
Perspective Projection
& Rasterization

15-462/662 | Computer Graphics Lecture 04 | Rasterization



15-462/662 | Computer Graphics Lecture 04 | Rasterization

• Perspective Projection

• Drawing a Line

• Drawing a Triangle

• Supersampling



15-462/662 | Computer Graphics Lecture 04 | Rasterization

The “Simpler” Graphics Pipeline

Today!



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Perspective Projection

distant objects
appear smaller

parallel lines
converge at
the horizon



15-462/662 | Computer Graphics Lecture 04 | Rasterization

The Pinhole Camera

Pinhole
Camera
(0,0)

Virtual 
Sensor

(x,z)

1

x/z
z-axis

x-axis



15-462/662 | Computer Graphics Lecture 04 | Rasterization

The Pinhole Camera

Pinhole
Camera
(0,0)

Virtual 
Sensor

(x,z)

1

x/z
z-axis

x-axis

Our image seems to be upside down…



15-462/662 | Computer Graphics Lecture 04 | Rasterization

The Pinhole Camera

Pinhole
Camera
(0,0)

Virtual 
Sensor

(x,z)

1

x/z

z-axis

x-axis



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Perspective Projection

z
x

y

(1,1,1)

(0, 0)

(w, h) (1,1)

[ world coordinates ] [ view coordinates ] [ clip coordinates ]

[ normalized coordinates ][ image coordinates ]

[ Rasterization Stage ]

(-1,-1,-1)

(-1,-1)



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Perspective Projection

z
x

y

(-1,-1,-1)

(1,1,1)

(w, h)

(-1,-1)

(1,1)

Original description
of object.

[ Rasterization Stage ]

Object relative to camera.
Camera at origin looking down –z axis.

Everything visible to camera
mapped to a cube.

Everything visible to camera
mapped to a cube.

(0, 0)
Coordinates stretched to image dims.

Image flipped upside down.



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Camera Example

𝑦

𝑧
𝑥

(4,2,0)

Consider camera at (4,2,0), looking down 𝑥-axis, object given in world coordinates:

Goal: find a spatial transformation that the object in a coordinate 
system where the camera is at the origin, looking down the –z axis

1) Translate by (-4,-2,0)
2) Rotate by 90deg about the y-axis



𝑦

𝑧
𝑥

15-462/662 | Computer Graphics Lecture 04 | Rasterization

Camera Example

Now consider a camera at the origin looking in a direction 𝐰 ∈ ℝ^3

Use Gram-Schmidt to “pick” 𝑣 and 𝑤. Then build a rotation 
matrix 𝑅 and invert/transpose it to apply the transform



15-462/662 | Computer Graphics Lecture 04 | Rasterization

View Frustrum

Also known as the “region the camera can see”

“pinhole”
(0,0,0)

z

x

y

𝒛-near
𝒛-far

Q: Why is it important we have a z-near and z-far?



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Logarithmic Distance

• Objects get smaller at a logarithmic rate as they 
move farther from our eyes
• In this class, eyes == cameras
• Little change in size for objects already far 

away as they get farther

• In computer graphics, we quantize everything:
• Colors
• Shapes
• Depth

• Providing a fixed precision for depth (usually 32 
bits) means objects very far away may share the 
same depth data
• Limited representable depth values 
• Leads to unintentional clipping

Near and Far Clipping (2015) Udacity



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Near and Far Clipping Planes

• Idea: set a smaller range for possible depth values
• Min depth is the near clipping plane
• Max depth is the far clipping plane

• Logarithmic curve doesn’t give many possible 
values for far objects…

• Problem: accidentally clip out objects important to our 
scene if range set too small
• Near/Far clipping plane should encapsulate the 

most important objects closest/farthest to the 
camera

• Advantage: far clipping cuts out unimportant objects 
from your scene early in the pipeline
• Examples: far-away trees in an already dense forest

