Linear Algebra
& Vector Calculus



*Linear Algebra Review

e\/ector Calculus Review




What Is A Vector?

Intuitively, a vector is a little arrow
* Encoded as direction + magnitude

Many types of data can be represented as vectors
* Polynomials
* |mages
* Radiance

Vectors are functions of their coordinate system
e Can’tdirectly compare coordinates in different
systems!
 Example: polar and cartesian

Why start with a vector when talking about Linear
Algebra?
* Most of linear algebra can be explained with
vectors




Basic Vector Operations

u+v
v+u
\% \% \%
u u u

Vector addition: u +v=v + u“
“commutative” or “abelian”

%

Vector multiplication: a(bu) = (ab)u



Basic Vector Operations

a(u—+v)

Order of operations for adding and scaling do not matter
alu+v)=au+av
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Formal Vector Space Definition

For all vectors u, v, w and scalars a, b:

ut+v=v-+u

ut+ (v+w)=(u+v)+w

There exists a zero vector “0” suchthatv+0=0+4+v =v
For every v there is a vector “—v” such thatv+ (—v) =0
lv=v

a(bv) = (ab)v

a(u+v) =au+av

(a+b)v=av+bv

These rules did not “fall out of the sky!” Each one comes from the geometric
behavior of “little arrows.” (Can you draw a picture for each one?)

Any collection of objects satisfying all of these properties is a vector space.
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Euclidean Vector Space

* Typically denoted by R™, meaning “n real numbers”
* Example: (1.23, 4.56, 11/2) is a point in R?




Functions as Vectors

 Functions also behave like vectors

* Functions are all over graphics!
 Example: images
* I(x,y) takes in coordinates and
returns the pixel color in the image

* Representing functions as vectors allow
us to apply vector operations
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Functions as Vectors

Do functions exhibit the same behavior as “little arrows?”
Well, we can certainly add two functions:

g(x)

MANAANANAANNAANNAANNNANL

(f +8)(x) := flx) +g(x)

X X

We can also scale a function:

(af)(x) == a(f(x))
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Functions as Vectors

What about the rest of these rules?

For all vectors u, v, w and scalars a, b:

ut+v=v-+u

ut+ (v+w)=(u+v)+w

There exists a zero vector “0” such thatv+0=0+4+v =v
For every v there is a vector “—v” such thatv+ (—v) =0
lv=v

a(bv) = (ab)v

a(u+v) =au—+av

(a+Db)v=av+bv

Try it out at home! (E.g., the “zero vector” is the function equal to zero for all x)

Short answer: yes, functions are vectors! (Even if they don’t look like “little arrows”)

15-462/662 | Computer Graphics




Never blindly accept a rule given by authority.

Always ask: where does this rule come from?
What does it mean geometrically? (Can you draw a picture?)



large ()
small norm
norm _

Norm of a Vector

For a given vector v, |v| is its length / magnitude / norm.
Intuitively, this captures how “big” the vector is

small norm X

WwLIoU [[ews

w.ou ab.ej



**sometimes called the “triangle inequality”
since the diagram looks like a triangle

Norm Properties

For one thing, it shouldn’t be negative!
u| >0 u=0 <= u=0

Also, if we scale a vector by a scalar c, its norm should scale
by the same amount.

cu| = fc|ul

Finally, we know that the shortest path between two points
is always along a straight line.**

(Y
u| +[v| > Ju+v
Uu-+o



Norm Definition

A norm is any function that assigns a number to each
vector and satisfies the following properties for all vectors
u, v, and all scalars a
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Euclidean Norm in Cartesian Coordinates

A standard norm is the so-called Euclidean norm of n-vectors

€2

€1
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L> Norm Of Functions

* L2 norm measures the total magnitude of a function f(x)

* Consider real-valued functions on the unit interval [0,1]
whose square has a well-defined integral. The L2 norm is

defined as: ‘
small L2 norm X

I£]] == \/ [ #x2 (o]

* Not too different from the Euclidean norm
* We just replaced a sum with an integral

e Careful! does the formula above exactly satisfy all our large L2 norm
desired properties for a norm?



Inner Product

* Inner product measures the “similarity” of
vectors, or how well vectors “line up”

* The dot product of two vectors is
commutative:

(u,v) = (v, u)

[ different ]
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Inner Product

* For unit vectors |u|=|v|=1, an inner product measures the
extent, or percent, of one vector along the direction of the
other. If we scale either vector, the inner product also scales:

> (21, v) = 2(u,v)

* Vectors need to be normalized when computing similarity!

