Physically-Based
Animation and PDEs

Computer Graphics
(MU 15-462/15-662

Last time: Optimization

ELDORA

MOLU'N

Modern graphics uses optimization!
Many complex criteria/constraints =% L -
Basic technique: numerical descent
- pickinitial guess

- ski downhill

- keep fingers crossed!

Gradient descent important example of ordinary differential equation (ODE)
Today: return to differential equations

- saw ODEs—derivatives in time

- now PDEs—also have derivatives in space

- describe many natural phenomena (water, smoke, cloth, ...)

- recent revolution in (G/visual effects

(MU 15-462/662

Partial Differential Equations (PDEs)

m ODE: Implicitly describe function in terms of its time derivatives

m PDE: Also include spatial derivatives in implicit description

m Like any implicit description, have to solve for actual function
ODE—rock flies through air PDE—rock lands in pond

d? - -
o h(t,x,y) = Ah(t,x,y)

(MU 15-462/662

To make a long story short...

m Solving ODE looks like “add a little velocity each time”

ki1 = qr + 7f(q)

m Solving a PDE looks like “take weighted combination of
il.elgl)llpors to get velocity (...and add a little velocity each
ime

11-4]1 ki1 = qx + 7f(q)

f (Q) ...obviously there is a lot more to say here!

(MU 15-462/662

Solving a PDE in Code

Don’t be intimidated—very simple code can give rise to beautiful behavior!

void simulateWaves2D() {
const int N = 128; // grid size
double u[N][N]; // height

double V[N][N]; // velocity (time derivative of height)

const double tau = 0.2; // time step size
const double alpha = 0.985; // damping factor

for(int frame = 0; true; frame++) { // loop forever

// drop random "stones"

if(frame % 100 ==) u[rand()SN][rand()%N] =
// update velocity
for(int 1 = 0; 1 < N; 1i++)
for(int j = 0; J < N; J++) {
int 10 = (i + N-1) % N; // left
int il = (i + N+1) % N; // right
int jO = (j + N-1) % N; // down
int j1 = (j + N+1) % N; // up
V[1][]J] += tau * (

v[i][]Jj] *= alpha; // damping

}
// update height
for(int 1 = 0; 1 < N; 1i++)

for(int j = 0; § < N; j++) {
u(i][J] += tau * v[1i][]];

}
display(u);

ufi0]1[J1 + ufil][J] + u[1]1[3J0] + u[i][J1] - 4*uli]1[J])

(MU 15-462/662

Liquid Simulation in Graphics

~

#
-_—

Losasso, F., Shinar, T. Selle, A. and Fedkiw, R., "Multiple Interacting Liquids"

(MU 15-462/662

http://physbam.stanford.edu/~fedkiw/papers/stanford2006-02.pdf

Smoke Simulation in Graphics

S. WeiBmann, U. Pinkall. “Filament-based smoke with vortex shedding and variational

reconnection”
CMU 15-462/662

Cloth Simulation in Graphics

»

h
-

S

Zhili Chen, Renguo Feng and Huamin Wang, “Modeling friction and air effects between cloth and deformable
bodies”

(MU 15-462/662

Elasticity in Graphics

Irving, G., Schroeder, C. and Fedkiw, R., "Volume Conserving Finite Element Simulation of Deformable Models"

(MU 15-462/662

http://physbam.stanford.edu/~fedkiw/papers/stanford2007-01.pdf

Hair Simulation in Graphics

Danny M. Kaufman, Rasmus Tamstorf, Breannan Smith, Jean-Marie Aubry, Eitan Grinspun,
“Adaptive Nonlinearity for Collisions in Complex Rod Assemblies”

(MU 15-462/662

http://www.cs.columbia.edu/~kaufman/
http://www.disneyresearch.com/people/rasmus-tamstorf/
http://breannansmith.com/
https://www.wetafx.co.nz/
http://www.cs.columbia.edu/~eitan/
http://graphics.berkeley.edu/papers/Obrien-GMA-2002-08/index.html

