Linear Algebra & Vector Calculus

Linear Algebra Review

Vector Calculus Review

What Is A Vector?

- Intuitively, a vector is a little arrow
 - Encoded as direction + magnitude
- Many types of data can be represented as vectors
 - Polynomials
 - Images
 - Radiance
- Vectors are functions of their coordinate system
 - Can't directly compare coordinates in different systems!
 - Example: polar and cartesian
- Why start with a vector when talking about Linear Algebra?
 - Most of linear algebra can be explained with vectors

Basic Vector Operations

Basic Vector Operations

Formal Vector Space Definition

For all vectors **u**, **v**, **w** and scalars *a*, *b*:

- $\bullet \ \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- $\bullet \ \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- There exists a zero vector " $\mathbf{0}$ " such that $\mathbf{v} + \mathbf{0} = \mathbf{0} + \mathbf{v} = \mathbf{v}$
- For every **v** there is a vector " $-\mathbf{v}$ " such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
- $1\mathbf{v} = \mathbf{v}$
- $a(b\mathbf{v}) = (ab)\mathbf{v}$
- $\bullet \ a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
- $\bullet (a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$

These rules did not "fall out of the sky!" Each one comes from the geometric behavior of "little arrows." (Can you draw a picture for each one?)

Any collection of objects satisfying all of these properties is a vector space.

Euclidean Vector Space

- Typically denoted by \mathbb{R}^n , meaning "n real numbers"
 - **Example:** (1.23, 4.56, $\pi/2$) is a point in \mathbb{R}^3

Functions as Vectors

- Functions also behave like vectors
- Functions are all over graphics!
 - Example: images
 - I(x, y) takes in coordinates and returns the pixel color in the image
- Representing functions as vectors allow us to apply vector operations

Functions as Vectors

Do functions exhibit the same behavior as "little arrows?" Well, we can certainly add two functions:

We can also scale a function:

Functions as Vectors

What about the rest of these rules?

For all vectors **u**, **v**, **w** and scalars *a*, *b*:

- $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$
- $\bullet \ \mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$
- There exists a zero vector "0" such that $\mathbf{v} + \mathbf{0} = \mathbf{0} + \mathbf{v} = \mathbf{v}$
- For every **v** there is a vector " $-\mathbf{v}$ " such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$
- $1\mathbf{v} = \mathbf{v}$
- $a(b\mathbf{v}) = (ab)\mathbf{v}$
- $\bullet \ a(\mathbf{u} + \mathbf{v}) = a\mathbf{u} + a\mathbf{v}$
- $\bullet (a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$

Try it out at home! (E.g., the "zero vector" is the function equal to zero for all x)

Short answer: yes, functions are vectors! (Even if they don't look like "little arrows")

Never blindly accept a rule given by authority.

Always ask: where does this rule come from? What does it mean geometrically? (Can you draw a picture?)

Norm of a Vector

For a given vector v, |v| is its **length** / **magnitude** / **norm**. Intuitively, this captures how "big" the vector is

Norm Properties

For one thing, it shouldn't be negative!

$$|\mathbf{u}| \ge 0$$
 $|\mathbf{u}| = 0 \iff \mathbf{u} = \mathbf{0}$

Also, if we scale a vector by a scalar c, its norm should scale by the same amount.

Finally, we know that the shortest path between two points is always along a straight line.**

^{**}sometimes called the "triangle inequality" since the diagram looks like a triangle

Norm Definition

A **norm** is any function that assigns a number to each vector and satisfies the following properties for all vectors **u**, **v**, and all scalars **a**