\//

(u,v) . . -
* Any vector will always be aligned with itself:
[ no scale ] <u, u> > 0
v  The dot product of any unit vector with itself is:

(u,u) =1

* Thus for a unit vector 1 := u/]u\

(w,u) = (|ult, [u@) = [u]*(8, &) = [u]* 1 = [u]?

(w,v)

[ scalinguorv]



Inner Product Formal Definition

An inner product is any function that assigns to any two
vectors u,v a number <u,v> satisfying the following properties:

[ Euclidean inner product] (u, V) := |u||v|cos(6)

[ Cartesian inner product] U -V := U101 + - 4+ U,0y
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Inner Product In Cartesian Coordinates

(w,v) = ((uq,...,un), (v1,...,04)) = iuivi

e 1

v =(1,3) (u,v)y =4-14+1-3=7

/ u=(4,1)
L
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L? Inner Product Of Functions

1 8) = [ Fg() d

Example:
flx):=x% gx):=(1-x)
1
_ 2(1 _ ~)\2 _ _ 1
(f,8) —/0 ¥ (1-x)7dx =--- = 5
f(x)g(x) '\
f(x) (%) small number
functions don’t
line up much
0 X 0 TX 0 /\1 X
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Linear Maps

Linear algebra is study of vector spaces and linear maps
between them

Linear maps have 2 characteristics:
e Converts lines to lines
* Keeps the origin fixed

Linear map benefits:

* Easy to solve systems of linear equations.

* Basic transformations (rotation, translation, scaling)
can be expressed as linear maps

e All maps can be approximated as linear maps over a
short distance/short time. (Taylor’s theorem)

e This approximation is used all over geometry,
animation, rendering, image processing



Linear Maps

A map fis linear if it maps vectors to vectors, and if for all
vectors u,v and scalars a we have:

flut+v) = f(u)+ f(v)
f(au) = af (u)
It doesn’t matter whether we add the vectors and then apply

the map, or apply the map and then add the vectors (and
likewise for scaling):

add first

X,V m——— X1y
o 5
O (1)
= S
< Q
g <
| F)+£(y)
f(x), f(y) dhenadd, ¢



Linear Maps

For maps between R™ and R™ (e.g., a map from 2D to 3D),
a map is linear if it can be expressed as

m
flug, ..., uy) = Zuiai
i=1

In other words, if it is a linear combination of a
fixed set of vectors aq;:

A IRZ IR3

3T (ulfu2> ; > = Uja; + Uzap

\



Is f(x) = ax + b alinear map?
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Linear vs. Affine Maps

No! but it is easy to be fooled since it looks like a line.
However, it does not keep the origin fixed (f(x) # 0)

f(x)=ax+0b

QIS —

Another way to see it’s not linear? It doesn’t preserve sums:

f(x14+x) =a(xy+x) +b=ax; +ax, b
f(x1)+f(x2) = (ax1+b) + (axp+b) = axy+ax; %2b

This is called an affine map.

We will see a trick on how to turn affine maps into linear
maps using homogeneous coordinates in a future lecture.



s f(u) = fol u(x)dx alinear map?

This will be on your homework?**

** hint: consider u(x) = x
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Span

The span of a set of vectors S;is the set of all vectors S, that
can be written as a linear combination of the vectors in S;

k
span(uy, ..., ux) =¢x €V |x=) au;, ay,...,a € R
i—1

L
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Span & Linear Maps

The image of any linear map is the span of the vectors from applying the linear map.

A RZ IR?)

u = (uy,up)

The image of any function is the codomain of the inputs from applying the function.



Orthonormal Basis

If we have exactly n vectors ey, ..., e, such that:

span(eq,...,e;) = R”"

Then we say that these vectors are a basis for R™.

Note that there are many different choices of bases for R"!

\ LA

(A) (C) (D) (E)

Which of the following are bases for R??



