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Increasing the complexity of our models
...but what about motion?
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First Animation

(Shahr-e Sukhteh, Iran 3200 BCE)
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History of Animation

(tomb of Khnumhotep, Egypt 2400 BCE)
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History of Animation

Leonardo da Vinci (1510)
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History of Animation

Claude Monet, “Woman with a Parasol” (1875)



 CMU 15-462/662

History of Animation

(Phenakistoscope, 1831)
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First Film
Originally used as scientific tool rather than for entertainment 
Critical technology that accelerated development of animation

Eadweard Muybridge, “Sallie Gardner” (1878)
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First Animation on Film

Emile Cohl, “Fantasmagorie” (1908)
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First Feature-Length Animation

Lotte Reiniger, “Die Abenteuer des Prinzen Achmed” (1926)
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First Hand-Drawn Feature-Length Animation

Disney, “Snow White and the Seven Dwarves” (1937)
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Hand-Drawn Animation - Present Day

Studio Ghibli, “Ponyo” (2008)
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First Computer-Generated Animation

John Whitney, “Catalog” (1961)

New technology, also developed as a scientific tool 
Again turbo-charged the development of animation
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First Digital-Computer-Generated Animation

Ivan Sutherland, “Sketchpad” (1963)
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First 3D Computer Animation

William Fetter, “Boeing Man” (1964)
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Early Computer Animation

Nikolay Konstantinov, “Kitty” (1968)
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Early Computer Animation

Ed Catmull & Fred Park, “Computer Animated Faces” (1972)
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First Attempted CG Feature Film

NYIT [Williams, Heckbert, Catmull, ...], “The Works” (1984)
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First CG Feature Film

Pixar, “Toy Story” (1995)
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Computer Animation - Present Day

Sony Pictures Animation, “Cloudy With a Chance of Meatballs” (2009)
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Zoetrope - Solid Animation
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Zoetrope - 3D Printed Animation

John Edmark — BLOOMS
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Perception of Motion
Original (but debunked) theory: persistence of vision (“streaking”) 
The eye is not a camera!  More modern explanation: 
- beta phenomenon: visual memory in brain—not eyeball 
- phi phenomenon: brain anticipates, giving sense of motion

beta phi

credit: Akiyoshi Kitaoka
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Generating Motion (Hand-Drawn)
Senior artist draws keyframes 
Apprentice draws inbetweens 
Tedious / labor intensive (opportunity for technology!)

keyframe
keyframe keyframe

inbetweens (“tweening”)
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How do we describe motion on a computer?
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Basic Techniques in Computer Animation
Artist-directed (e.g., keyframing) 
Data-driven (e.g., motion capture) 
Procedural (e.g., simulation)
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Keyframing
Basic idea: 
- specify important events only 
- computer fills in the rest via interpolation/approximation 
“Events” don’t have to be position 
Could be color, light intensity, camera zoom, ...

keyframes

interpolated frames
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How do you interpolate data?
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Spline Interpolation
Mathematical theory of interpolation arose from study of thin 
strips of wood or metal (“splines”) under various forces

(Good summary in Levin, “The Elastica: A Mathematical History”)
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Interpolation
Basic idea: “connect the dots” 
E.g., piecewise linear interpolation 
Simple, but yields rather rough motion (infinite acceleration)

attribute

time



 CMU 15-462/662

Piecewise Polynomial Interpolation
Common interpolant: piecewise polynomial “spline”

Basic motivation: get better continuity than piecewise linear!
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Splines
In general, a spline is any piecewise polynomial function 
In 1D, spline interpolates data over the real line:

“knots” values

“Interpolates” just means that the function exactly passes 
through those values:

The only other condition is that the function is a polynomial 
when restricted to any interval between knots:

degree

coefficients

polynomial
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What’s so special about cubic polynomials?
Splines most commonly used for interpolation are cubic (d=3) 
Piecewise cubics give exact solution to elastic spline problem 
under assumption of small displacements 
More precisely: among all curves interpolating set of data 
points, minimizes norm of second derivative (not curvature)
Food for thought: who cares about 
physical splines?  We’re on a computer!  
And are interpolating phenomena in time 
Motivation is perhaps pragmatic: e.g., 
simple closed form, decent continuity 
Plenty of good reasons to choose 
alternatives (e.g., NURBS for exact conics, 
clothoid to prevent jerky motion, ...) 
Also...
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Runge Phenomenon
Tempting to use higher-degree polynomials, in order to get 
higher-order continuity 
Can lead to oscillation, ultimately worse approximation:
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Fitting a Cubic Polynomial to Endpoints
Consider a single cubic polynomial 

Suppose we want it to match given endpoints:

Many solutions!
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Cubic Polynomial - Degrees of Freedom
Why are there so many different solutions? 
Cubic polynomial has four degrees of freedom (DOFs), namely 
four coefficients (a,b,c,d) that we can manipulate/control 
Only need two degrees of freedom to specify endpoints:

Overall, four unknowns but only two equations 
Not enough to uniquely determine the curve!