•
$$|\mathbf{v}| \geq 0$$

•
$$|\mathbf{v}| = 0 \iff \mathbf{v} = \mathbf{0}$$

$$\bullet |a\mathbf{v}| = |a||\mathbf{v}|$$

$$\bullet |\mathbf{u}| + |\mathbf{v}| \ge |\mathbf{u} + \mathbf{v}|$$

Euclidean Norm in Cartesian Coordinates

A standard norm is the so-called **Euclidean norm** of n-vectors

$$|\mathbf{u}| = |(u_1, \dots, u_n)| := \sqrt{\sum_{i=1}^n u_i^2}$$

$$|\mathbf{u}| = \sqrt{4^2 + 2^2}$$
$$= 2\sqrt{5}$$

L² Norm Of Functions

- L2 norm measures the total magnitude of a function
- Consider real-valued functions on the unit interval [0,1] whose square has a well-defined integral. The L2 norm is defined as:

$$||f|| := \sqrt{\int_0^1 f(x)^2 dx}$$

- Not too different from the Euclidean norm.
 - We just replaced a sum with an integral
- Careful! does the formula above exactly satisfy all our desired properties for a norm?

Inner Product

[similar]

[different]

- Inner product measures the "similarity" of vectors, or how well vectors "line up"
- The dot product of two vectors is commutative:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$$

Inner Product

$$\langle 2\mathbf{u}, \mathbf{v} \rangle = 2\langle \mathbf{u}, \mathbf{v} \rangle$$

- Vectors need to be normalized when computing similarity!
- Any vector will always be aligned with itself:

$$\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$$

The dot product of any unit vector with itself is:

$$\langle \mathbf{u}, \mathbf{u} \rangle = 1$$

• Thus for a unit vector $\hat{\mathbf{u}} := \mathbf{u}/|\mathbf{u}|$

$$\langle \mathbf{u}, \mathbf{u} \rangle = \langle |\mathbf{u}|\hat{\mathbf{u}}, |\mathbf{u}|\hat{\mathbf{u}} \rangle = |\mathbf{u}|^2 \langle \hat{\mathbf{u}}, \hat{\mathbf{u}} \rangle = |\mathbf{u}|^2 \cdot 1 = |\mathbf{u}|^2$$

[no scale]

[scaling u or v]

Inner Product Formal Definition

An inner product is any function that assigns to any two vectors u,v a number <u,v> satisfying the following properties:

$$\bullet \ \langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$$

•
$$\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$$

•
$$\langle \mathbf{u}, \mathbf{u} \rangle = 0 \iff \mathbf{u} = \mathbf{0}$$

$$\bullet \langle a\mathbf{u}, \mathbf{v} \rangle = a \langle \mathbf{u}, \mathbf{v} \rangle$$

•
$$\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$$

[Euclidean inner product] $\langle \mathbf{u}, \mathbf{v} \rangle \coloneqq |\mathbf{u}| |\mathbf{v}| \cos(\theta)$

[Cartesian inner product] $\mathbf{u} \cdot \mathbf{v} := u_1 v_1 + \cdots + u_n v_n$

Inner Product In Cartesian Coordinates

$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle (u_1, \dots, u_n), (v_1, \dots, v_n) \rangle := \sum_{i=1}^n u_i v_i$$

$$\langle \mathbf{u}, \mathbf{v} \rangle = 4 \cdot 1 + 1 \cdot 3 = 7$$

L² Inner Product Of Functions

$$\langle\langle f,g\rangle\rangle := \int_0^1 f(x)g(x) dx$$

Example:

$$f(x) := x^2$$
, $g(x) := (1 - x)^2$

$$\langle \langle f, g \rangle \rangle = \int_0^1 x^2 (1 - x)^2 dx = \dots = \frac{1}{30}$$

Linear Maps

 Linear algebra is study of vector spaces and linear maps between them

- Linear maps have 2 characteristics:
 - Converts lines to lines
 - Keeps the origin fixed
- Linear map benefits:
 - Easy to solve systems of linear equations.
 - Basic transformations (rotation, translation, scaling)
 can be expressed as linear maps
 - All maps can be approximated as linear maps over a short distance/short time. (Taylor's theorem)
 - This approximation is used all over geometry, animation, rendering, image processing

Linear Maps

A map **f** is **linear** if it maps vectors to vectors, and if for all vectors **u**,**v** and scalars a we have:

$$f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$$
$$f(a\mathbf{u}) = af(\mathbf{u})$$

It doesn't matter whether we add the vectors and then apply the map, or apply the map and then add the vectors (and likewise for scaling):

Linear Maps

For maps between \mathbb{R}^n and \mathbb{R}^m (e.g., a map from 2D to 3D), a map is linear if it can be expressed as

$$f(u_1,\ldots,u_m)=\sum_{i=1}^m u_i\mathbf{a}_i$$

In other words, if it is a linear combination of a fixed set of vectors a_i :

Is f(x) = ax + b a linear map?

