral decomposition $P=V D V^{T}$ (V orthogonal, D diagonal):

Result $U D V^{T}$ is called the singular value decomposition

Interpolating Transformations [Linear]

Consider interpolating between two linear transformations
A_{0}, A_{1} of some initial model
Idea: take a linear combination of the two matrices

$$
\begin{aligned}
A(t)= & (1-t) A_{0}+t A_{1} \\
& t \in[0,1]
\end{aligned}
$$

Hits the right start/endpoints... but looks awful in between!

Interpolating Transformations [Polar]

Better idea: separately interpolate components of polar decomposition

$$
\begin{aligned}
& A_{0}=Q_{0} P_{0} \\
& A_{1}=Q_{1} P_{1}
\end{aligned}
$$

[scaling]
[rotation]
[composite]

$$
P(t)=(1-t) P_{0}+t P_{1}
$$

$$
Q(t)=(1-t) Q_{0}+t Q_{1}
$$

$$
A(t)=Q(t) P(t)
$$

Translation

- So far we've ignored a basic transformation-translations
- A translation simply adds an offset \mathbf{u} to the given point \mathbf{x}

$$
f_{\mathbf{u}}(\mathbf{x})=\mathbf{x}+\mathbf{u}
$$

- Is this translation linear?
- (certainly seems to move across a line...)
[additivity]
$f_{\mathbf{u}}(\mathbf{x}+\mathbf{y})=\mathbf{x}+\mathbf{y}+\mathbf{u}$
$f_{\mathbf{u}}(\mathbf{x})+f_{\mathbf{u}}(\mathbf{y})=\mathbf{x}+\mathbf{y}+2 \mathbf{u}$
[homogeneity]
$f_{\mathbf{u}}(a \mathbf{x})=a \mathbf{x}+\mathbf{u}$
$a f_{\mathbf{u}}(\mathbf{x})=a \mathbf{x}+a \mathbf{u}$

Translations are not linear!

Maybe translations turn linear when we go into the $4^{\text {th }}$ dimension...

- The Rasterization Pipeline

- Transformations
- Homogeneous Coordinates
-3D Rotations

Homogeneous Coordinates

- Came from efforts to study perspective
- Introduced by Möbius as a natural way of assigning coordinates to lines
- Show up naturally in a surprising large number of places in computer graphics:
- 3D transformations
- Perspective projection
- Quadric error simplification
- Premultiplied alpha
- Shadow mapping
- Projective texture mapping
- Discrete conformal geometry

Church of Santo Spirito (1428) Filippo Brunelleschi

- Hyperbolic geometry
- Clipping
- Directional lights
- ...

Homogeneous Coordinates in 2D

- Consider any 2D plane that does not pass through the origin o in 3D
- Every line through the origin in 3D corresponds to a point in the 2D plane
- Just find the point p where the line L pierces the plane
- Consider a point $p^{\prime}=(x, y)$, and the plane $z=1$ in 3D
- Any three numbers $p=(a, b, c)$ such that $\left(\frac{a}{c}, \frac{b}{c}\right)=(x, y)$ are homogeneous coordinates for p
- Example: $(x, y, 1)$
- In general: $(c x, c y, c)$ for $c \neq 0$
- The c is commonly referred to as the homogeneous coordinate
- Great, but how does this help us with transforms?

Translation in Homogeneous Coordinates

- A 2D translation is similar to a 3D shear
- Moving a slice up/down the shear moves the shape
- Recall shear is written as:

$$
\begin{aligned}
& f_{\mathbf{u}, \mathbf{v}}(\mathbf{x})=\mathbf{x}+\langle\mathbf{v}, \mathbf{x}\rangle \mathbf{u} \\
& f_{\mathbf{u}, \mathbf{v}}(\mathbf{x})=\left(I+\mathbf{u} \mathbf{v}^{\top}\right) \mathbf{x}
\end{aligned}
$$

- In our case, $v=(0,0,1)$, so**

$$
\left[\begin{array}{ccc}
1 & 0 & u_{1} \\
0 & 1 & u_{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
c p_{1} \\
c p_{2} \\
c
\end{array}\right]=\left[\begin{array}{c}
c\left(p_{1}+u_{1}\right) \\
c\left(p_{2}+u_{2}\right) \\
c
\end{array}\right] \stackrel{1 / c}{\Longrightarrow}\left[\begin{array}{c}
p_{1}+u_{1} \\
p_{2}+u_{2}
\end{array}\right]
$$

2D Transforms in Homogeneous Coordinate

[original]
[2D rotation]
[2D translate]
[2D scale]

Original shape in 2D can be viewed as many copies along the z -axis

Rotate around the z-axis
Shear in direction of translation

Scale x-axis and y-axis, preserve z-axis

Q: What about 3D homogeneous coordinates?