Near and Far Clipping (2015) Udacity

Less chances 

for z-fighting

floating point has more “resolution” near zero



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Clipping

• Clipping eliminates triangles not visible to the camera 
(not in view frustum)
• Don’t waste time rasterizing primitives you can’t 

see!
• Discarding individual fragments is expensive 

• “Fine granularity”
• Makes more sense to toss out whole primitives

• “Coarse granularity”

• What if a primitive is partially clipped?
• Partially enclosed triangles are tessellated into 

smaller triangles in the frustrum

• If part of a triangle is outside the frustrum, it means at 
least one of its vertices are outside the frustrum
• Idea: check if vertices in frustrum = in frustrum



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Map Frustrum To Cube – Orthographic Projection

z
x

y
z

x

y

(-1,-1,-1)

(1,1,1)

𝑙 = left
𝑟 = right

𝑏 = bottom
𝑡 = top

𝑛 = near
𝑓 = far



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Map Frustrum To Cube – Orthographic Projection

[ translate terms ]
[ scale terms ]

subtract the midpoint to center the coordinate

𝑥	 −
𝑙 + 𝑟
2

divide by the clipping range to normalize to [-0.5, 0.5]

𝑥
𝑟 − 𝑙 	−

𝑙 + 𝑟
2(𝑟 − 𝑙)

scale by 2 to expand range to [-1, 1]

2𝑥
𝑟 − 𝑙

	−
𝑙 + 𝑟
𝑟 − 𝑙

flip sign of second fraction to make translation additive

2
𝑟 − 𝑙 𝑥 +

𝑙 + 𝑟
𝑙 − 𝑟

• Q: why is the z-axis scalar term !
"#$

? 

• Camera looks down –z axis, so 
we need to flip axis!



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Map A Harder Frustrum To Cube

z
x

y

With perspective projection, we end up dividing out the z coordinate.
Full perspective matrix takes geometry of view frustum into account:



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Map A Harder Frustrum To Cube

Same idea as above: w divides out the depth, so we set it equal to the depth 𝑧
Small difference: we are looking down the –z axis, so we set 𝑤	 = 	−𝑧 



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Map A Harder Frustrum To Cube

the projection of x linearly approaches 0 as it is 
projected closer to the camera 

𝑛
−𝑧 𝑥

use the same equation as before, subbing in new projection

2( 𝑛−𝑧 𝑥)
𝑟 − 𝑙 +

𝑟 + 𝑙
𝑙 − 𝑟

simplify first term, multiply 𝑧/𝑧 to second term

2𝑛
(𝑟 − 𝑙)(−𝑧) 𝑥 +

(𝑟 + 𝑙)𝑧
𝑟 − 𝑙 (−𝑧)

extract – 𝑧 from denominator

2𝑛
𝑟 − 𝑙 𝑥 +

𝑟 + 𝑙
𝑟 − 𝑙 𝑧

−𝑧
By setting 𝑤	 = 	−𝑧, we will do this last division step 

when dividing out the depth**see http://www.songho.ca/opengl/gl_projectionmatrix.html for a full derivation

http://www.songho.ca/opengl/gl_projectionmatrix.html


15-462/662 | Computer Graphics Lecture 04 | Rasterization

Map A Harder Frustrum To Cube

𝑧" =
𝐴𝑧 + 𝐵𝑤
−𝑧

to solve for 𝐴 and 𝐵, solve for the fact that 
-n maps to -1 and -f maps to 1**

−𝐴𝑛 + 𝐵
𝑛 = −1

−𝐴𝑓 + 𝐵
𝑓 = 1

2 equations, 2 unknowns, use your favorite linear solver

𝐴 =
−(𝑓 + 𝑛)
𝑓 − 𝑛

𝐵 =
−2𝑓𝑛
𝑓 − 𝑛

the final normalized 𝑧" is a function of the initial 𝑧 and 𝑤, 
divided by the negative depth (projection):

**remember w is a homogeneous coordinate, so w=1



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Screen Transform

• We now have a way of going from camera view 
frustrum to normalized screen space:
• Apply projection matrix
• Divide out w-coordinate (set to –z)

• Last transform: image space
• Take points from [-1,1] x [-1,1] to a W x H pixel 

image

• Step 1: reflect about x-axis
• Step 2: translate by (1,1)
• Step 3: scale by (W/2, H/2)

(0,0)

(1,1)

(-1,-1)

W

H (W,H)

(0,0)

[ normalized coordinates ]

[ image coordinates ]



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Perspective Projection

z
x

y

(-1,-1,-1)

(1,1,1)

(w, h)

(-1,-1)

(1,1)

Original description
of object.