Fracture in Graphics

James F. 0'Brien, Adam Bargteil, Jessica Hodgins, “Graphical Modeling and Animation of Ductile Fracture”

(MU 15-462/662

http://graphics.berkeley.edu/papers/Obrien-GMA-2002-08/index.html

Viscoelasticity in Graphics

Chris Wojtan, Greg Turk, “Fast Viscoelastic Behavior with Thin Features”

(MU 15-462/662

Snow Simulation in Graphics

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, Andrew Selle, “A Material Point Method For Snow Simulation”

(MU 15-462/662

Definition of a PDE

m Want to solve for a function of time and space
u(t, x)
1A
time space

m Function given implicitly in terms of derivatives:

u, i, —,—, ... any combination of time derivatives

Ou du _du_ 9""u

0x)’ 0xy’° 0x\0xy ox"ox!'”

plus any combination of space derivatives

m Example: o Iu
>
ox /,

y+uﬁ=au

o (Burgers’ equation) b

Anatomy of a PDE

m Linearvs. nonlinear: how are derivatives combined?
nonlinear!

- \

u —+ uu, — au// (Burgers’ equation)

U = au// (diffusion equation)
m Order: how many derivatives in space & time?
1st order in time 2nd order in space

N, / // ‘/

U+ uu = au (Burgers’ equation)

2nd order in time 2nd order in space
N oo 114" .
U = au (wave equation)

Rule of thumb: nonlinear / higher order = HARDER TO SOLVE!

(MU 15-462/662

Model Equations

m Fundamental behavior of many important PDEs is well-
captured by three model linear equations:

“Laplacian” (more later!)

LAPLACE EQUATION (“ELLIPTIC") Au = (O

“what’s the smoothest function EASIER
interpolating the given boundary data”

Solve numerically?

HEAT EQUATION (“PARABOLICY) 1 = Au

“how does an initial distribution INTERMEDIATE
of heat spread out over time?”

WAVE EQUATION (“HYPERBOLIC") 1, = Au

“if you throw a rock into a pond, how ADVANCED
does the wavefront evolve over time?”

[NONLINEAR + HYPERBOLIC + HIGH-ORDER]

EXPERTS ONLY

Elliptic PDEs / Laplace Equation

m “What'’s the smoothest function interpolating the given
boundary data?”

—

T —

m Conceptually: each value is at the average of its “neighbors”
m Roughly speaking, why is it easier to solve?
m Very robust to errors: just keep averaging with neighbors!

(MU 15-462/662

Parabolic PDEs / Heat Equation

m “How does an initial distribution of heat spread out over time?”

m Afteralong time, solution is same as Laplace equation!
m Models damping / viscosity in many physical systems

(MU 15-462/662

Hyperbolic PDEs / Wave Equation

m “If you throw a rock into a pond, how does the wavefront
evolve over time?”

m Errors made at the beginning will persist for a long time! (hard)

(MU 15-462/662

PDEs give an implicit description of solution.

How do we compute solutions explicitly?

Numerical Solution of PDEs—OQverview

m Like ODEs, most PDEs are difficult/impossible to solve
analytically—especially if we want to incorporate data!

m Must instead use numerical time integration

m Basic strategy:

—pick a time discretization (forward Euler, backward Euler...)

—pick a spatial discretization (TODAY)

—as with ODEs, perform time-stepping to advance solution
m Historically, very expensive—only for “hero shots” in movies
m Computers are ever faster...
m More & more use of PDEs

- games, interactive tools, ...

