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Preview of Inverse Kinematics Part 2
The JT technique we talked about in class last week is a 
gradient descent approach 
Remember the definition of gradient based on coordinates? 
I.e., imagine that all but one of the coordinates are just 
constant values, and take the usual derivative 

 

Now we try it out for the gradient of a function of squared 
distance to the target

position of a point on the 
character (e.g., the hand)

position of the target



Added motion to our model 
Interpolate keyframes 
Still a lot of work! 
Today: physically-based animation 
- often less manual labor 
- often more compute-intensive 
Leverage tools from physics 
- dynamical descriptions 
- numerical integration 
Payoff: beautiful, complex behavior from simple models 
Widely-used techniques in modern film (and games!)
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Last time: animation
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Dynamical Description of Motion

“Dynamics is concerned with the study of forces and their 
effect on motion, as opposed to kinematics, which studies the 
motion of objects without reference to its causes.”

—Sir Wiki Pedia, 2015

“A change in motion is proportional to the motive force 
impressed and takes place along the straight line in which 
that force is impressed.”

—Sir Isaac Newton, 1687

(Q: Is keyframe interpolation dynamic, or kinematic?)
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The Animation Equation
Already saw the rendering equation 
What’s the animation equation?

force

mass

acceleration
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The “Animation Equation,” revisited
Well actually there are some more equations... 
Let’s be more careful: 
- Any system has a configuration 
- It also has a velocity 
- And some kind of mass 
- There are probably some forces 
- And also some constraints 
E.g., could write Newton’s 2nd law as 
Makes two things clear: 
- acceleration is 2nd time derivative of configuration 
- ultimately, we want to solve for the configuration q
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Generalized Coordinates
Often describing systems with many, many moving pieces 
E.g., a collection of billiard balls, each with position xi 

Collect them all into a single vector of generalized coordinates:  

Can think of q as a single point moving along a trajectory in Rn 
This way of thinking naturally maps to the way we actually solve 
equations on a computer: all variables are often “stacked” into a 
big long vector and handed to a solver. 
(…So why not write things down this way in the first place?)
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Generalized Velocity
Not much more to say about generalized velocity: it’s the time 
derivative of the generalized coordinates!

All of life (and physics) is just 
traveling along a curve...
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Ordinary Differential Equations
Many dynamical systems can be described via an ordinary 
differential equation (ODE) in generalized coordinates:

velocity functionchange in configuration over time

ODE doesn’t have to describe mechanical phenomenon, e.g.,

“rate of growth is proportional to value”

Solution? 
Describes exponential decay (a < 1), or really great stock (a > 1) 
“Ordinary” means “involves derivatives in time but not space” 
We’ll talk about spatial derivatives (PDEs) in another lecture...
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Dynamics via ODEs
Another key example: Newton’s 2nd law!

“Second order” ODE since we take two time derivatives 
Can also write as a system of two first order ODEs, by 
introducing new “dummy” variable for velocity:

Splitting things up this way will make it easy to talk about 
solving these equations numerically (among other things)
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Simple Example: Throwing a Rock
Consider a rock* of mass m tossed under force of gravity g 
Easy to write dynamical equations, since only force is gravity:

*Yes, this rock is spherical and has uniform density.

or

Solution:

(What do we need a computer for?!)
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Slightly Harder Example: Pendulum
Mass on end of a bar, swinging under gravity 
What are the equations of motion? 
Same as “rock” problem, but constrained 
Could use a “force diagram” 
- You probably did this for many hours in 

high school/college 
- Let’s do something new & different!
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Lagrangian Mechanics
Beautifully simple recipe: 
1. Write down kinetic energy 
2. Write down potential energy 
3. Write down Lagrangian 
4. Dynamics then given by Euler-Lagrange equation

Why is this useful? 
- often easier to come up with (scalar) energies than forces 
- very general, works in any kind of generalized coordinates 
- helps develop nice class of numerical integrators (symplectic)

Great reference: Sussman & Wisdom, “Structure and Interpretation of Classical Mechanics”

Joe Lagrange

becomes (generalized) 
“MASS TIMES ACCELERATION” becomes (generalized) “FORCE”
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Lagrangian Mechanics - Example
Generalized coordinates for pendulum? 

Kinetic energy (mass m)? 

Potential energy? 

Euler-Lagrange equations? (from here, just “plug and chug”—even a computer could do it!)

just one coordinate: 
angle with the vertical direction
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Solving the Pendulum
Great, now we have a nice simple equation for the pendulum:

For small angles (e.g., clock pendulum) can approximate as

“harmonic oscillator”

In general, there is no closed form solution! 
Hence, we must use a numerical approximation 
...And this was (almost) the simplest system we can think of! 
(What if we want to animate something more interesting?)
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Not-So-Simple Example: Double Pendulum
Blue ball swings from fixed point; green ball swings from blue one 
Simple system... not-so-simple motion! 
Chaotic: perturb input, wild changes to output 
Must again use numerical approximation
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Not-So-Simple Example: n-Body Problem
Consider the Earth, moon, and sun—where do they go? 
Solution is trivial for two bodies (e.g., assume one is fixed) 
As soon as n ≥ 3, again get chaotic solutions (no closed form) 
What if we want to simulate entire galaxies?