[ Rasterization Stage ]

Object relative to camera.
Camera at origin looking down –z axis.

Everything visible to camera
mapped to a cube.

Everything visible to camera
mapped to a cube.

(0, 0)
Coordinates stretched to image dims.

Image flipped upside down.



15-462/662 | Computer Graphics Lecture 04 | Rasterization

• Problem: displays don’t know what a triangle is or 
how to display one
• But they do know how to display a buffer of 

pixels!

• Goal: convert draw instructions into an image of 
pixels to show on the display
• Example:

Rasterization

Direct3D Documentation (2020) Microsoft

<polygon fill="#ED18ED" 
points="464.781,631.819 478.417,309.091 471.599,642.045 "/>

• The above is a valid svg instruction

• Requires turning shapes into pixels
• Need to check which shapes overlap which 

pixels

color

3 x (2D points)



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Rasterization

For Each Triangle:
      For Each Pixel:
            If Pixel In Triangle:
                  Pixel Color = Triangle Color 

• How to check if a pixel is inside a triangle?

• A pixel is a little square, check if the square 
exists inside the triangle**
• Expensive/hard to compute!

• A pixel is a point, check if the point exists inside 
the triangle
• Put the point at the pixel’s center
• We will refer to these as half-integer 

coordinates (Ex: [1.5, 4.5])

**”A pixel is not a little square” Alvy Ray Smith



15-462/662 | Computer Graphics Lecture 04 | Rasterization

• Perspective Projection

• Drawing a Line

• Drawing a Triangle

• Supersampling



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Before that,
Let’s learn how to draw a line!

Surely it can’t be difficult…it’s just a line



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Introduction To The Line

• A line is defined by 𝑥%, 𝑦% , (𝑥!, 𝑦!)
• Slope given as m = &!#&"

'!#'"

• What does it mean for a line to overlap a pixel?
• A pixel is just a point
• A line has no thickness

• Neither have a notion of area

• Instead, we will reinterpret pixels as squares
• A pixel lights up if the line intersects it

• Checking if a line intersects a pixel can 
be expensive!

• Find a linear algorithm ~O(n) where n is the 
number of output fragments
• Everything we check should be everything 

in the output



15-462/662 | Computer Graphics Lecture 04 | Rasterization

The Bresenham Line Algorithm

• Consider the case when 𝑚 is in range 0,1
• Implies ∆𝑥 ≥ 	∆𝑦

• We will traverse up the x-axis
• Each step of x we take, decide if we keep y 

the same or move y up one step
• Since 0 < 𝑚 < 1, a positive move in x 

causes a positive move in y 

Ensure the x-coordinate of (𝑥%, 𝑦%) is smaller
Let y’ be our current vertical component along the line
Let y be the initial 𝑦%
For each x value in range [𝑥%, 𝑥!] with step 1:
     Shade (x, y)
     Add m to y’ (if x takes step 1, y’ takes step m)
     If the new y’ is closer to the row of pixels above:
          Add 1 to y

If	𝑥% > 𝑥! : 
					Swap(𝑥%,	𝑥!),					Swap(𝑦%,	𝑦!)	
𝜀 ← 0, 𝑦 ← 𝑦%
For 𝑥 ← 𝑥%to 𝑥! do:
     Shade(𝑥, 𝑦)
     If (|𝜀 + 𝑚| > 0.5):
          𝜀 ← 𝜀 + 𝑚 − 1, 	 𝑦 ← 𝑦 + 1
     Else:
          𝜀 ← 𝜀 + 𝑚

[ pseudocode ] [ code ]



15-462/662 | Computer Graphics Lecture 04 | Rasterization

The Bresenham Line Algorithm

• What if 𝑚 is in range −1,0 ?