3D Transforms in Homogeneous Coordinate

$$
\begin{aligned}
& {\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]} \\
& {[\text { point in 3D] }}
\end{aligned}
$$

Matrix representations of 3D linear transformations just get an additional identity row/column:
$\left[\begin{array}{cccc}\cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{llll}1 & 0 & s & 0 \\ 0 & 1 & t & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{llll}a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & 0 \\ 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{llll}1 & 0 & 0 & u \\ 0 & 1 & 0 & v \\ 0 & 0 & 1 & w \\ 0 & 0 & 0 & 1\end{array}\right]$
[rotate around y by θ]
[shear by z in (s, t) direction] [scale by a, b, c]
[translate by (u, v, w)]

Points vs. Vectors

- Homogeneous coordinates should be used differently for points and vectors:
- Triangle vertices are "points" and should be translated and rotated
- But if we do the same for the normal, it no longer becomes a normal
- Idea: normal is a "vector" and should just rotate!**
- Set homogeneous coordinate to 0

**translating or scaling a triangle should never change the normal

Points vs. Vectors in Homogeneous Coordinates

- In general:
- A point has a nonzero homogeneous coordinate ($c=1$)
- A vector has a zero homogeneous coordinate ($c=0$)
- But wait... what division by c mean when it's equal to zero?
- Well consider what happens as c approaches 0 ...

$(x, y) / 1$
$(x, y) / 0.5$

$(x, y) / 0.25$

$(x, y) / 0.001$
- Can think of vectors as "points at infinity" (sometimes called "ideal points")
- But don't actually go dividing by zero...

Where can we use transforms?

Scene Graph

- Suppose we want to build a skeleton out of cubes
- Idea: transform cubes in world space
- Store transform of each cube
- Problem: If we rotate the left upper leg, the lower left leg won't track with it
- Better Idea: store a hierarchy of transforms
- Known as a scene graph
- Each edge (+root) stores a linear transformation
- Composition of transformations gets applied to nodes
- Keep transformations on a stack to reduce redundant multiplication
- Lower left leg transform: $A_{2} A_{1} A_{0}$

Instancing

- What if we want many copies of the same object in a scene?
- Rather than have many copies of the geometry, scene graph, we can just put a "pointer" node in our scene graph
- Saves a reference to a shared geometry
- Specify a transform for each reference
- Careful! Modifying the geometry will modify all references to it

Realistic modeling and rendering of plant ecosystems (1998) Deussen et al

- The Rasterization Pipeline

- Transformations

- Homogeneous Coordinates
-3D Rotations

3D Rotations

- Rotating in $2 D$ is the same as rotating around the z-axis
- Idea: independently rotate around each (x, y, z)-axis for 3D rotations
- Problem: order of rotation matters!
- Rotate a Rubik's cube 90deg around the y-axis and 90deg around the z-axis
- Rotate a Rubik's cube 90deg around the z-axis and 90deg around the y-axis
- They will not be the same!
- Order of rotation must be specified

3D Rotations in Matrix Form - Euler Angles

Idea: independently rotate around each (x, y, z)-axis for 3D rotations:

$$
R_{x}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{x} & -\sin \theta_{x} \\
0 & \sin \theta_{x} & \cos \theta_{x}
\end{array}\right] \quad R_{y}=\left[\begin{array}{ccc}
\cos \theta_{y} & 0 & \sin \theta_{y} \\
0 & 1 & 0 \\
-\sin \theta_{y} & 0 & \cos \theta_{y}
\end{array}\right] \quad R_{z}=\left[\begin{array}{ccc}
\cos \theta_{z} & -\sin \theta_{z} & 0 \\
\sin \theta_{z} & \cos \theta_{z} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Combining the matrices:

$$
R_{x} R_{y} R_{z}=\left[\begin{array}{ccc}
\cos \theta_{y} \cos \theta_{z} & -\cos \theta_{y} \sin \theta_{z} & \sin \theta_{y} \\
\cos \theta_{z} \sin \theta_{x} \sin \theta_{y}+\cos \theta_{x} \sin \theta_{z} & \cos \theta_{x} \cos \theta_{z}-\sin \theta_{x} \sin \theta_{y} \sin \theta_{z} & -\cos \theta_{y} \sin \theta_{x} \\
-\cos \theta_{x} \cos \theta_{z} \sin \theta_{y}+\sin \theta_{x} \sin \theta_{z} & \cos \theta_{z} \sin \theta_{x}+\cos \theta_{x} \sin \theta_{y} \sin \theta_{z} & \cos \theta_{x} \cos \theta_{y}
\end{array}\right]
$$