 CMU 15-462/662

Fitting Cubic to Endpoints and Derivatives
What if we also match derivatives at endpoints?
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Splines as Linear Systems
This time, we have four equations in four unknowns 
Could also express as a matrix equation:

Often, this is the game we will play: 
- each condition on spline leads to a linear equality 
- hence, if we have m degrees of freedom, we need m (linearly 

independent!) conditions to determine spline
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Natural Splines
Now consider piecewise spline made of cubic polynomials pi 
For each interval, want polynomial “piece” pi to interpolate 
data (e.g., keyframes) at both endpoints: 

Want tangents to agree at endpoints (“C1 continuity”): 

Also want curvature to agree at endpoints (“C2 continuity”): 

How many equations do we have at this point? 
- 2n+(n-1)+(n-1) = 4n-2 
Pin down remaining DOFs by setting curvature to zero at 
endpoints (this is what makes the curve “natural”)
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Spline Desiderata
In general, what are some properties of a “good” spline? 
- INTERPOLATION: spline passes exactly through data points 

- CONTINUITY: at least twice differentiable everywhere 

- LOCALITY: moving one control point doesn’t affect whole curve 

How does our natural spline do? 
- INTERPOLATION: yes, by construction 
- CONTINUITY: C2 everywhere 
- LOCALITY: no, coefficients depend on global linear system 
Many other types of splines we can consider 
Spoiler: there is “no free lunch” with cubic splines: can’t 
simultaneously get all three properties
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Review: Hermite/Bézier Splines
Discussed briefly in introduction to geometry 
Each cubic “piece” specified by endpoints and tangents:

Equivalently: by four points (Bézier form); just take difference! 
Commonly used for 2D vector art (Illustrator, Inkscape, SVG, ...) 
Can we get tangent continuity? 
Sure: set both tangents to same value on both sides of knot! 

E.g., f1 above, but not f2

HermiteBézier
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Properties of Hermite/Bézier Spline
More precisely, want endpoints to interpolate data: 

Also want tangents to interpolate some given data:

How is this different from our natural spline’s tangent condition? 
There, tangents didn’t have to match any prescribed value—
they merely had to be the same.  Here, they are given. 
How many conditions overall? 

2n + 2n = 4n 
What properties does this curve have? 

INTERPOLATION and LOCALITY, but not C2 CONTINUITY
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Catmull-Rom Splines
Sometimes makes sense to specify tangents (e.g., 
illustration) 
Often more convenient to just specify values 
Catmull-Rom: specialization of Hermite spline, determined 
by values alone 
Basic idea: use difference of neighbors to define tangent

All the same properties as any other 
Hermite spline (locality, etc.) 
Commonly used to interpolate 
motion in computer animation. 
Many, many variants, but Catmull-
Rom is usuallygood starting point
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Spline Desiderata, Revisited

INTERPOLATION CONTINUITY LOCALITY

natural YES YES NO

Hermite YES NO YES

??? NO YES YES
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B-Splines
Get better continuity and local control by sacrificing interpolation 
B-spline basis defined recursively:

B-spline itself is then a linear combination of bases:
degree

linear interpolation
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Spline Desiderata, Revisited

INTERPOLATION CONTINUITY LOCALITY

natural YES YES NO

Hermite YES NO YES

B-splines NO YES YES
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Ok, I get it: splines are great. 
But what exactly are we interpolating?
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Simple example: camera path
Animate position, direction, “up” direction of camera 
- each path is a function f(t) = ( x(t), y(t), z(t) ) 
- each component (x,y,z) is a spline

Zaha Hadid Architects—
City of Dream

s Hotel Tow
er
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Character Animation
Scene graph/kinematic chain: scene as tree of transformations 
E.g. in our “cube man,” configuration of a leg might be expressed 
as rotation relative to body 
Animate by interpolating transformations 
Often have sophisticated “rig”: rotate

Even w/ computer “tweening,” a lot of work to animate!

courtesy M
atthew

 Lailler
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Inverse Kinematics
Important technique in animation & robotics 
Rather than adjust individual transformations, set “goal” and 
use algorithm to come up with plausible motion:

Many algorithms—basic idea: numerical optimization/descent
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Skeletal Animation
Previous characters looked a lot different from “cube man”! 
Often use “skeleton” to drive deformation of continuous surface 
Influence of each bone determined by, e.g., weighting function:

(Many other possibilities—still active area of R&D)
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Blend Shapes
Instead of skeleton, interpolate directly between surfaces 
E.g., model a collection of facial expressions: 

Simplest scheme: take linear combination of vertex positions 
Spline used to control choice of weights over time

courtesy Félix Ferrand
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Coming up next...
Even with “computer-aided tweening,” animating everything 
by hand takes a lot of work! 
Will see how data, physical simulation can help