Linear vs. Affine Maps

No! but it is easy to be fooled since it looks like a line. However, it does not keep the origin fixed $(f(x) \neq 0)$

Another way to see it's not linear? It doesn't preserve sums:

$$f(x_1 + x_2) = a(x_1 + x_2) + b = ax_1 + ax_2 + b$$

$$f(x_1) + f(x_2) = (ax_1 + b) + (ax_2 + b) = ax_1 + ax_2 + 2b$$

This is called an affine map.

We will see a trick on how to turn affine maps into linear maps using homogeneous coordinates in a future lecture.

Is
$$f(u) = \int_0^1 u(x) dx$$
 a linear map?

This will be on your homework?**

** hint: consider u(x) = x

Span

The **span** of a set of vectors S_1 is the set of all vectors S_2 that can be written as a linear combination of the vectors in S_1

$$\operatorname{span}(\mathbf{u}_1,\ldots,\mathbf{u}_k) = \left\{ \mathbf{x} \in V \,\middle|\, \mathbf{x} = \sum_{i=1}^k a_i \mathbf{u}_i, \ a_1,\ldots,a_k \in \mathbb{R} \right\}$$

Span & Linear Maps

The **image** of any **linear map** is the **span** of the **vectors** from applying the linear map.

The **image** of any **function** is the **codomain** of the **inputs** from applying the function.

Orthonormal Basis

If we have exactly n vectors e_1, \dots, e_n such that:

$$\operatorname{span}(\mathbf{e}_1,\ldots,\mathbf{e}_n)=\mathbb{R}^n$$

Then we say that these vectors are a basis for \mathbb{R}^n .

Note that there are many different choices of bases for \mathbb{R}^n !

Which of the following are bases for \mathbb{R}^2 ?

Orthonormal Basis

Most often, it is convenient to have to basis vectors that are:

- (i) unit length
- (ii) mutually orthogonal

In other words, if e_1, \dots, e_n are our basis vectors, then:

$$\langle \mathbf{e}_i, \mathbf{e}_j \rangle = \begin{cases} 1, & i = j \\ 0, & \text{otherwise.} \end{cases}$$

*Common bug: projecting a vector onto a basis that is NOT orthonormal while continuing to use standard norm / inner product.

Gram-Schmidt

Given a collection of basis vectors a_1, \ldots, a_n , we can find an orthonormal basis e_1, \ldots, e_n using the **Gram-Schmidt** method

Gram-Schmidt algorithm:

- Normalize the 1st vector
- Subtract any component of the 1st vector from the 2nd one
- Normalize the 2nd one
- Repeat, removing components of first k vectors from vector k+1
- Caution! Does not work well for large sets of vectors or nearly parallel vectors
 - Modified Gram-Schmidt algorithms exist

Gram-Schmidt Example

Strategy: apply Gram-Schmidt to (any) pair of edge vectors

Does the order matter? (Ex: if we swapped u and v in the above equation, what happens?)

