
Introduction

15-462/662 | Computer Graphics Lecture 01 | Introduction

15-462/662 | Computer Graphics Lecture 01 | Introduction

• Course Introduction

• Logistics

• History Of Graphics

15-462/662 | Computer Graphics Lecture 01 | Introduction

Staff

Daniel Zeng
[dlzeng]

Lucas Hurley
[lmhurley]

Divya Kartik
[dkartik]

Nancy Pollard
[npollard]

(these are people that will help you in the course)

David Krajewski
[dkrajews]

Ria Manathkar
[rmanathk]

15-462/662 | Computer Graphics Lecture 01 | Introduction

• Course Introduction

• Logistics

• History Of Graphics

15-462/662 | Computer Graphics Lecture 01 | Introduction

Important Links

• Course Web Site: http://15462.courses.cs.cmu.edu/spring2024

• Course Piazza: https://piazza.com/class/lqxw6show0c6aj

• Course Slack: link will be posted on piazza

• Course Gradescope: link will be posted on piazza

• Course OH Queue: link will be posted on piazza

• If you are having trouble accessing any of the links, please speak to a TA

https://piazza.com/class/lqxw6show0c6aj

15-462/662 | Computer Graphics Lecture 01 | Introduction

Grading

• 5% A0: Math/Code Review

• 15%: A1: Rasterization

• 15%: A2: MeshEdit

• 15%: A3: PathTracing

• 15%: A4: Animation

• 10% Writtens

• 20% Exams

• 5% Participation

15-462/662 | Computer Graphics Lecture 01 | Introduction

Why does this course exist?

15-462/662 | Computer Graphics Lecture 01 | Introduction

4 Components Of Graphics

A1: Rasterization

A4: AnimationA3: PathTracing

A2: MeshEdit

15-462/662 | Computer Graphics Lecture 01 | Introduction

4 Components Of Graphics

Batman (1956) DC Comics

God of War: Ragnarok (2022) Santa Monica StudioFloor Planning (2020) IKEA

Toy Story 3 (2010) Pixar

15-462/662 | Computer Graphics Lecture 01 | Introduction

Graphics In Movies

15-462/662 | Computer Graphics Lecture 01 | Introduction

Graphics In Video Games

15-462/662 | Computer Graphics Lecture 01 | Introduction

Graphics In Technology

15-462/662 | Computer Graphics Lecture 01 | Introduction

that’s a lot of graphics…
and we’re here to learn how to draw them all

15-462/662 | Computer Graphics Lecture 01 | Introduction

15-462/662 | Computer Graphics Lecture 01 | Introduction

15-462/662 | Computer Graphics Lecture 01 | Introduction

15-462/662 | Computer Graphics Lecture 01 | Introduction

Why Math?

The New Yorker Collection (2001) Jack Ziegler

• Lot of graphics concepts use math:
• Coordinate systems
• Transforms
• Ray-casting
• Color conversions
• Intersection tests
• Geometric queries
• Physical simulations

• And much more!

• Graphics is about converting data into simulations &
experiences
• Math helps us get there

• It is okay if you are not good at math!
• But by the end of this course you will be :)

15-462/662 | Computer Graphics Lecture 01 | Introduction

The Math Behind Graphics

< Vector, Calculus >[Linear … Algebra]

15-462/662 | Computer Graphics Lecture 01 | Introduction

Assignments

• 65% Assignments
• [05%] A0: Math Review
• [15%] A1: Rasterization
• [15%] A2: MeshEdit
• [15%] A3: PathTracing
• [15%] A4: Animation

• Solutions must be your own (you may not collaborate)

• A1 – A4 will have checkpoints! (Ex: A1.0, A1.5) Please submit on time

• Total of 5 late days for all assignments. Cannot use late days on A4.5!
• After late days, 10% deduction in grade per day

15-462/662 | Computer Graphics Lecture 01 | Introduction

Assignment 0.0: Math Review

• [2.5%] A0.0:
• Linear Algebra

• Linear Maps
• Span
• Orthonormal Bases
• Matrices

• Vector Calculus
• Functions as Vectors
• Inner/Cross Product
• Determinant
• Gradient

• Everyone has a unique assignment
• Numbers (and solutions) are different for each student

• Submissions autograded
• Unlimited submissions
• You do not need to answer all problems

• Extra credit for anything extra answered

15-462/662 | Computer Graphics Lecture 01 | Introduction

Assignment 0.5: Code Review

• [2.5%] A0.5:
• Setting Up Scotty3D

• Cloning Repo
• Setting Up Environment
• Building Code

• C++ Tests
• Running Test Cases
• Learning C++ Syntax

• Goal is to get you familiar with coding
practices and syntax needed to
complete coding assignment

• What is Scotty3D?