Orthonormal Basis

Most often, it is convenient to have to basis vectors that are:
* (i) unit length

* (ii) mutually orthogonal

In other words, if e4, ..., e,, are our basis vectors, then:

(eiey =17 =)
v 0, otherwise.
e2 A

*Common bug: projecting

a vector onto a basis that

______________________ u is NOT orthonormal while
' continuing to use standard

Uz norm / inner product.
€1




Gram-Schmidt

Given a collection of basis vectors a4, ..., a,,, we can find
an orthonormal basis ey, ..., e,, using the Gram-Schmidt
method

Gram-Schmidt algorithm:

Normalize the 1st vector

Subtract any component of the 1st vector from the
2nd one

Normalize the 2nd one

Repeat, removing components of first k vectors from
vector k+1

Caution! Does not work well for large sets of vectors
or nearly parallel vectors
 Modified Gram-Schmidt algorithms exist




P2

P1

Gram-Schmidt Example

Common task: have a triangle in 3D, need orthonormal
basis for the plane containing the triangle

Strategy: apply Gram-Schmidt to (any) pair of edge vectors

u:=p; — po
V.= P2 — Po
e; :=u/|ul

V:i=v—(v,er)e;

ey :=V/|V|

Does the order matter? (Ex: if we swapped u and v in
the above equation, what happens?)



[ lower frequency ]

Fourier Transform

* Functions are also vectors, meaning they have an orthonormal
basis known as a Fourier transform
* Example: functions that repeat at intervals of 2n
e Can project onto basis of sinusoids:
cos(nx),sin(mx), m,n €N
* Fundamental building block for many graphics algorithms:

 Example: JPEG Compression

* More generally, this idea of projecting a
signal onto different “frequencies” is
known as Fourier decomposition -

1. =S 5 R

= J|_"__ = | = = i i R
27T 47T = O o e e e



System Of Linear Equations

A system of linear equations is a bunch of equations where
left-hand side is a linear function, right hand side is constant.
* Unknown values are called degrees of freedom (DOFs)

* Equations are called constraints

We can use linear systems to solve for:
* The point where two lines meet
* Given a point b, find the point x that maps to it

Y

x+2y = 3
dx+5y = 6
X =23—2y
4(3 —2y) +5y =6
Yy =2
x = —1




Existence of Solutions

Of course, not all linear systems can be solved!
(And even those that can be solved may not have a unique solution.)

ax +by =c ax +by =c

o il

[ no solution ] [ many solution ]

b

N

N
BN

Y

[ no solution ]
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Matrices

* We’ve gone this far without talking about a matrix
e But linear algebra is not fundamentally about matrices.
* We can understand almost all the basic concepts
without ever touching a matrix!

e Still, VERY useful! 1
e Symbolic manipulation
* Easy to store 4
* Fast to compute
* (Sometimes) hardware support for matrix ops

7 3
9 2

001 1

* Transformations What does this little block of funny numbers do?
e Coordinate System Conversions

* Compression
* Gram-Schmidt

* Some of the (many) uses for matrices:



Linear Maps As Matrices

Example: consider the linear map:

f(u) = uja; +upa

A 1
a vectors become columns in the matrix: _ f
_ _ /‘x
A1,x A2x '
A= | a1y ay
| 41z 42z | B .

Multiplying the original vector u maps it to f(u):

A,x  A2x i a1,xU1 + Az x U2
Ty A2y [ 0 ] = | Ayt Tazylz | = Ujag + Uzap
A1z A2z | | A1zU1 T ayxUp |

How to map f(u) back to u? Take the inverse of the matrix!



T \eabra Ravi
e Vector Calculus Review
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Cross Product

* Inner product takes two vectors and produces a scalar
* Cross product takes two vectors and produces a vector

 Geometrically:
* Magnitude equal to parallelogram area u
* Direction orthogonal to both vectors
e ...but which way?

e Use “right hand rule” Tu XV

* Only works in 3D € €3
¥
\/det(u,v,u X v) = |ul||v|sin(0) 01 (U23)

(mnemonic)

rﬂ

e Oisangle betweenuandyv
e “det” is determinant of three column vectors



Cross Product In 2D

[ Ur0U3 — U307 ]
U XV i= U301 — U103
U102 — U201

We can abuse notation in 2D and write it as:

U XV Ii=1U10y) —UDq
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Cross Product As A Quarter Rotation

* In 3D, cross product with a unit vector N is equivalent to
a quarter-rotation in the plane with normal N.
e Use the right hand rule :)

* Whatisn X (n X u)?