Fourier Transform

[lower frequency]

[higher frequency]

- Functions are also vectors, meaning they have an orthonormal basis known as a Fourier transform
 - Example: functions that repeat at intervals of 2π
- Can project onto basis of sinusoids:

$$\cos(nx), \sin(mx), m, n \in \mathbb{N}$$

- Fundamental building block for many graphics algorithms:
 - Example: JPEG Compression
- More generally, this idea of projecting a signal onto different "frequencies" is known as Fourier decomposition

System Of Linear Equations

- A system of linear equations is a bunch of equations where left-hand side is a linear function, right hand side is constant.
 - Unknown values are called degrees of freedom (DOFs)
 - Equations are called constraints
- We can use linear systems to solve for:
 - The point where two lines meet
 - Given a point b, find the point x that maps to it

$$\begin{array}{rcl}
x + 2y & = & 3 \\
4x + 5y & = & 6
\end{array}$$

$$x = 3 - 2y$$

$$4(3 - 2y) + 5y = 6$$

$$y = 2$$

$$x = -1$$

Existence of Solutions

Of course, not all linear systems can be solved! (And even those that can be solved may not have a unique solution.)

[no solution]

Matrices

- We've gone this far without talking about a matrix
 - But linear algebra is not fundamentally about matrices.
 - We can understand almost all the basic concepts without ever touching a matrix!
- Still, VERY useful!
 - Symbolic manipulation
 - Easy to store
 - Fast to compute
 - (Sometimes) hardware support for matrix ops
- Some of the (many) uses for matrices:
 - Transformations
 - Coordinate System Conversions
 - Compression
 - Gram-Schmidt

What does this little block of funny numbers do?

Linear Maps As Matrices

Example: consider the linear map:

$$f(\mathbf{u}) = u_1 \mathbf{a}_1 + u_2 \mathbf{a}_2$$

a vectors become columns in the matrix:

$$A := \begin{bmatrix} a_{1,x} & a_{2,x} \\ a_{1,y} & a_{2,y} \\ a_{1,z} & a_{2,z} \end{bmatrix}$$

Multiplying the original vector u maps it to f(u):

$$\begin{bmatrix} a_{1,x} & a_{2,x} \\ a_{1,y} & a_{2,y} \\ a_{1,z} & a_{2,z} \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} a_{1,x}u_1 + a_{2,x}u_2 \\ a_{1,y}u_1 + a_{2,y}u_2 \\ a_{1,z}u_1 + a_{2,x}u_2 \end{bmatrix} = u_1\mathbf{a}_1 + u_2\mathbf{a}_2$$

How to map f(u) back to u? Take the inverse of the matrix!

Linear Algebra Review

Vector Calculus Review

Cross Product

- Inner product takes two vectors and produces a scalar
 - Cross product takes two vectors and produces a vector
- Geometrically:
 - Magnitude equal to parallelogram area
 - Direction orthogonal to both vectors
 - ...but which way?
 - Use "right hand rule"
 - Only works in 3D

$$\sqrt{\det(\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v})} = |\mathbf{u}||\mathbf{v}|\sin(\theta)$$

- θ is angle between u and v
- "det" is determinant of three column vectors

Cross Product In 2D

$$\mathbf{u} \times \mathbf{v} := \begin{bmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{bmatrix}$$

We can abuse notation in 2D and write it as:

$$\mathbf{u} \times \mathbf{v} := u_1 v_2 - u_2 v_1$$

Cross Product As A Quarter Rotation

- In 3D, cross product with a unit vector N is equivalent to a quarter-rotation in the plane with normal N.
 - Use the right hand rule:)

• What is $n \times (n \times u)$?

Dot And Cross Products

Dot product as a matrix multiplication:

$$\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^\mathsf{T} \mathbf{v} = \begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \sum_{i=1}^n u_i v_i$$

Cross product as a matrix multiplication:

$$\mathbf{u} := (u_1, u_2, u_3) \Rightarrow \widehat{\mathbf{u}} := \begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix}$$

$$\mathbf{u} \times \mathbf{v} = \hat{\mathbf{u}}\mathbf{v} = \begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