Credit: Governato et al / NASA
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For animation, we want to simulate 
these kinds of phenomena!



 CMU 15-462/662

Example: Flocking
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Simulated Flocking as an ODE
Each bird is a particle 
Subject to very simple forces: 
- attraction to center of neighbors 
- repulsion from individual neighbors 
- alignment toward average trajectory of neighbors 
Solve large system of ODEs (numerically!) 
Emergent complex behavior (also seen in fish, bees, ...)

attraction repulsion alignment

Credit: Craig Reynolds (see http://www.red3d.com/cwr/boids/)

http://www.red3d.com/cwr/boids/
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Particle Systems
More generally, model phenomena as 
large collection of particles 
Each particle has a behavior described 
by (physical or non-physical) forces 
Extremely common in graphics/games 
- easy to understand 
- simple equation for each particle 
- easy to scale up/down 
May need many particles to capture 
certain phenomena (e.g., fluids) 
- may require fast hierarchical data 

structure (kd-tree, BVH, ...) 
- often better to use continuum model
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Example: Crowds

Where are the bottlenecks in a building plan?
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Example: Crowds + “Rock” Dynamics
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Example: Particle-Based Fluids

(Fluid: particles or continuum?)
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Example: Granular Materials

Bell et al, “Particle-Based Simulation of Granular Materials”
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Example: Molecular Dynamics

(model of melting ice crystal)
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Example: Cosmological Simulation

Tomoaki et al - v2GC simulation of dark matter (~1 trillion particles)
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Example: Mass-Spring System
Connect particles x1, x2 by a spring of length L0 
Potential energy is given by

stiffness current length

rest length

Connect up many springs to describe interesting phenomena 
Extremely common in graphics/games 
- easy to understand 
- simple equation for each particle 
Often good reasons for using continuum model (PDE)
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Example: Mass Spring System
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Example: Mass Spring + Character
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Example: Hair
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Ok, I’m convinced. 
So how do we solve these 

things numerically?
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Numerical Integration
Key idea: replace derivatives with differences 
In ODE, only need to worry about derivative in time 
Replace time-continuous function q(t) with samples qk in 

“time step,” i.e., interval of 
time between qk and qk+1

new configuration 
(unknown—want to solve for this!) current configuration 

(known)

Wait... where do we 
evaluate the velocity 
function?  At the new 
or old configuration?



starts out slow...

...gradually moves faster & faster!
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Forward Euler
Simplest scheme: evaluate velocity at current configuration 
New configuration can then be written explicitly in terms of 
known data:

new configuration current configuration velocity at current time

Very intuitive: walk a tiny bit in the direction of the velocity 
Unfortunately, not very stable—consider pendulum:

Where did all this extra 
energy come from?
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Forward Euler - Stability Analysis
Let’s consider behavior of forward Euler for simple linear ODE:

Forward Euler approximation is

Which means after n steps, we have

Importantly: u should decay (exact solution is u(t)=e - at)

Decays only if |1-τa| < 1, or equivalently, if τ < 2/a 
In practice: need very small time steps if a is large (“stiff system”)



starts out slow...

...and eventually stops moving completely.
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Backward Euler
Let’s try something else: evaluate velocity at next configuration 
New configuration is then implicit, and we must solve for it:

new configuration current configuration velocity at next time

Much harder to solve, since in general f can be very nonlinear! 
Pendulum is now stable... perhaps too stable?

Where did all the 
energy go?
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Backward Euler - Stability Analysis
Again consider a simple linear ODE:

Backward Euler approximation is

Which means after n steps, we have

Remember: u should decay (exact solution is u(t)=e - at)

Decays if |1+τa| > 1, which is always true! 
⇒Backward Euler is unconditionally stable for linear ODEs



starts out slow...

...and keeps on ticking.
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Symplectic Euler
Backward Euler was stable, but we also saw (empirically) that it 
exibits numerical damping (damping not found in original eqn.) 
Nice alternative is symplectic Euler 
- update velocity using current configuration 
- update configuration using new velocity

Easy to implement; used often in practice (or leapfrog, Verlet, ...) 
Pendulum now conserves energy almost exactly, forever:

(Proof? The analysis 
is not quite as easy...)