Consider the special case $\theta_{y}=\pi / 2\left(s o, \cos \theta_{y}=0, \sin \theta_{y}=1\right)$:

$$
\Longrightarrow\left[\begin{array}{ccc}
0 & 0 & 1 \\
\cos \theta_{z} \sin \theta_{x}+\cos \theta_{x} \sin \theta_{z} & \cos \theta_{x} \cos \theta_{z}-\sin \theta_{x} \sin \theta_{z} & 0 \\
-\cos \theta_{x} \cos \theta_{z}+\sin \theta_{x} \sin \theta_{z} & \cos \theta_{z} \sin \theta_{x}+\cos \theta_{x} \sin \theta_{z} & 0
\end{array}\right]
$$

Gimbal Lock

- No matter how we adjust $\theta x, \theta z$, can only rotate in one plane!
- We are now "locked" into a single axis of rotation
- Not a great design for airplane controls!

$\Longrightarrow\left[\begin{array}{ccc}0 & 0 & 1 \\ \cos \theta_{z} \sin \theta_{x}+\cos \theta_{x} \sin \theta_{z} & \cos \theta_{x} \cos \theta_{z}-\sin \theta_{x} \sin \theta_{z} & 0 \\ -\cos \theta_{x} \cos \theta_{z}+\sin \theta_{x} \sin \theta_{z} & \cos \theta_{z} \sin \theta_{x}+\cos \theta_{x} \sin \theta^{2} & 0\end{array}\right]$

Rotation From Axis/Angle

Alternatively, there is a general expression for a matrix that performs a rotation around a given axis u by a given angle θ :

$$
\left[\begin{array}{ccc}
\cos \theta+u_{x}^{2}(1-\cos \theta) & u_{x} u_{y}(1-\cos \theta)-u_{z} \sin \theta & u_{x} u_{z}(1-\cos \theta)+u_{y} \sin \theta \\
u_{y} u_{x}(1-\cos \theta)+u_{z} \sin \theta & \cos \theta+u_{y}^{2}(1-\cos \theta) & u_{y} u_{z}(1-\cos \theta)-u_{x} \sin \theta \\
u_{z} u_{x}(1-\cos \theta)-u_{y} \sin \theta & u_{z} u_{y}(1-\cos \theta)+u_{x} \sin \theta & \cos \theta+u_{z}^{2}(1-\cos \theta)
\end{array}\right]
$$

Just memorize this matrix! :)

Is there a better way to perform 3D rotations?

Bridging The Rotation Gap

- Hamilton wanted to make a 3D equivalent for complex numbers
- One day, when crossing a bridge, he realized he needed 4 (not 3) coordinates to describe 3D complex number space
- 1 real and 3 complex components
- He carved his findings onto a bridge (still there in Dublin)
- Later known as quaternions

> Here as he walked by on the 16th of ()ctober 1843 Sir William Rowan Hamilton in a flash of genius discovered the fundamental formula for quaternion multiplication $i^{2}=j^{2}=k^{2}=i j k=-1$
> \mathcal{E} cut it on a stone of this bridge

William Rowan Hamilton [1805-1865]

Quaternions For Math People

- 4 coordinates (1 real, 3 complex) comprise coordinates.
- H is known as the 'Hamilton Space'

$$
\begin{gathered}
\mathbb{H}:=\operatorname{span}(\{1, \imath, \jmath, k\}) \\
q=a+b \imath+c \jmath+d k \in \mathbb{H}
\end{gathered}
$$

- Quaternion product determined by:

$$
\imath^{2}=\jmath^{2}=k^{2}=\imath \jmath k=-1
$$

- Warning: product no longer commutes!

$$
\text { For } q, p \in \mathbb{H}, \quad q p \neq p q
$$

- With 3D rotations, order matters.

