
Computer Graphics
CMU 15-462/15-662

Introduction to Animation

 CMU 15-462/662

Increasing the complexity of our models
...but what about motion?

 CMU 15-462/662

First Animation

(Shahr-e Sukhteh, Iran 3200 BCE)

 CMU 15-462/662

History of Animation

(tomb of Khnumhotep, Egypt 2400 BCE)

 CMU 15-462/662

History of Animation

Leonardo da Vinci (1510)

 CMU 15-462/662

History of Animation

Claude Monet, “Woman with a Parasol” (1875)

 CMU 15-462/662

History of Animation

(Phenakistoscope, 1831)

 CMU 15-462/662

First Film
Originally used as scientific tool rather than for entertainment
Critical technology that accelerated development of animation

Eadweard Muybridge, “Sallie Gardner” (1878)

 CMU 15-462/662

First Animation on Film

Emile Cohl, “Fantasmagorie” (1908)

 CMU 15-462/662

First Feature-Length Animation

Lotte Reiniger, “Die Abenteuer des Prinzen Achmed” (1926)

 CMU 15-462/662

First Hand-Drawn Feature-Length Animation

Disney, “Snow White and the Seven Dwarves” (1937)

 CMU 15-462/662

Hand-Drawn Animation - Present Day

Studio Ghibli, “Ponyo” (2008)

 CMU 15-462/662

First Computer-Generated Animation

John Whitney, “Catalog” (1961)

New technology, also developed as a scientific tool
Again turbo-charged the development of animation

 CMU 15-462/662

First Digital-Computer-Generated Animation

Ivan Sutherland, “Sketchpad” (1963)

 CMU 15-462/662

First 3D Computer Animation

William Fetter, “Boeing Man” (1964)

 CMU 15-462/662

Early Computer Animation

Nikolay Konstantinov, “Kitty” (1968)

 CMU 15-462/662

Early Computer Animation

Ed Catmull & Fred Park, “Computer Animated Faces” (1972)

 CMU 15-462/662

First Attempted CG Feature Film

NYIT [Williams, Heckbert, Catmull, ...], “The Works” (1984)

 CMU 15-462/662

First CG Feature Film

Pixar, “Toy Story” (1995)

 CMU 15-462/662

Computer Animation - Present Day

Sony Pictures Animation, “Cloudy With a Chance of Meatballs” (2009)

 CMU 15-462/662

Zoetrope - Solid Animation

 CMU 15-462/662

Zoetrope - 3D Printed Animation

John Edmark — BLOOMS

 CMU 15-462/662

Perception of Motion
Original (but debunked) theory: persistence of vision (“streaking”)
The eye is not a camera! More modern explanation:
- beta phenomenon: visual memory in brain—not eyeball
- phi phenomenon: brain anticipates, giving sense of motion

beta phi

credit: Akiyoshi Kitaoka

 CMU 15-462/662

Generating Motion (Hand-Drawn)
Senior artist draws keyframes
Apprentice draws inbetweens
Tedious / labor intensive (opportunity for technology!)

keyframe
keyframe keyframe

inbetweens (“tweening”)

 CMU 15-462/662

How do we describe motion on a computer?

 CMU 15-462/662

Basic Techniques in Computer Animation
Artist-directed (e.g., keyframing)
Data-driven (e.g., motion capture)
Procedural (e.g., simulation)

 CMU 15-462/662

Keyframing
Basic idea:
- specify important events only
- computer fills in the rest via interpolation/approximation
“Events” don’t have to be position
Could be color, light intensity, camera zoom, ...

keyframes

interpolated frames

 CMU 15-462/662

How do you interpolate data?

 CMU 15-462/662

Spline Interpolation
Mathematical theory of interpolation arose from study of thin
strips of wood or metal (“splines”) under various forces

(Good summary in Levin, “The Elastica: A Mathematical History”)

 CMU 15-462/662

Interpolation
Basic idea: “connect the dots”
E.g., piecewise linear interpolation
Simple, but yields rather rough motion (infinite acceleration)

attribute

time

 CMU 15-462/662

Piecewise Polynomial Interpolation
Common interpolant: piecewise polynomial “spline”

Basic motivation: get better continuity than piecewise linear!

 CMU 15-462/662

Splines
In general, a spline is any piecewise polynomial function
In 1D, spline interpolates data over the real line:

“knots” values

“Interpolates” just means that the function exactly passes
through those values:

The only other condition is that the function is a polynomial
when restricted to any interval between knots:

degree

coefficients

polynomial

 CMU 15-462/662

What’s so special about cubic polynomials?
Splines most commonly used for interpolation are cubic (d=3)
Piecewise cubics give exact solution to elastic spline problem
under assumption of small displacements
More precisely: among all curves interpolating set of data
points, minimizes norm of second derivative (not curvature)
Food for thought: who cares about
physical splines? We’re on a computer!
And are interpolating phenomena in time
Motivation is perhaps pragmatic: e.g.,
simple closed form, decent continuity
Plenty of good reasons to choose
alternatives (e.g., NURBS for exact conics,
clothoid to prevent jerky motion, ...)
Also...

 CMU 15-462/662

Runge Phenomenon
Tempting to use higher-degree polynomials, in order to get
higher-order continuity
Can lead to oscillation, ultimately worse approximation:

 CMU 15-462/662

Fitting a Cubic Polynomial to Endpoints
Consider a single cubic polynomial

Suppose we want it to match given endpoints:

Many solutions!