 CMU 15-462/662

Numerical Integrators
Barely scratched the surface 
Many different integrators 
Why? Because many notions of “good”: 
- stability 
- accuracy 
- consistency/convergence 
- conservation, symmetry, ... 
- computational efficiency (!) 
No one “best” integrator—pick the right tool for the job! 
Could do (at least) an entire course on time integration... 
Great book: Hairer, Lubich, Wanner
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Computational Differentiation
So far, we’ve been taking derivatives by hand 
Very often in simulation, need to differentiate extremely 
complicated functions (e.g., potential energy, to get forces) 
Several different techniques: 

- keep doing it by hand! (laborious & error prone, but potentially fast) 

- numerical differentiation (simple to code, but usually poor accuracy) 

- automatic differentiation (bigger code investment, better accuracy) 

- symbolic differentiation (can help w/ “by-hand”, often messy results) 

- geometric differentiation (sometimes simplifies “by hand” expressions)
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Review: Derivatives
Suppose I have a function
Q: How do I define its first derivative with respect to x, at x0?

In dynamical simulation, often need to consider functions

Directional derivative looks a lot like ordinary derivative:

(e.g., potential)

Gradient is vector ∇f that yields DXf when you take inner product:

(e.g., gradient of potential is force)

(Q: is DXf vector or scalar?)
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Numerical Differentiation
Taking all those derivatives by hand is a lot of work! 
(Especially if you’re just developing/debugging) 
Idea: replace derivatives with differences (as we did w/ time):

now has fixed size

But how do we pick h? 
Smaller is better... right? 
Not always!  Must be careful. 
Can also be expensive!

e.g., what if f were some 
kind of radiance integral?

decreasing h

1

0

relative error

(too small to distinguish)

sweet spot 
(but where is it?)
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Automatic Differentiation
Completely different idea: do arithmetic simultaneously on a 
function and its derivative. 
I.e., rather than work with values f, work with tuples (f,f’) 
Use chain rule to determine rules for manipulating tuples 
Example function: 
Suppose we want the value and derivative at x=2 
Start with the tuple 
How do we multiply tuples? 
So, squaring our tuple yields 
And multiplying by a scales the value and derivative: 
Pros: good accuracy, reasonably fast 
Cons: have to redefine all our arithmetic operators!

values just get 
multiplied

for derivatives, we 
apply the chain rule

(did we get it right?)

(must have access to code!)
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Symbolic Differentiation
Yet another approach (though related to automatic one...) 
Build explicit tree representing expression 
Apply transformations to obtain derivative 
Pros: only needs to happen once! 
Cons: serious development investment 
But, can often use existing tools 
- Mathematica, Maple, etc. 
Current systems not great with vectors, 3D 
Often produce unnecessarily complex formulae...
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Geometric Differentiation
Sometimes symbolic differentiation misses the “big picture” 
E.g., gradient of triangle area w.r.t. vertex position p

(2 (b2 - c2) (-b2 c1 + a2 (-b1 + c1) + a1 (b2 - c2) + 
b1 c2) + 2 (b3 - c3) (-b3 c1 + a3 (-b1 + c1) + a1 (b3 
- c3) + b1 c3))/(4 Sqrt((a2 b1 - a1 b2 - a2 c1 + b2 c1 
+ a1 c2 - ! b1 c2)^2 + (a3 b1 - a1 b3 - a3 c1 + b3 c1 
+ a1 c3 - b1 c3)^2 + (a3 b2 - a2 b3 - a3 c2 + b3 c2 + 
a2 c3 - b2 c3)^2)), (2 (b1 - c1) (a2 (b1 - c1) + b2 c1 
- b1 c2 + a1 (-b2 + c2)) + 2 (b3 - c3) (-b3 c2 + a3 (-
b2 + c2) + a2 (b3 - c3) + b2 c3))/(4 Sqrt((a2 b1 - a1 
b2 - a2 c1 + b2 c1 + a1 c2 - b1 c2)^2 + (a3 b1 - a1 b3 
- a3 c1 + b3 c1 + a1 c3 - b1 c3)^2 + (a3 b2 - a2 b3 - 
a3 c2 + b3 c2 + a2 c3 - b2 c3)^2)), (2 (b1 - c1) (a3 
(b1 - c1) + b3 c1 - b1 c3 + a1 (-b3 + c3)) + 2 (b2 - 
c2) (a3 (b2 - c2) + b3 c2 - b2 c3 + a2 (-b3 + c3)))/(4 
Sqrt((a2 b1 - a1 b2 - a2 c1 + b2 c1 + a1 c2 - b1 c2)^2 
+ (a3 b1 - a1 b3 - a3 c1 + b3 c1 + a1 c3 - b1 c3)^2 + 
(a3 b2 - a2 b3 - a3 c2 + b3 c2 + a2 c3 - b2 c3)^2))

Mathematica output:

“Geometric” derivative:



 CMU 15-462/662

Not Covered: Contact Mechanics

Smith et al, “Reflections on Simultaneous 
Impact”
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Coming up next: Optimization