Real Time PDE-Based Simulation (Fire)

A TWIDIA

LAMEWORKS

(MU 15-462/662

Real Time PDE-Based Simulation (Water)

Nuttapong Chentanez, Matthias Miiller, “Real-time Eulerian water simulation using a restricted tall cell grid”
(2011) CMU 15-462/662

http://dl.acm.org/author_page.cfm?id=81314493444&coll=DL&dl=ACM&trk=0&cfid=560149825&cftoken=78272179
http://dl.acm.org/author_page.cfm?id=81100615490&coll=DL&dl=ACM&trk=0&cfid=560149825&cftoken=78272179

Lagrangian vs. Eulerian

m Two basic ways to discretize space: Lagrangian & Eulerian
m E.g., suppose we want to encode the motion of a fluid

a\x
by

track position & velocity track velocity (or flux)
of moving particles at fixed grid locations

(MU 15-462/662

Lagrangian vs. Eulerian—Trade-0ffs

m Lagrangian
- conceptually easy (like polygon soup!)
- resolution/domain not limited by grid
- good particle distribution can be tough
- finding neighbors can be expensive
m Eulerian
- fast, reqgular computation
- easy to represent, e.g., smooth surfaces
- simulation “trapped” in grid
- grid causes “numerical diffusion” (blur)

- need to understand PDEs (but you will!)

(MU 15-462/662

Mixing Lagrangian & Eulerian

m Of course, no reason you have to choose just one!
m Many modern methods mix Lagrangian & Eulerian:

- PIC/FLIP, particle level sets, mesh-based surface tracking,
Voronoi-based, arbitrary Lagrangian-Eulerian (ALE), ...

m Pick theright tool for the job! |
Maya Bifrost

CMU 15-462/662

Aside: Which Quantity Do We Solve For?

m Many PDEs have mathematically equivalent formulations in
terms of different quantities

m E.g., incompressible fluids:

- velocity—how fast is each particle moving?

- vorticity—how fast is fluid “spinning” at each point?
m Computationally, can make a big difference
m Pick theright tool for the job!

Ok, but we're getting way ahead of ourselves.
How do we solve easy PDEs?

Numerical PDEs—Basic Strateqy

m Pick PDE formulation
- Which quantity do we want to solve for?
- E.g., velocity or vorticity?

m Pick spatial discretization e
ichard Courant
- How do we approximate derivatives in space?
m Pick time discretization
- How do we approximate derivatives in time?
- When do we evaluate forces?
- Forward Euler, backward Euler, symplectic Euler, ...
m Finally, we have an update rule

m Repeatedly solve to generate an animation

(MU 15-462/662

The Laplace Operator

All of our model equations used the Laplace operator
Different conventions for symbol:

A/ same symbol used for “change” v 2
S~ same symbol used for Hessian!

Unbelievably important object showing up everywhere across physics,
geometry, signal processing, ...

Ok, but what does it mean?
Differential operator: eats a function, spits out its “2nd derivative”

What does that mean for a functionz : R" — [R? div grad

—divergence of gradient N
(o A : [
—sum of second derivatives u=V-Vu
_ [[a 2 6 2
deviation from local average A1 = 82% L] a;b%

For more intuition about the Laplacian: https://youtu.be/oEq9R0I9Umk MU 15-462/662

Discretizing the First Derivative

m Tosolve any PDE, need to approximate spatial derivatives (e.g., Laplacian)
B Suppose we know a function 1(x) only at reqular intervals /2

® (Q: How can we approximate the first derivative of 11?
m A:Recall definition of a derivative in terms of limits:

vy S+) = f(x)
u'(x) = lim
e—(E
m (Can hence get an approximation using known values:
Uipy1 — YU
h
B Approximation gets better for finer grid (smaller /1)

u'(x;) ~

(MU 15-462/662

Discretizing the Second Derivative

m Q: How can we get an approximation of the second derivative?

m A:Oneidea*: approximate the first derivative of the
approximate first derivative!

(”i+1_”i) (ui_ui—l)
/ / -

h

u'(x;) ~

m In general, this approach of approximating derivatives with
differences is the “finite difference” approach to PDEs

m Not the only way! But works well on reqular grids.

(MU 15-462/662

Discretizing the Laplacian

m How do we approximate the Laplacian?
m Depends on discretization (Eulerian, Lagrangian, grid, mesh, ...)
m Two extremely common ways in graphics:

GRID /h\ TRIANGLE MESH
1 pecomes that
SRR N
1(-4|1
1
iy — Uit1,j — S L) (eotay, T cot Bi)(u; — ui)

J

m Also not too hard on point clouds, polygon meshes, ...