𝜀 ← 0, 𝑦 ← 𝑦%
For 𝑥 ← 𝑥%to 𝑥! do:
     Shade(𝑥, 𝑦)
     If (|𝜀 + 𝑚| > 0.5):
          𝜀 ← 𝜀 + 𝑚 + 1, 	 𝑦 ← 𝑦 − 1
     Else:
          𝜀 ← 𝜀 + 𝑚

• What if 𝑚 > 1?

𝜀 ← 0, 𝑥 ← 𝑥%
For 𝑦 ← 𝑦%to 𝑦! do:
     Shade(𝑥, 𝑦)
     If (|𝜀 + 1/𝑚| > 0.5):
          𝜀 ← 𝜀 + 1/𝑚 − 1, 	 𝑥 ← 𝑥 + 1
     Else:
          𝜀 ← 𝜀 + 1/𝑚

• What if 𝑚 < −1?

𝜀 ← 0, 𝑥 ← 𝑥%
For 𝑦 ← 𝑦%to 𝑦! do:
     Shade(𝑥, 𝑦)
     If (|𝜀 + 1/𝑚| > 0.5):
          𝜀 ← 𝜀 + 1/𝑚 + 1, 	 𝑥 ← 𝑥 − 1
     Else:
          𝜀 ← 𝜀 + 1/𝑚

• What if 𝑚 is in range 0,1 ?

𝜀 ← 0, 𝑦 ← 𝑦%
For 𝑥 ← 𝑥%to 𝑥! do:
     Shade(𝑥, 𝑦)
     If (|𝜀 + 𝑚| > 0.5):
          𝜀 ← 𝜀 + 𝑚 − 1, 	 𝑦 ← 𝑦 + 1
     Else:
          𝜀 ← 𝜀 + 𝑚

**When traversing x-axis, x1 must be smaller. When traversing y-axis, y1 must be smaller



15-462/662 | Computer Graphics Lecture 04 | Rasterization

That’s kinda complicated…
Can we make it easier somehow?



15-462/662 | Computer Graphics Lecture 04 | Rasterization

The [Nicer] Bresenham Line Algorithm

𝑎 =	< 𝑥%,	𝑦% >,	 𝑏 =	< 𝑥!,	𝑦! >
∆𝑥 ← 𝑥! − 𝑥% , ∆𝑦 ← |𝑦! − 𝑦%|

If (∆𝑥 > ∆𝑦):
     𝑖 ← 0,       𝑗 ← 1
If (∆𝑥 < ∆𝑦):
     𝑖 ← 1,       𝑗 ← 0

If (𝑎( > 𝑏():
     𝑠𝑤𝑎𝑝(𝑎, 𝑏)

𝑡% ← 𝑓𝑙𝑜𝑜𝑟(𝑎(), 𝑡!← 𝑓𝑙𝑜𝑜𝑟(𝑏()

For 𝑢 ← 𝑡% to	𝑡! do:
     𝑤 ← )*+.- #.#

(0##.#)

     𝑣	 ← 𝑤	 ∗ 𝑏2 − 𝑎2 + 𝑎2  

     Shade(𝑓𝑙𝑜𝑜𝑟 𝑢 + 0.5, 𝑓𝑙𝑜𝑜𝑟 𝑣 + 0.5)

setup coordinates

compute the longer axis 𝑖	
and the shorter axis	𝑗	

the starting coordinate should be the 
smaller value along the longer axis

for each step taken along the longer axis, 
compute the percent distance traveled 𝑤 
and project that percentage onto the 
shorter axis. Then convert to half-integer 
coordinates

compute long axis bounds 



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Introduction To The Line

• Bresenham algorithm only works if both the 
start and end coordinates lie on half-integer 
coordinates

• Instead we will consider a line to intersect a 
pixel if the line intersects the diamond inside 
the pixel
• 𝑥 − 𝑝' + 𝑦 − 𝑝& < %

!
• Checks if point (𝑥, 𝑦) lies in the 

diamond of pixel 𝑝

• Still the same idea as before! The only 
difference is that we need to check if the 
endpoints correctly intersect the last pixels

In OpenGL/Scotty3D, 
line needs to fully go 
through diamond!