15-462/662 | Computer Graphics Lecture 01 | Introduction

Assignments 1-4: Scotty3D

• We will give you a fully-working 3D graphics
application with a working GUI that can rasterize, edit
geometry, render scenes, and create animations
• The catch: we removed all the core graphics

operations from the application

• Goal: take what you’ve learned during lectures to
build back the application
• Note: there is not one correct solution! There

are many ways to solve these graphics problems.
We call them “algorithms” :)

• You will use the same codebase for all 4 assignments
• Assignments are designed to be independent:

bugs in A2 should not impact your A4
submission

15-462/662 | Computer Graphics Lecture 01 | Introduction

Assignments 1-4: Scotty3D

[A1: Rasterization] [A2: MeshEdit]

[A3: PathTracer] [A4: Animation]

15-462/662 | Computer Graphics Lecture 01 | Introduction

Assignment 1: Rasterization

• A1.0: Rasterization Checkpoint
• Transformations
• Lines
• Triangles
• Depth + Blending

• A1.5: Rasterization Final
• Interpolation
• Mip-Maps
• Supersampling

• Goal: write a rasterizer that converts geometry into
rasterized images
• If you do not know the difference between a

raster and render, you will learn :)

15-462/662 | Computer Graphics Lecture 01 | Introduction

Assignment 2: MeshEdit

• A2.0: MeshEdit Checkpoint
• Local Geometry Ops

• Flip Edge
• Split Edge
• Collapse Edge
• Extrude Face

• A2.5: MeshEdit Final
• Global Geometry Ops

• Triangulation
• Linear Subdivision
• Catmull-Clark Subdivision

• Goal: be able to create and manipulate geometry to
model new 3D characters and scenes

15-462/662 | Computer Graphics Lecture 01 | Introduction

Assignment 3: PathTracer

• A3.0: PathTracer Checkpoint
• Camera Rays
• Intersection Tests
• BVH

• A3.5: PathTracer Final
• Path Tracing
• Materials
• Direct Lighting
• Environment Lighting

• Goal: create a render engine that can take any scene
and create a photorealistic rendering out of it
• We will learn ‘non-photorealistic’ styles in this

class too

15-462/662 | Computer Graphics Lecture 01 | Introduction

Assignment 4: Animation

• A4.0: Animation Checkpoint
• Spline Interpolation
• Skeleton Kinematics

• A4.5: Animation Final
• Linear Blend Skinning
• Particle Simulation

• Goal: make a platform for users to create animations
out of geometry and scene files

15-462/662 | Computer Graphics Lecture 01 | Introduction

Get creative!

• At the end of each assignment, you will use your
working Scotty3D implementation to create a:
• A1: Rasterized Artwork
• A2: Character/Object model
• A3: Rendered Environment
• A4: Animation

• The best work is showcased at the end of the
semester

15-462/662 | Computer Graphics Lecture 01 | Introduction

A1 Past Creations

15-462/662 | Computer Graphics Lecture 01 | Introduction

A2 Past Creations

15-462/662 | Computer Graphics Lecture 01 | Introduction

A3 Past Creations

15-462/662 | Computer Graphics Lecture 01 | Introduction

A4 Past Creations

15-462/662 | Computer Graphics Lecture 01 | Introduction

Is this entire class programming?
Hint: no

15-462/662 | Computer Graphics Lecture 01 | Introduction

Writtens

• 10% Writtens
• Each class has an associated written assignment worth 100pts

• Posted on the course website
• Due the week after

• Can work in groups of up to 3

• No late days, but you may skip up to 2 writtens

• Submit to Gradescope

15-462/662 | Computer Graphics Lecture 01 | Introduction

Exams

• 20% Exams
• [10%] Midterm
• [10%] Final

• Exam content will come from lectures, not just assignments.
• Please attend class :)

• Final is cumulative.

• Standard 3”x 3” handwritten sticky note is allowed (front and back)

• We will provide practice exams closer to the exam date

15-462/662 | Computer Graphics Lecture 01 | Introduction

Participation

• 5% Participations
• Asking/Answering questions on piazza

• Asking/Answering question on course slides

• Attending lecture

15-462/662 | Computer Graphics Lecture 01 | Introduction

What We Really Want From You

• We want you to be good programmers + have programming maturity
• At the level of 15213/513 is the bare minimum.

• We want you to not be afraid of large codebases
• The essence of Computer Graphics is large codebases and how to work with them.

• We want you to be able to read docs and language specs
• There are large ReadMe docs for every assignment. Make sure you understand them before coding.

• We do NOT want you to have the relevant skills from day one.
• We instead ask that you take the time to develop these skills while in this course, as they are

common in industry and research.

• We want you to have fun
• This is a creative class, make sure to learn, and you’ll be proud of what you learn to make.