(MU 15-462/662

Numerically Solving the Laplace Equation

B Wanttosolve Au = 0

m Plugin one of our discretizations, e.g.,

i+l My j— Uy j = Uiy j— Ujjg — Uy 0
h2 B
ul_la] ula] Ml"_la]
1
. — Ujj =7 (”‘i—l,j T Ui T U T ”i,j+1>
L,]—

m [f uisasolution, then each value must be the average of the
neighboring values (2 is a “harmonic function”)

m How do we solve this?
m Oneidea: keep averaging with neighbors! (“Jacobi method")
m Correct, but slow. Much better to use modern linear solver

(MU 15-462/662

Aside: PDEs and Linear Equations

m How can we turn our Laplace equation into a linear solve?

m Have a bunch of equations of the form 1] 2)3]4
.= Y. — = 1. . — 1. . p— S| 6| 7] 38
4”1,] ul—l,] ul+1,] uz,]—l ul,]—l-l 0
e . o e 10| 11 |12
m Onad4x4 grid, assign each cell 1, ; a unique index 1, ..., 16 ’ |10
: : ’ : : 13|14 | 15|16
m (Can then write equations as a 16x16 matrix equation®
4 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 up | 0]
I -4 1 0 0 1 0 0 0 0 0 0 0 1 0 0 uy 0
0 I —4 1 0 0 1 0 0 0 0 0 0 0 1 0 U3 0
1 0 1 —4 O 0 0 1 0 0 0 0 0 0 0 1 U4 0
1 o 0 O -4 1 O 1 1 O O O 0O O 0 O Us 0
0 1 0 0 I —4 1 0 0 1 0 0 0 0 0 0 Ug 0
0 0 1 0 0 1 —4 1 0 0 1 0 0 0 0 0 U7 0
0 0 0 1 1 0 1 —4 O 0 0 1 0 0 0 0 ug 0
0 0 0 0 1 0 0 0O —4 1 0 1 1 0 0 0 Ug — 10
0 0 0 0 0 1 0 0 I —4 1 0 0 1 0 0 U0 0
0 0 0 0 0 0 1 0 0 1 —4 1 0 0 1 0 Ui 0
0 0 0 0 0 0 0 1 1 0 1 —4 0 0 0 1 Ui 0
1 0 0 0 0 0 0 0 1 0 0 0O —4 1 0 1 U3 0
0 1 0 0 0 0 0 0 0 1 0 0 I —4 1 0 U4 0
0 0 1 0 0 0 0 0 0 0 1 0 0 1 -4 1 Uis 0
0 0 0 1 0 0 0 0 0 0 0 1 1 I =4]| we 0

m Compute solution by calling sparse linear solver (SuiteSparse, Eigen, ...)
m Q: By the way, what’s wrong with our problem setup here? :-)

(MU 15-462/662

Boundary Conditions for Discrete Laplace

m What values do we use to compute averages near the boundary?

C

a

C

a=((b+c+?+e)

m A:We get to choose—this is the data we want to interpolate!

m Two basic boundary conditions:

1. Dirichlet—boundary data always set to fixed values

2. Neumann—specify derivative (difference) across houndary

m Also mixed (Robin) boundary conditions (and more, in general)

(MU 15-462/662

Dirichlet Boundary Conditions

m Let’s go back to smooth setting, function on real line
m Dirichlet means “prescribe values”

m Eg.,$0)=a, ¢(1)=b

m Many possible functions “in between”!

(MU 15-462/662

Neumann Boundary Conditions

m Neumann means “prescribe derivatives”
mEg.,00)=u o¢'(1)=v

m Again, many possible functions!

(MU 15-462/662

Both Neumann & Dirichlet

m Or: prescribe some values, some derivatives
m Eg.,900)=u¢(l)=0>

m Q:Whatabout ¢'(1) = v, (1) = b? Does that work?
m Q:Whatabout ¢'(0) + ¢(0) = p, d'(1) + (1) = g? (Robin)

(MU 15-462/662

1D Laplace w/ Dirichlet B(s

B 1D Laplace: 0°¢p/0x* = 0
m Solutions: p(x) = cx+d

m Q: Can we always satisfy given Dirichlet boundary conditions?