 CMU 15-462/662

Cubic Polynomial - Degrees of Freedom
Why are there so many different solutions?
Cubic polynomial has four degrees of freedom (DOFs), namely
four coefficients (a,b,c,d) that we can manipulate/control
Only need two degrees of freedom to specify endpoints:

Overall, four unknowns but only two equations
Not enough to uniquely determine the curve!

 CMU 15-462/662

Fitting Cubic to Endpoints and Derivatives
What if we also match derivatives at endpoints?

 CMU 15-462/662

Splines as Linear Systems
This time, we have four equations in four unknowns
Could also express as a matrix equation:

Often, this is the game we will play:
- each condition on spline leads to a linear equality
- hence, if we have m degrees of freedom, we need m (linearly

independent!) conditions to determine spline

 CMU 15-462/662

Natural Splines
Now consider piecewise spline made of cubic polynomials pi
For each interval, want polynomial “piece” pi to interpolate
data (e.g., keyframes) at both endpoints:

Want tangents to agree at endpoints (“C1 continuity”):

Also want curvature to agree at endpoints (“C2 continuity”):

How many equations do we have at this point?
- 2n+(n-1)+(n-1) = 4n-2
Pin down remaining DOFs by setting curvature to zero at
endpoints (this is what makes the curve “natural”)

 CMU 15-462/662

Spline Desiderata
In general, what are some properties of a “good” spline?
- INTERPOLATION: spline passes exactly through data points

- CONTINUITY: at least twice differentiable everywhere

- LOCALITY: moving one control point doesn’t affect whole curve

How does our natural spline do?
- INTERPOLATION: yes, by construction
- CONTINUITY: C2 everywhere
- LOCALITY: no, coefficients depend on global linear system
Many other types of splines we can consider
Spoiler: there is “no free lunch” with cubic splines: can’t
simultaneously get all three properties

 CMU 15-462/662

Review: Hermite/Bézier Splines
Discussed briefly in introduction to geometry
Each cubic “piece” specified by endpoints and tangents:

Equivalently: by four points (Bézier form); just take difference!
Commonly used for 2D vector art (Illustrator, Inkscape, SVG, ...)
Can we get tangent continuity?
Sure: set both tangents to same value on both sides of knot!

E.g., f1 above, but not f2

HermiteBézier

 CMU 15-462/662

Properties of Hermite/Bézier Spline
More precisely, want endpoints to interpolate data:

Also want tangents to interpolate some given data:

How is this different from our natural spline’s tangent condition?
There, tangents didn’t have to match any prescribed value—
they merely had to be the same. Here, they are given.
How many conditions overall?

2n + 2n = 4n
What properties does this curve have?

INTERPOLATION and LOCALITY, but not C2 CONTINUITY

 CMU 15-462/662

Catmull-Rom Splines
Sometimes makes sense to specify tangents (e.g.,
illustration)
Often more convenient to just specify values
Catmull-Rom: specialization of Hermite spline, determined
by values alone
Basic idea: use difference of neighbors to define tangent

All the same properties as any other
Hermite spline (locality, etc.)
Commonly used to interpolate
motion in computer animation.
Many, many variants, but Catmull-
Rom is usuallygood starting point

 CMU 15-462/662

Spline Desiderata, Revisited

INTERPOLATION CONTINUITY LOCALITY

natural YES YES NO

Hermite YES NO YES

??? NO YES YES

 CMU 15-462/662

B-Splines
Get better continuity and local control by sacrificing interpolation
B-spline basis defined recursively:

B-spline itself is then a linear combination of bases:
degree

linear interpolation

 CMU 15-462/662

Spline Desiderata, Revisited

INTERPOLATION CONTINUITY LOCALITY

natural YES YES NO

Hermite YES NO YES

B-splines NO YES YES

 CMU 15-462/662

Ok, I get it: splines are great.
But what exactly are we interpolating?

 CMU 15-462/662

Simple example: camera path
Animate position, direction, “up” direction of camera
- each path is a function f(t) = (x(t), y(t), z(t))
- each component (x,y,z) is a spline

Zaha Hadid Architects—
City of Dream

s Hotel Tow
er

 CMU 15-462/662

Character Animation
Scene graph/kinematic chain: scene as tree of transformations
E.g. in our “cube man,” configuration of a leg might be expressed
as rotation relative to body
Animate by interpolating transformations
Often have sophisticated “rig”: rotate

Even w/ computer “tweening,” a lot of work to animate!

courtesy M
atthew

 Lailler

 CMU 15-462/662

Inverse Kinematics
Important technique in animation & robotics
Rather than adjust individual transformations, set “goal” and
use algorithm to come up with plausible motion:

Many algorithms—basic idea: numerical optimization/descent

 CMU 15-462/662

Skeletal Animation
Previous characters looked a lot different from “cube man”!
Often use “skeleton” to drive deformation of continuous surface
Influence of each bone determined by, e.g., weighting function:

(Many other possibilities—still active area of R&D)

 CMU 15-462/662

Blend Shapes
Instead of skeleton, interpolate directly between surfaces
E.g., model a collection of facial expressions:

Simplest scheme: take linear combination of vertex positions
Spline used to control choice of weights over time

courtesy Félix Ferrand

 CMU 15-462/662

Coming up next...
Even with “computer-aided tweening,” animating everything
by hand takes a lot of work!
Will see how data, physical simulation can help