15-462/662 | Computer Graphics Lecture 04 | Rasterization

The [Even Nicer] Bresenham Line Algorithm

𝑎 =	< 𝑥%,	𝑦% >,	 𝑏 =	< 𝑥!,	𝑦! >
∆𝑥 ← 𝑥! − 𝑥% , ∆𝑦 ← |𝑦! − 𝑦%|

If (∆𝑥 > ∆𝑦):
     𝑖 ← 0,       𝑗 ← 1
If (∆𝑥 < ∆𝑦):
     𝑖 ← 1,       𝑗 ← 0

If (𝑎( > 𝑏():
     𝑠𝑤𝑎𝑝(𝑎, 𝑏)

𝑡% ← 𝑓𝑙𝑜𝑜𝑟(𝑎(), 𝑡!← 𝑓𝑙𝑜𝑜𝑟(𝑏()

For 𝑢 ←	𝑡%	to	𝑡! do:
     𝑤 ← )*+.- #.#

(0##.#)

     𝑣	 ← 𝑤	 ∗ 𝑏2 − 𝑎2 + 𝑎2  

     Shade(𝑓𝑙𝑜𝑜𝑟 𝑢 + 0.5, 𝑓𝑙𝑜𝑜𝑟 𝑣 + 0.5)

TODO: fix 𝑡%and 𝑡! to properly account 
for OR discard the two edge fragments 
if the endpoints 𝑎 and 𝑏 are inside the 
‘diamond’ of the edge fragments

Remember: 𝑥 − 𝑝' + 𝑦 − 𝑝& < %
!



15-462/662 | Computer Graphics Lecture 04 | Rasterization

• Perspective Projection

• Drawing a Line

• Drawing a Triangle

• Supersampling



15-462/662 | Computer Graphics Lecture 04 | Rasterization

The “Simpler” Graphics Pipeline

Also Today!



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Point-In-Triangle Test

a

b

c

q

• Which points do we check?
• Idea 1: check all points 𝑞	in the image

• For large images (1080p), we’re 
checking hundreds of thousands of 
points per triangle!

• Idea 2: check all points 𝑞	in the bounding 
box of the triangle:
• 𝑥3(" = min(𝑎' , 𝑏' , 𝑐')
• 𝑦3(" = min(𝑎& , 𝑏& , 𝑐&)
• 𝑥3.' = max(𝑎' , 𝑏' , 𝑐')
• 𝑦3.' = max(𝑎& , 𝑏& , 𝑐&)

• How to check if a point is inside a triangle?



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Point-In-Triangle Test

a

b

c

q

• How to check if a point is inside a triangle?

• Check that 𝑞 is on the 𝑏 side of 𝑎𝑐 

𝑎𝑐	× 𝑎𝑏 	 ' 𝑎𝑐	× 𝑎𝑞 > 0



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Point-In-Triangle Test

a

b

c

q

• How to check if a point is inside a triangle?

• Check that 𝑞 is on the 𝑎 side of 𝑐𝑏 

𝑐𝑏	× 𝑐𝑎 	 ' 𝑐𝑏	× 𝑐𝑞 > 0



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Point-In-Triangle Test

a

b

c

q

• How to check if a point is inside a triangle?

• Check that 𝑞 is on the 𝑐 side of 𝑏𝑐 

𝑏𝑎	× 𝑏𝑐 	 ' 𝑏𝑎	× 𝑏𝑞 > 0



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Point-In-Triangle Test

a

b

c

q

• How to check if a point is inside a triangle?