0 1
m Yes: aline can interpolate any two points.

(MU 15-462/662

1D Laplace w/ Neumann B(s

m What about Neumann B(s?
m (Q: Can we prescribe the derivative at both ends?

0 1
m No! Aline has only one slope.

m In general, solution to a PDE may not exist for given B(s.

2D Laplace w/ Dirichlet BCs

m 2D laplace: A¢p =0
m Q: Cansatisfy any Dirichlet B(s? (given data along boundary)

m Yes: Laplace is long-time solution to heat flow
m Datais“heat” at boundary. Then just let it flow...

(MU 15-462/662

2D Laplace w/ Neumann B(s
What about Neumann BCs for A¢p = 0?
Neumann BCs prescribe derivative in normal direction:n - V¢

Q: Can it always be done? (Wasn't possible in 1D...)

In 2D, we have the divergence theorem:

Agn-v¢zév-v¢:LA¢éo

m Should be called, “what goes in must
come out theorem!”

m (Can’t have a solution unless the net flux
through the boundary is zero.

m Numerical libraries will not always tell you if there’s a problem!
m Trust, but verify (e.g., after solving Ax = b, compute||b — Ax]||)

Solving the Heat Equation

m Back to our three model equations, want to solve heat eqn.
U= Au

m Just saw how to discretize Laplacian

m Also know how to do time (forward Euler, backward Euler, ...)

m E.g., forward Euler:
utt = uf 4 T AU”
m Q:0nagrid, what’s our overall update now at u;;?

k+1 kT (4qyh k k k ko)

U j = U T\ Uy = Uiy 5= U 5 — Uy 41— Uy -1

m Not hard to implement! Loop over grid, add up some neighbors.

(MU 15-462/662

Solving the Wave Equation

m Finally, wave equation:
U = Au
m Not much different; now have 2nd derivative in time
m By now we've learned two different techniques:
- Convert to two 1st order (in time) equations:
u=v, vU=Au
- Or, use centered difference (like Laplace) in time:

k+1 k k—1
U —2u" +u k
- u= = Au
m Plus all our choices about how to discretize Laplacian.

m 50 many choices! And many, many (many) more we didn't
discuss.

(MU 15-462/662

Wave Equation on a Grid, Triangle Mesh

o < Figue
File Edit View Insert Tools Deskiop Window Help =

Jdde® h KKNO9-Q ORI 7

Fish credit: AlecJacobson (http://www.alecjacobson.com/weblog/?p=4363) CMU 15-462/662

http://www.alecjacobson.com/weblog/?p=4363

Fun with wave-like equations...

https://www.adultswim.com/etcetera/elastic-man/ author: David Li

Technique: low-res thin shell simulation (via “position-based dynamics”) + Loop subdivision

Wait, what about all that other cool stuff?
(Fluids, hair, cloth, ...)

Want to Know More?

for Computer ('.mphi(S

Robxert Brsdson

m There are some good books:
m And papers:

http://www.physicsbasedanimation.com/

Physics-Based
Animation

The science of simulating physics for human visval
consumpdion.

Books Resources & Cowrses Collections About

Search

This site is Managed by
CN oohuaany rom the

| Inassecity nf Watarann

m Also, what did the folks who wrote these books & papers read?

Biomechanical Simulation and Control of Hands and
Tendinous Systems
Prashast Sachdeva, Shingro Sueda, Suserne Beaday, Mikhad Far, Dicesh K

. THE HILOSOPHIE |

e VARATONAL | PHILOSOPHLE

Apphcaﬁons MECHANICS PRINCIPIAI
Cornelius Lanczos MATHEMATICA. ||

muq‘maﬁxmn‘gm |

INP RIMATUR
SPEPYS KgpSv PRESE

(MU 15-462/662

http://www.physicsbasedanimation.com/