Dot And Cross Products

Useful to notice $u \times v = -v \times u$

This means:

$$\mathbf{v} \times \mathbf{u} = -\widehat{\mathbf{u}}\mathbf{v} = \widehat{\mathbf{u}}^\mathsf{T}\mathbf{v}$$

$$\mathbf{u} := (u_1, u_2, u_3) \Rightarrow \widehat{\mathbf{u}} := \begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix}$$

$$\mathbf{u} \times \mathbf{v} = \widehat{\mathbf{u}}\mathbf{v} = \begin{bmatrix} 0 & -u_3 & u_2 \\ u_3 & 0 & -u_1 \\ -u_2 & u_1 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

Determinant

$$\mathbf{A} := \left[\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right]$$

The determinant of A is:

$$\begin{bmatrix} a & b & c \\ a & e & f \\ 8 & n & i \end{bmatrix}$$

$$\det(\mathbf{A}) = a(ei - fh) + b(fg - di) + c(dh - eg)$$

Great, but what does that mean?

Determinant

det(u,v,w) encodes **signed volume** of parallelepiped with edge vectors u, v, w.

What happens if we reverse the order of the vectors in the cross product?

Determinant of a Linear Map

• Recall that a linear map is a transformation from one coordinate space to another and is defined by a set of vectors a_1 , a_2 , a_3 ...

$$A := \begin{bmatrix} | & | & | \\ \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 \\ | & | & | \end{bmatrix} = \begin{bmatrix} a_{1,x} & a_{2,x} & a_{3,x} \\ a_{1,y} & a_{2,y} & a_{3,y} \\ a_{1,z} & a_{2,z} & a_{3,z} \end{bmatrix}$$

- The **det**(A) here measures the change in volume between spaces.
 - The sign tells us whether the orientation was reversed.

Differential Operators

- Many uses for computer graphics:
 - Expressing physical/geometric problems in terms of related rates of change (ODEs, PDEs)
 - Numerical optimization minimizing the cost relative to some objective

Derivative of a Slope

Measures the amount of change for an infinitesimal step:

$$f'(x_0) := \lim_{\varepsilon \to 0} \frac{f(x_0 + \varepsilon) - f(x_0)}{\varepsilon}$$

What if the slopes do not match if we change directions?

$$f^+(x_0) := \lim_{\varepsilon \to 0} \frac{f(x_0 + \varepsilon) - f(x_0)}{\varepsilon}$$

$$f^-(x_0) := \lim_{\varepsilon \to 0} \frac{f(x_0) - f(x_0 - \varepsilon)}{\varepsilon}$$

Differentiable** only if $f^+ = -f^-$

^{**}Many functions in graphics are not differentiable!

Derivative as Best Linear Approximation

Any smooth function can be expressed as a **Taylor series**:

[constant] [linear] [quadratic]
$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{(x - x_0)^2}{2!}f''(x_0) + \cdots$$

Derivative as Best Linear Approximation

Can be applied for multi-variable functions too.

Directional Derivative

Gradient

Given a multivariable function, we compute a vector at each location.

Gradient in Coordinates

$$\nabla f = \left[\begin{array}{c} \partial f / \partial x_1 \\ \vdots \\ \partial f / \partial x_n \end{array} \right]$$

Example:

$$f(\mathbf{x}) := x_1^2 + x_2^2$$

$$\frac{\partial f}{\partial x_1} = \frac{\partial}{\partial x_1} x_1^2 + \frac{\partial}{\partial x_1} x_2^2 = 2x_1 + 0$$

$$\frac{\partial f}{\partial x_2} = \frac{\partial}{\partial x_2} x_1^2 + \frac{\partial}{\partial x_2} x_2^2 = 0 + 2x_2$$

$$\nabla f(\mathbf{x}) = \begin{bmatrix} 2x_1 \\ 2x_2 \end{bmatrix} = 2\mathbf{x}$$

Gradient as Best Linear Approximation

- Gradient tells us the direction of steepest ascent.
 - Steepest descent if negative direction
 - No change if orthogonal direction

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle$$

- We can take multiple small steps to arrive at the maximum
 - How we make that step is its own field of research known as 'optimization'

Gradient & Directional Derivative

The gradient $\nabla f(\mathbf{x})$ is a unique vector

$$\langle \nabla f(\mathbf{x}), \mathbf{u} \rangle = D_{\mathbf{u}} f(\mathbf{x})$$

such that taking the inner product of the gradient along any direction gives the directional derivative.