𝑎𝑐	× 𝑎𝑏 	 ' 𝑎𝑐	× 𝑎𝑞 > 0	&&
𝑐𝑏	× 𝑐𝑎 	 ' 𝑐𝑏	× 𝑐𝑞 > 0	&&
𝑏𝑎	× 𝑏𝑐 	 ' 𝑏𝑎	× 𝑏𝑞 > 0

• What if b and c were swapped?

𝑎𝑏	× 𝑎𝑐 	 b 𝑎𝑐	× 𝑎𝑞 < 0	

• Orientation matters!



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Point-In-Triangle Test

a

b

c

q

• Measurements must all either be positive or 
negative for point to be in triangle

𝑎𝑐	× 𝑎𝑏 	 ' 𝑎𝑐	× 𝑎𝑞 > 0	&&
𝑐𝑏	× 𝑐𝑎 	 ' 𝑐𝑏	× 𝑐𝑞 > 0	&&
𝑏𝑎	× 𝑏𝑐 	 ' 𝑏𝑎	× 𝑏𝑞 > 0

𝑎𝑏	× 𝑎𝑐 	 ' 𝑎𝑐	× 𝑎𝑞 < 0	&&
𝑐𝑎	× 𝑐𝑏 	 ' 𝑐𝑏	× 𝑐𝑞 < 0	&&
𝑏𝑐	× 𝑏𝑎 	 ' 𝑏𝑎	× 𝑏𝑞 < 0

OR

• Orientation no longer matters
• Just be consistent!



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Incremental Triangle Traversal

𝑃! = (𝑥!/𝑤! 𝑦!/𝑤! 𝑧!/𝑤!) = (𝑋!	𝑌! 𝑍!)

𝑑𝑋! = 𝑋!"# − 𝑋!
𝑑𝑌! = 𝑌!"# − 𝑌!

𝐸! 𝑥, 𝑦 = 𝑥	 −	𝑋! 𝑑𝑌! − 𝑦	 −	𝑌! 𝑑𝑋!

𝐸! 𝑥, 𝑦 = 0 : point on edge
𝐸! 𝑥, 𝑦 > 0 : point outside edge
𝐸! 𝑥, 𝑦 < 0 : point inside edge

𝑑𝐸! 𝑥 + 1, 𝑦 = 𝐸! 𝑥, 𝑦 + 𝑑𝑌!
𝑑𝐸! 𝑥, 𝑦 + 1 = 𝐸! 𝑥, 𝑦 + 𝑑𝑋!



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Parallel Coverage Tests

a

b

c
• Incremental traversal is very serial; modern 

hardware is highly parallel
• Test all samples in triangle bounding box in 

parallel

• All tests share some ‘setup’ calculations
• Computing 𝑎𝑐	, 𝑐𝑏	, 𝑏𝑎	

• Modern GPUs have special-purpose hardware 
for efficiently performing point-in-triangle tests
• Same set of instructions, regardless of 

which coordinate 𝑞 we are dealing with



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Hierarchical Coverage Tests

• Idea: work coarse-to-fine
• Check if large blocks are inside the triangle

• Early-in: every pixel is covered
• Early-out: every pixel is not covered
• Else: test each pixel coverage individually

• Early-in: if all 4 corners of the block are inside the triangle
• Else: if a triangle line intersects a block line
• Early-out: if neither Early-in nor Else

• Careful! Best to represent block as smallest bounding box to 
pixel samples, not the pixels themselves! 

early out

early in



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Hierarchical Coverage Tests

• What is the right block size?
• Too big: very difficult to get an Early-in or 

Early-out
• Too small: blocks are too similar to pixels

• Idea: create a hierarchy of block sizes
• When entering the Else case, just drop 

down to the next smallest block size
• Checking coverage reduced to logarithmic 

(We will learn why in a future lecture)



15-462/662 | Computer Graphics Lecture 04 | Rasterization

• Perspective Projection

• Drawing a Line

• Drawing a Triangle

• Supersampling



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Pixel Coverage

Pixel

1

2

3

4

Which triangles “cover” this pixel?