Quaternions For Non-Math People

- Recall axis-angle rotations
- Represent an axis with 3 coordinates (i, j, k)
- Represent an angle by some scalar a

$$
q=a+b \imath+c \jmath+d k \in \mathbb{H}
$$

- Just like how we multiply rotation matrices together, we can also multiply complex components. If we represent:
- $\quad i$ as a 90 deg rotation about x-axis
- j as a 90deg rotation about y-axis
- k as a 90deg rotation about z-axis

$$
\imath^{2}=\jmath^{2}=k^{2}=\imath \jmath k=-1
$$

- Then two 90deg rotations about the same axis will produce the inverted image, the same as scaling by -1
- This can also be rewritten as:

$$
i j=k
$$

- A 90deg x-axis rotation and a 90deg y-axis rotation is the same as a 90deg z-axis rotation
- Can be rewritten in any other way

Multiplying Quaternions

Given two quaternions:

$$
\begin{gathered}
q=a_{1}+b_{1} l+c_{1} \jmath+d_{1} k \\
p=a_{2}+b_{2} l+c_{2} \jmath+d_{2} k \\
\text { Can express their product as: } \\
q p=a_{1} a_{2}-b_{1} b_{2}-c_{1} c_{2}-d_{1} d_{2} \\
+\left(a_{1} b_{2}+b_{1} a_{2}+c_{1} d_{2}-d_{1} c_{2}\right) l \\
+\left(a_{1} c_{2}-b_{1} d_{2}+c_{1} a_{2}+d_{1} b_{2}\right) \jmath \\
+\left(a_{1} d_{2}+b_{1} c_{2}-c_{1} b_{2}+d_{1} a_{2}\right) k
\end{gathered}
$$

The result still looks like a quaternion But there's a better way to multiply...

Multiplying Quaternions

Recall quaternions can be thought of as an axis and angle:

$$
(x, y, z) \mapsto 0+x \imath+y \jmath+z k
$$

(scalar, vector $) \in \mathbb{H}$
π
π
$\mathbb{R} \quad \mathbb{R}^{3}$
Can express their product as:

$$
(a, \mathbf{u})(b, \mathbf{v})=(a b-\mathbf{u} \cdot \mathbf{v}, a \mathbf{v}+b \mathbf{u}+\mathbf{u} \times \mathbf{v})
$$

If the scalar components are 0 , we get:

$$
\mathbf{u} \mathbf{v}=\mathbf{u} \times \mathbf{v}-\mathbf{u} \cdot \mathbf{v}
$$

Rotating With Quaternions

- Goal: rotate x by angle θ around axis $u=(x, y, z)$:
- Make x imaginary, and build q based on u and θ
- Note: components of q must be normalized!

$$
\begin{aligned}
& x \in \operatorname{Im}(\mathbb{H}) \\
& q \in \mathbb{H}, \quad|q|^{2}=1 \\
& q=\cos (\theta / 2)+\sin (\theta / 2) u
\end{aligned}
$$

- q now looks like:

$$
q=a+b \imath+c \jmath+d k \in \mathbb{H}
$$

- \bar{q} is q with every complex component negative

- Now just compute $\bar{q} x q$ to get final rotation

Interpolating With Quaternions

- Interpolating Euler angles can yield strange-looking paths, non-uniform rotation speed, etc.
- Simple solution w/ quaternions: "SLERP" (spherical linear interpolation):
$\operatorname{Slerp}\left(q_{0}, q_{1}, t\right)=q_{0}\left(q_{0}^{-1} q_{1}\right)^{t}, \quad t \in[0,1]$

Fifa '15 (2014) Electronic Arts

Texture Mapping With Quaternions

- Quaternions can be used to generate texture maps coordinates
- Complex numbers are natural language for angle-preserving ("conformal") maps

Spatial Transformation Summary

[linear transformations] [nonlinear transformations]

- scaling
- rotation
- reflection
- shear
- translation
- perspective
projection

- Compose basic transformations to get more interesting ones
- Always reduces to a single 4×4 matrix (in homogeneous coordinates)
- Order of composition matters!
- Homogeneous coordinates can turn nonlinear transformations linear

Maxwell the cat (2022) Gary's Mod

- Many ways to decompose a given transformation (polar, SVD, ...)
- Use scene graph to organize transformations
- Use instancing to eliminate redundancy
- Quaternions help avoid troubles with Euler rotations in 3D (Gimbal Lock, Interpolation inconsistencies)