Only works if function is differentiable!

Gradient of Dot Product

$$f := \mathbf{u}^{\mathsf{T}} \mathbf{v} = \sum_{i=1}^{n} u_{i} v_{i} \qquad \text{(equals zero unless i = k)}$$

$$\frac{\partial}{\partial u_{k}} \sum_{i=1}^{n} u_{i} v_{i} = \sum_{i=1}^{n} \frac{\partial}{\partial u_{k}} (u_{i} v_{i}) = v_{k}$$

$$\Rightarrow \nabla_{\mathbf{u}} f = \begin{bmatrix} v_{1} \\ \cdots \\ v_{n} \end{bmatrix} \qquad \text{Gradient:}$$

$$\nabla_{\mathbf{u}} (\mathbf{u}^{\mathsf{T}} \mathbf{v}) = \mathbf{v}$$
Not so different from $\frac{d}{dx}(xy) = y$

Gradients of Matrix-Valued Expressions**

For any two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and **symmetric** matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$:

MATRIX DERIVATIVE	LOOKS LIKE
$ abla_{\mathbf{x}}(\mathbf{x}^T\mathbf{y}) = \mathbf{y}$	$\frac{d}{dx}xy = y$
$\nabla_{\mathbf{x}}(\mathbf{x}^T\mathbf{x}) = 2\mathbf{x}$	$\frac{dx}{dx}x^2 = 2x$
$\nabla_{\mathbf{x}}(\mathbf{x}^T A \mathbf{y}) = A \mathbf{y}$	$\int \frac{d}{dx}axy = ay$
$\nabla_{\mathbf{x}}(\mathbf{x}^T A \mathbf{x}) = 2A\mathbf{x}$	$ \frac{\frac{d}{dx}axy = ay}{\frac{d}{dx}ax^2 = 2ax} $
	•••

^{**}Excellent resource: Petersen & Pedersen, "The Matrix Cookbook"

L² Gradient

- Consider a function F(f) that has an input function f
 - **Same idea:** the gradient of *F* with respect to *f* measures how changing the function *f* best increases *F*
 - Example:

$$F(f) := \langle \langle f, g \rangle \rangle$$

• I claim the gradient is:

$$\nabla F = g$$

- This means adding more of g to f increases ∇F
 - This is true for inner products!
- How do we compute the gradient in general?
 - Look for a function ∇F such that:

$$\langle\langle\nabla F, u\rangle\rangle = D_u F$$

Where the directional derivative is:

$$D_u F(f) = \lim_{\varepsilon \to 0} \frac{F(f + \varepsilon u) - F(f)}{\varepsilon}$$

L² Gradient Example

Consider:

$$F(f) := ||f||^2$$

Apply the directional derivative formula for a given direction u:

$$\langle\langle \nabla F(f_0), u \rangle\rangle = \lim_{\varepsilon \to 0} \frac{F(f_0 + \varepsilon u) - F(f_0)}{\varepsilon}$$

Substitute F and expand the numerator $F(f_0 + \varepsilon u)$:

$$||f_0 + \varepsilon u||^2 = ||f_0||^2 + \varepsilon^2 ||u||^2 + 2\varepsilon \langle \langle f_0, u \rangle \rangle$$

Subtract the remaining $F(f_0)$ and divide by ε :

$$\lim_{\varepsilon \to 0} (\varepsilon ||u||^2 + 2\langle\langle f_0, u \rangle\rangle) = 2\langle\langle f_0, u \rangle\rangle$$

Set equal to the gradient term:

$$\langle\langle\nabla F(f_0),u\rangle\rangle=2\langle\langle f_0,u\rangle\rangle$$