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Pixel Coverage

10%

35%

60%

85%

15%

• Compute fraction of pixel area 
covered by triangle, then color pixel 
according to this fraction
• Ex: a red triangle that covers 10% 

of a pixel should be 10% red

• Difficult to compute area of box 
covered by triangle
• Instead, consider coverage as an 

approximation



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Coverage Via Samples

• A sample is a discrete measurement of a signal
• Used to convert continuous data to discrete, but we 

can also take samples of discrete data too

• The more samples we take, the more accurate the image 
becomes
• Same idea as using a larger sensor to take a better-

quality photo

• Problem: each sample adds more work 
• What is the best way to use the least amount of 

samples to best approximate the original scene?
• Main idea of sample theory



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Sampling in 1D

𝑓(𝑥$)
𝑓(𝑥#) 𝑓(𝑥%)

𝑓(𝑥&)

𝑓(𝑥')

𝑥#𝑥$ 𝑥% 𝑥& 𝑥'

𝑓(𝑥)

𝑓′(𝑥)

𝑥#𝑥$ 𝑥% 𝑥& 𝑥'

• Idea: take 5 random samples along the domain 
and evaluate 𝑓(𝑥)
• Many different ways to interpolate points:

• Piecewise
• Linear
• Cubic

• Where is the best place to put 5 samples?
• We know the answer because we can see 

the entire function 𝑓 
• 𝑓 has been evaluated over the entire 

domain
• What if we cannot see all of 𝑓?
• What if 𝑓 is expensive to evaluate?



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Sampling in 1D

• Idea: take more than 5 random samples along 
the domain and evaluate 𝑓(𝑥)
• Gets a better reconstruction of 𝑓 but…

• More evaluation calls needed
• More memory to save

• Still don’t know the best way to interpolate 
samples
• Need to guess based on the behavior of 𝑓
• Can consider things like gradients and 

such…
𝑥#𝑥$ 𝑥% 𝑥& 𝑥' 𝑥( 𝑥) 𝑥* 𝑥+



Pixel (x,y)

1

2

3 4

15-462/662 | Computer Graphics Lecture 04 | Rasterization

Pixel Coverage

Which triangles “cover” this pixel?

(x+0.5, y+0.5) Here I chose the coverage sample 
point to be at a point 
corresponding to the pixel center

= triangle but with a red outline
= triangle



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Edge Case

1

2
• When edge falls directly on a screen sample, 

the sample is classified as within triangle if the 
edge is a “top edge” or “left edge”
• Top edge: horizontal edge that is above all 

other edges
• Left edge: an edge that is not exactly 

horizontal and is on the left side of the 
triangle 
• Triangle can have one or two left 

edges

• This is known as edge ownership

Direct3D Documentation (2020) Microsoft



15-462/662 | Computer Graphics Lecture 04 | Rasterization

So how many samples do we take?



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Sampling Per Pixel

Idea: take as many samples as there are pixels on screen



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Sampling Per Pixel

Problem: Results look blocky against edges
(let’s take more samples!)



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Aliasing Artifacts

• Imperfect sampling + imperfect reconstruction 
leads to image artifacts
• Jagged edges
• Moiré patterns

• Does this remind you of old school video games?
• Old games took few samples and took few 

steps to prevent aliasing
• Expensive to take more samples
• Not enough compute to do filtering to 

interpolate samples
• Not enough memory to take more 

samples



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Supersampling Per Pixel

Idea: take many more samples than there are pixels on screen



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Resampling

Each pixel now holds n samples.
Average the n samples together to get 1 sample per pixel (1spp). 



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Resampling



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Resampling



100% 0%

50%

50%

100%

25%100%

15-462/662 | Computer Graphics Lecture 04 | Rasterization

Resampling



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Supersampling Artifacts

[ 1x1spp ] [ 4x4spp ] [ 32x32spp ]



15-462/662 | Computer Graphics Lecture 04 | Rasterization

Supersampling Artifacts

In special cases, we can compute the exact coverage.
This occurs when what we are sampling matches our sampling 

pattern – very rare!