Dot And Cross Products

Dot product as a matrix multiplication:

Cross product as a matrix multiplication:

[ 0 — U3 Un 1
u = (uq,up,Uuz) = U:= U3 0 —uy
| —Up Uq 0 ]
0 —us  uy | [ vy

uXxv=uv

|
=
OV
-
|
=
—
S
N




Dot And Cross Products

Useful to noticeu X v =—-vXu
This means:
. ~_ AT
vUu=-—uvV =—uyv

[ 0 — U3 Un 1
u = (uq,up,Uuz) = U:= Us 0 —uy
| U2 U1 0 |
0 —us  upy | [ vy |
uxXv=uv — Us 0 —uy U2
| —Up Uq 0] | v3 |
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Determinant

a b c
A=|d e f
8§ hoi

The determinant of A is:

% i

det(A) = a(ei — fh)+b(fg — di)+c(dh — eg)

Great, but what does that mean”?
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Determinant

det(u,v,w) encodes signed volume of
parallelepiped with edge vectors u, v, w.

— —
(uxv)-w = (vxw)-u =

What happens if we reverse the order of the
vectors in the cross product?




Determinant of a Linear Map

* Recall that a linear map is a transformation
from one coordinate space to another and is

defined by a set of vectors a4, a;, as ...

f(u) — Uqa] + Urar + Uzas

| | | A1,x A2x A3«
A= a a a | =|4a,y ay dazy
| | | A1,z 02z 43z

* The det(A) here measures the change in
volume between spaces.
e The sign tells us whether the orientation
was reversed.




Differential Operators

* Many uses for computer graphics:
* Expressing physical/geometric problems in
terms of related rates of change (ODEs, PDEs)
* Numerical optimization — minimizing the cost
relative to some objective

V f(xo)

X0




Derivative of a Slope

Measures the amount of change for an infinitesimal step:

£(x0) = lim f(xo+¢) — f(x0)

e—0 &

What if the slopes do not match if we change directions?

() o= Tty f(xo+¢) — f(xo)

e—0 E

f— (XO) e f(xo) _f<x0 — 8)

e—0 E

Differentiable** only if f* = —f~

**Many functions in graphics are not differentiable!

f(x)
f ,(xo),
————x
X0
fgx) f- (xo)/
)
| > X




Derivative as Best Linear Approximation

Any smooth function can be expressed as a Taylor series:

[ constant ] [ linear ] [ guadratic ]

f(x) = f(xo0) + f(x0)(x — xg) + (x_z’!‘O)zf”(xO) 4.

15-462/662 | Computer Graphics



Derivative as Best Linear Approximation

Can be applied for multi-variable functions too.
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Directional Derivative

For multi-variable functions, we can take
a slice of the function in the direction of
vector u and compute the derivative
from the resulting 2D function.

N\
Duf(xg) := lim flxo + eu) — f(xo)

e—0 &




Gradient

Given a multivariable function, we
compute a vector at each location.

A N N N N N
R CORCR Y Y
ORCORCR X %
EORCR ) )
A N N N RN
A N U N N N
A U U U N U N

A S A 4

/A A

A A A

VA A S

AN

AN

¥y ¥ 4/

¥y ¥ ¥

RN

~ = a a
N Al Dau
Noa Dl Da
WA Al Dy
WA A
A Ay

N aalay
N aaoaay
O aa

/Vf(x)

[ nabla ]

(%]
g
<

[oX

©

s
(U]

—

(O]
+—

>

Q.

(S

o
(@]
o
O
{e]
S~
o
O
¥
N
—



Gradient in Coordinates

" of/oxy |

| Of /o,
Example:
f(x) i=f + x5

of _ 90 4,24 0 42 _
o] ax1x1+ax1x2— 2x1‘|_0

of _ 9.2, 9 .2 _
o, = a5 X1t anx2 = 0+ 2x

VF(x) = [ 2% ] = 2x

2x2
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Gradient as Best Linear Approximation

e Gradient tells us the direction of steepest ascent.
* Steepest descent if negative direction
* No change if orthogonal direction

f(x) = f(xo0) + (Vf(x0),x — Xo)

* We can take multiple
small steps to arrive
at the maximum
e How we make

that step is its
own field of
research known LY F(x)
as ‘optimization’ X0« V£ (xp)




Gradient & Directional Derivative

The gradient Vf(x) is a unique vector
(Vf(x),u) = Duf(x)

such that taking the inner product of the gradient
along any direction gives the directional derivative.

Only works if function is differentiable!