Solution:

$$\nabla F(f_0) = 2f_0$$

kinda looks like
$$\frac{d}{dx}x^2 = 2x$$

Laplacian

- Measures the **curvature** of a function
- Several ways to calculate:
 - Divergence of gradient (outside course scope):

$$\Delta f := \nabla \cdot \nabla f = \operatorname{div}(\operatorname{grad} f)$$

• Sum of 2nd partial derivative:

$$\Delta f := \sum_{i=1}^{n} \partial^2 f / \partial x_i^2$$

• Gradient of Dirichlet energy (outside course scope):

$$\Delta f := -\nabla_f(\frac{1}{2}||\nabla f||^2)$$

Variation of Surface Area:

	1	
1	-4	1
	1	

$$\frac{4u_{ij} - u_{i+1,j} - u_{i-1,j} - u_{i,j+1} - u_{i,j-1}}{h^2} \quad \frac{1}{2} \sum_{i} (\cot \alpha_{ij} + \cot \beta_{ij}) (u_j - u_i)$$

$$\frac{1}{2} \sum_{j} (\cot \alpha_{ij} + \cot \beta_{ij}) (u_j - u_i)$$

Laplacian Example

Consider:

$$f(x_1, x_2) := \cos(3x_1) + \sin(3x_2)$$

Using the following equation:

$$\Delta f := \sum_{i} \partial^{2} f / \partial x_{i}^{2}$$

Compute the first partial:

$$\frac{\partial^2}{\partial x_1^2} f = \frac{\partial^2}{\partial x_1^2} \cos(3x_1) + \frac{\partial^2}{\partial x_1^2} \sin(3x_2) = -3\frac{\partial}{\partial x_1} \sin(3x_1) = -9\cos(3x_1).$$

And the second:

$$\frac{\partial^2}{\partial x_2^2}f = -9\sin(3x_2).$$

Add together:

 $\Delta f = -9(\cos(3x_1) + \sin(3x_2)) = -9f$

When does this happen?

f

 Δf

Hessian

- A matrix representing a gradient to the gradient
 - Matrix is always symmetric
 - Order of partial derivatives does not matter given f is continuous
- A gradient was a vector that gives us partial derivatives of the function
 - A hessian is an operator that gives us partial derivatives of the gradient:

$$(\nabla^2 f)\mathbf{u} := D_{\mathbf{u}}(\nabla f)$$

$$\nabla^2 f := \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{bmatrix}$$

Taylor Series For Multivariate Functions

Using the **Hessian**, we can now write 2nd-order approximation of any smooth, multivariable function f(x) around some point x_0 :

[constant] [linear] [quadratic]
$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{(x - x_0)^2}{2!} f''(x_0) + \cdots$$

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \underbrace{\langle \nabla f(\mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle}_{\mathbf{b} \in \mathbb{R}^n} + \underbrace{\langle \nabla^2 f(x_0)(\mathbf{x} - \mathbf{x}_0), \mathbf{x} - \mathbf{x}_0 \rangle}_{\mathbf{A} \in \mathbb{R}^{n \times n}}$$

In matrix form:

$$f(\mathbf{u}) \approx \frac{1}{2}\mathbf{u}^\mathsf{T}\mathbf{A}\mathbf{u} + \mathbf{b}^\mathsf{T}\mathbf{u} + c, \quad \mathbf{u} := \mathbf{x} - \mathbf{x}_0$$

Recap

Charlie Brown (1984) Charles Schulz

- That was a lot of math
 - But now you should have the proper mathematical background to complete this course
- We will use Linear Algebra...
 - As an effective bridge between geometry, physics, computation, etc.
 - As a way to formulate a problem. Write the problem as Ax=b and ask the computer to solve
- We will use Vector Calculus...
 - As a basic language for talking about spatial relationships, transformations, etc.
 - For much of modern graphics (physically-based animation, geometry processing, etc.) formulated in terms of partial differential equations (PDEs) that use div, curl, Laplacian, and so on
- A0.0 will reinforce the content taught in this lecture
 - Be sure to refer back to the slides for help