15-462/662 | Computer Graphics Lecture 01 | Introduction

• Course Introduction

• Logistics

• History Of Graphics

15-462/662 | Computer Graphics Lecture 01 | Introduction

Before that,

15-462/662 | Computer Graphics Lecture 01 | Introduction

What is Computer Graphics

computer vision computer graphics

15-462/662 | Computer Graphics Lecture 01 | Introduction

What is Computer Graphics

Drawing an image requires doing millions of the same operations
across millions of triangles, lights, pixels, etc.

15-462/662 | Computer Graphics Lecture 01 | Introduction

The CPU
• Generic hardware

• Can do many things
• Schedule/synchronize threads
• Run dynamic loops
• Compile code
• Execute web scripts
• Order a package off Amazon

• A few cores
• Tens of cores, each with several threads
• Can do parallel processing, but not much
• Heterogeneous cores, not every core has the same

performance
• High performance cores
• Energy-efficient cores

• Small data
• Few proprietary registers
• Small (if any) caches
• Needs to spill into larger shared caches/DRAM

Core i7 (2008) Intel

15-462/662 | Computer Graphics Lecture 01 | Introduction

The CPU
• Generic hardware

• Can do many things
• Schedule/synchronize threads
• Run dynamic loops
• Compile code
• Execute web scripts
• Order a package off Amazon

• A few cores
• Tens of cores, each with several threads
• Can do parallel processing, but not much
• Heterogeneous cores, not every core has the same

performance
• High performance cores
• Energy-efficient cores

• Small data
• Few proprietary registers
• Small (if any) caches
• Needs to spill into larger shared caches/DRAM

We don’t need all this functionality!

We just want to draw some triangles!

Core i7 (2008) Intel

15-462/662 | Computer Graphics Lecture 01 | Introduction

The GPU
• Specialized hardware

• Really good at doing a few operations
• Catalogue of operations kept small

• Easy to fetch smaller list of ops

• Thousands of cores
• Can run the same operation on hundreds of thousands

of data points at once
• Good when the same code runs on data
• Bad when divergence occurs

• Large data
• Many registers for each core
• Large GPU memory
• Modern systems have shared memory with CPU

• Easy for scheduling/data transfer

• “why buy a fireplace when you can buy a gpu” – nvidia ceo,
probably

Geforce 256 (1999) Nvidia

15-462/662 | Computer Graphics Lecture 01 | Introduction

The GPGPU

• ‘General Purpose’ Graphics Processing Unit
• Also known as the ‘modern GPU’
• Sacrifices specialized hardware components for more

general operations

• GPUs originally used for rendering
• Data scientists ‘hacked’ GPUs by using the vertex

shader to perform compute on large data systems
• Led to the creation of compute shaders

• GPUs now contain many more programmable stages
and can be used in data science and machine learning

• Paradigm shift: sacrifice fixed function for more
programmability

Data Centers (2020) Nvidia

15-462/662 | Computer Graphics Lecture 01 | Introduction

The GPU

15-462/662 | Computer Graphics Lecture 01 | Introduction

The Graphics Pipeline

• Sometimes called the:
• 3D Graphics Pipeline
• Rasterization Pipeline
• GPU Pipeline

• GPU was designed specifically to run this pipeline fast

• Entire pipeline was fixed-function.
• You provide the data, a vertex shader, and a

fragment shader, and the GPU does the rest.
• Fixed-function == fast!

• By limiting what an architecture can do, that
makes the architecture really good at what it
can do.
• In graphics, we need to run the same

operations over millions of datapoints.

Graphics Pipeline Tutorial (2019) Vulkan

15-462/662 | Computer Graphics Lecture 01 | Introduction

Change Of Space

• Half the pipeline is in 3D, half is in 2D
• Remember: we start with a 3D scene

descriptor and end with a 2D image

• Moving from 3D to 2D scene provides many
benefits:
• Higher precision operations
• Faster computations
• Easier parallelism
• Less data to manage
• Less operations overall

15-462/662 | Computer Graphics Lecture 01 | Introduction

Side Note: What Is A Shader?

• Shaders are any string of code run on the GPU
• Not specific to graphics, any GPU code is shader code

• Ex: Compute shaders

• Most shader code looks like it was written in C
• Perfect for C++ graphics developers

• The term was originally created to refer to the user-defined
portion of the Graphics Pipeline

• Every system’s GPU is different, therefore the CPU needs to
compile (translate) the code into the GPU’s spec
• For large graphics systems (think video games) with a

common architecture (PS5, Xbox, etc.), shaders will be
compiled before being shipped
• Known as pre-compiled shaders

• PCs on the other hand need to compile shaders when game
first start since GPUs vary per PC

15-462/662 | Computer Graphics Lecture 01 | Introduction

3D Graphics Systems Stack

scene.glb vertices fragmentsprimitives image.png

Converting data into … well, more data
But this data is pretty!

15-462/662 | Computer Graphics Lecture 01 | Introduction

Much More Computer Graphics To Learn!

Credit: Mia Tang