Gradient of Dot Product

n
f = uTV — 2 U;0; (equals zero unless i = k)
) =1 ; /
aBTk Z U;0; = aBTk(uivi) = Uk
i=1 1=1
i U1 il Gradient:
= Vuf = v . Vu(uTV) — v
n

: d _
Not so different from -~ (xy) =1
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Gradients of Matrix-Valued Expressions™**

For any two vectors x,y € R" and symmetric matrix A € R"*":

MATRIX DERIVATIVE | LOOKS LIKE
Vx(xTy) =y Lxy =y
Vx(xTx) = 2X %xz = 2x
Vx(x' Ay) = Ay %axy = ay
Vx(xT Ax) = 2 Ax %axz = 2ax

**Excellent resource: Petersen & Pedersen, “The Matrix Cookbook”



> Gradient

* Consider a function F(f) that has an input function f
* Same idea: the gradient of F with respect to f measures
how changing the function f best increases F
* Example:

F(f) = (f. &)
* |claim the gradient is:
VF =g
e This means adding more of g to f increases VF

* Thisis true for inner products!

e How do we compute the gradient in general?
* Look for a function VF such that:

* Where the directional derivative is:

DuF(f) — lim F(f+€u) _F(f)

e—0 &




L° Gradient Example

Consider:

E(f) = IIfII

Apply the directional derivative formula for a given direction u:

(VE(fy), 1)) = lim LSO T &) = F(fo)

e—0 E

Substitute F and expand the numerator F(f, + cu):

| fo +eull> = || fol I* -+ €[ [ul|* + 2&{( fo, u))
Subtract the remaining F(f,) and divide by &:

lim (el [u]|* + 2{(fo, 1)) = 2((fo, u))

Set equal to the gradient term:

(VE(fo),u)) = 2{{fo, u))

Solution: /

VFE(fo) = 2fo

d

kinda looks like Ex

2 — 92y



Laplacian

Measures the curvature of a function

Several ways to calculate:
* Divergence of gradient (outside course scope):

Af :=V -Vf =div(gradf)
* Sum of 2" partial derivative:
Af =371, BZf/axl2

* Gradient of Dirichlet energy (outside course scope):

Af =~V RIVFIP) 4,

e Variation of Surface Area:

1

_Uz‘)

Y

Ap



Laplacian Example

Consider:
f(x1,x2) := cos(3x1) + sin(3xy)
Using the following equation:
Af = Y,;0°f/0x;

Compute the first partial:

2 P & z
f S = 52 cos(3x1) +M_
—3% sin(3x1) = —9cos(3x1).

And the second:

9 f = —9sin(3x,).

03
Add together: /

Af Af = —9(cos(3x1) +sin(3xy)) = —9f

When does this happen?
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Hessian

A matrix representing a gradient to the gradient

Matrix is always symmetric
* Order of partial derivatives does not
matter given f is continuous

A gradient was a vector that gives us partial
derivatives of the function

A hessian is an operator that gives us partial
derivatives of the gradient:

(V2f)u := Dy(V)

V2f =

2 f

8x18x1

2

3% f

0Xx10Xy

2 f

0X;,0Xy,




Taylor Series For Multivariate Functions

Using the Hessian, we can now write 2nd-order approximation of
any smooth, multivariable function f(x) around some point x:

[ constant ] [ quadratic ]

f(x) = f(xo) + f'(x0)(x — xg) + (x_z’fO)2f”(xo) L.

f(x) & f(x0) + (Vf(x0), x = x0) + {VZf (x0) (x = X0), X — x0) /2
N N—— N——
celR belR" AcR1Xn

In matrix form:

f(u) = %uTAu—I—bTu—i—c, u:=Xx—X



Recap

e That was a lot of math
* But now you should have the proper mathematical background to
complete this course

* We will use Linear Algebra...
* As an effective bridge between geometry, physics, computation, etc.
e As a way to formulate a problem. Write the problem as Ax=b and ask
the computer to solve

* We will use Vector Calculus...
* As a basic language for talking about spatial relationships,
transformations, etc.
* For much of modern graphics (physically-based animation, geometry
processing, etc.) formulated in terms of partial differential equations
(PDEs) that use div, curl, Laplacian, and so on

Charlie Brown (1984) Charles Schulz

* AO0.0 will reinforce the content taught in this lecture
e Be sure to refer back to the slides for help
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