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Increasing the complexity of our models

...but what about motion?
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First Animation
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History of Animation
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History of Animation

Leonardo da Vinci (1510)
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History of Animation

Claude Monet, “Woman with a Parasol” (1875)

(MU 15-462/662



History of Animation

(Phenakistoscope, 1831)
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First Film

m Originally used as scientific tool rather than for entertainment

m C(ritical technology that accelerated development of animation

Eadweard Muybridge, “Sallie Gardner” (1878)
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First Animation on Film

Emile Cohl, “Fantasmagorie” (1908)
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First Feature-Length Animation

Lotte Reiniger, “Die Abenteuer des Prinzen Achmed” (1926)

(MU 15-462/662




First Hand-Drawn Feature-Length Animation

Disney, “Snow White and the Seven Dwarves” (1937)
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Hand-Drawn Animation - Present Day

Studio Ghibli, “Ponyo” (2008)
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First Computer-Generated Animation

m New technology, also developed as a scientific tool
m Again turbo-charged the development of animation

John Whitney, “Catalog”(1961)

(MU 15-462/662



First Digital-Computer-Generated Animation

lvan Sutherland, “Sketchpad” (1963)
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First 3D Computer Animation

William Fetter, “Boeing Man" (1964)
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Early Computer Animation

Nikolay Konstantinov, “Kitty” (1968)
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Early Computer Animation

Ed Catmull & Fred Park, “Computer Animated Faces” (1972)
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First Attempted (G Feature Film

NYIT [Williams, Heckbert, Catmull, ...], “The Works” (1984)
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First CG Feature Film
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Computer Animation - Present Day

Sony Pictures Animation, “Cloudy With a Chance of Meatballs” (2009)
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Loetrope - Solid Animation
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Zoetrope - 3D Printed Animation

John Edmark — BLOOMS
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Perception of Motion

m Original (but debunked) theory: persistence of vision (“streaking”)
m Theeyeis nota camera! More modern explanation:

- beta phenomenon: visual memory in brain—not eyeball

- phi phenomenon: brain anticipates, giving sense of motion

20BN 1YSOANY JIpaLd
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Generating Motion (Hand-Drawn)

m Senior artist draws keyframes
m Apprentice draws inbetweens
m Tedious /labor intensive (opportunity for technology!)

keyframe
keyframe keyframe
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How do we describe motion on a computer?
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Basic Techniques in Computer Animation

m Artist-directed (e.g., keyframing)
m Data-driven (e.qg., motion capture)

m Procedural (e.g., simulation)
— i
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Keyframing

m Basicidea:

- specify important events only

- computer fills in the rest via interpolation/approximation
m “Events” don’t have to be position
m Could be color, light intensity, camera zoom, ...

. «— keyframes

ey

interpolated frames
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How do you interpolate data?
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Spline Interpolation

m Mathematical theory of interpolation arose from study of thin

/|

strips of wood or metal (“splines”) under various forces
W 7 » i SN (4 4 ; v | "*’f".""!—

(Good summary in Levin, “The Elastica: A Mathematical History")
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Interpolation

m Basicidea: “connect the dots”
m E.g., piecewise linear interpolation
m Simple, but yields rather rough motion (infinite acceleration)

attribute
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Piecewise Polynomial Interpolation

m Common interpolant: piecewise polynomial “spline”

t

Basic motivation: get better continuity than piecewise linear!
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Splines
m Ingeneral, a spline is any piecewise polynomial function

m In 1D, spline interpolates data over the real line:
(ti;fz')7 i:O,...,n

N\

“knots” values
ti < tit1

/-

m “Interpolates” just means that the function exactly passes
through those values:
f(t:) = fi Vi

m The only other condition is that the function is a polynomial
when restricted to any interval between knots: ;o mial

— degree /
for t; <t < ti1, f(t) = 35, cit! =: pi(t)

coefficients
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What's so special about cubic polynomials?

m Splines most commonly used for interpolation are cubic (d=3)

m Piecewise cubics give exact solution to elastic spline problem
under assumption of small displacements

m More precisely: among all curves interpolating set of data
points, minimizes norm of second derivative (not curvature)

m Food for thought: who cares about itz
Rhysual.splmes? We're on a computer! Me -
nd are interpolating phenomena in time M=z X

m Motivation is perhaps pragmatic: e.g., W
simple closed form, decent continuity et

m Plenty of good reasons to choose L H e
alternatives (e.g., NURBS for exact conics, 3=y |
clothoid to prevent jerky motion, ...) JEd . 2

m Also...
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Runge Phenomenon

m Tempting to use higher-degree polynomials, in order to get
higher-order continuity

m (anlead to oscillation, ultimately worse approximation:
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Fitting a Cubic Polynomial to Endpoints

m Consider asingle cubic polynomial
p(t) = at® + bt* + ct +d
m Suppose we want it to match given endpoints:

p(t) A

Many solutions!
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Cubic Polynomial - Degrees of Freedom

m Why are there so many different solutions?

m Cubicpolynomial has four degrees of freedom (DOFs), namely
four coefficients (a,b,¢,d) that we can manipulate/control

m Only need two degrees of freedom to specify endpoints:
p(t) = at® + bt* + ct + d
p(0) = po = d = pg
p(1) = p1 =a+b+c+d=p

m Overall, four unknowns but only two equations
m Not enough to uniquely determine the curve!
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Fitting Cubic to Endpoints and Derivatives

m What if we also match derivatives at endpoints?
p(t) = at® + bt* + ct +d

L — N7
o 0O _
p(0) = po = d = pg
(1) = p1 = a+b+c+d=p
p’ (0) = ug = ¢ = g
p'(1) = u — 3a+2b+c =y
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Splines as Linear Systems

m This time, we have four equations in four unknowns
m Could also express as a matrix equation:

0 0 0 1 a Do
1 1 1 1 b | | p
O 0 1 O C - U

m Often, this is the game we will play:
- each condition on spline leads to a linear equality

- hence, if we have m degrees of freedom, we need m (linearly
independent!) conditions to determine spline
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Natural Splines

m Now consider piecewise spline made of cubic polynomials p;

m For each interval, want polynomial “piece” p; to interpolate
data (e.g., keyframes) at both endpoints:

pz’(tz’) — fz’; pi(tz‘—|-1) — f@'+1, 1 = O, S 1
m Want tangents to agree at endpoints (“C' continuity”):
P (tit1) = pgﬂ(tiﬂ), 1 =20,...,n— 2
m Also want curvature to agree at endpoints (“C2 continuity”):
P (tiv1) = pf’,;’H(tHl), 1 =0,...,n— 2
m How many equations do we have at this point?
- 2n+(n-1)+(n-1) =4n-2

m Pin down remaining DOFs by setting curvature to zero at

endpoints (this is what makes the curve “natural”)
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Spline Desiderata

m In general, what are some properties of a “good” spline?

- INTERPOLATION: spline passes exactly through data points

- CONTINUITY: at least twice differentiable everywhere

- LOCALITY: moving one control point doesn’t affect whole curve
m How does our natural spline do?

- INTERPOLATION: yes, by construction

- CONTINUITY: C2 everywhere

- LOCALITY: no, coefficients depend on global linear system
m Many other types of splines we can consider

m Spoiler: there is “no free lunch” with cubic splines: can't
simultaneously get all three properties
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Review: Hermite/Bezier Splines

m Discussed briefly in introduction to geometry
m Each cubic“piece” specified by endpoints and tangents:

ézﬁ@[fq ..............

W Jo /2 In

Equivalently: by four points (Bezier form); just take difference!
Commonly used for 2D vector art (lllustrator, Inkscape, SVG, ...)
Can we get tangent continuity?

Sure: set both tangents to same value on both sides of knot!

m E.g., fi1above, but notf;
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Properties of Hermite/Bezier Spline

m More precisely, want endpoints to interpolate data:
pi(ti) = fi, pi(tiv1) = fiy1, 1 =0,...,n—1
m Also want tangents to interpolate some given data:
p;(ti) = wi, 0 (tiv1) = wig1,1=0,...,n —1
m How is this different from our natural spline’s tangent condition?

m There, tangents didn’t have to match any prescribed value—
they merely had to be the same. Here, they are given.

m How many conditions overall?
HE 2n+2n=4n

m What properties does this curve have?
m INTERPOLATION and LOCALITY, but not C2 CONTINUITY
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Catmull-Rom Splines

Sometimes makes sense to specify tangents (e.g.,
illustration)

Often more convenient to just specify values

Catmull-Rom: specialization of Hermite spline, determined
by values alone

Basicidea: use diﬁﬁrencefof neighbors to define tangent
i+1—Ji—1 *
i -= tit1—ti—1

All the same properties as any other .
Hermite spline (locality, etc.) fi+1)

Commonly used to interpolate
motion in computer animation. . [

Many, many variants, but Catmull-  ~_ /.
Romis usuallygood starting point &



Spline Desiderata, Revisited

INTERPOLATION | CONTINUITY LOCALITY
natural YES YES NO
Hermite YES NO YES

m NO YES YES
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B-Splines

m Get better continuity and local control by sacrificing interpolation

!
¢'l
L]

m B-spline basis defined recursively:
L, iftt; <t<t;iq

BBT(:)(t) | 0, otherwise
T o AN -
0 ” o - ¢ " :
— linear interpolation —
Bi (1) := tﬁiji—t?; Bir—1(t) 1 ti:f;ilBiH,kq(t)

m B-spline itself is then a linear combination of bases:
F() i= 52 aiBi g o0
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Spline Desiderata, Revisited

INTERPOLATION | CONTINUITY LOCALITY
natural YES YES NO
Hermite YES NO YES

B-splines NO YES YES
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0k, | get it: splines are great.
But what exactly are we interpolating?



Simple example: camera path
m Animate position, direction, “up” direction of camera
- each path s a function f(t) = ( x(t), y(t), z(t) )

- each component (x,y,z) is a spline
- v T - v g »,‘.‘}"' '

S129)Y1Y PIpeH eyez
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Character Animation
m Scene graph/kinematic chain: scene as tree of transformations

/] (4

m E.g.inour“cube man,’ configuration of a leg might be expressed
as rotation relative to body

m Animate by interpolating transformations

m Often have sophisticated “rig”: rotatY

19]|1e7 maye Asa11nod

| Ariane Rig

Even w/ computer ”tweening;” a lot of work to animate!
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Inverse Kinematics

m Important technique in animation & robotics

m Rather than adjust individual transformations, set “goal” and
use algorithm to come up with plausible motion:

Many algorithms—Dbasic idea: numerical optimization/descent
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Skeletal Animation

m Previous characters looked a lot different from “cube man”!
m Often use“skeleton” to drive deformation of continuous surface

m Influence of each bone determined by, e.g., weighting function:

(Many other possibilities—still active area of R&D)
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Blend Shapes

m Instead of skeleton, interpolate directly between surfaces

m E.g., model a collection of facial expressions:

puesid X194 £s334n0d

Modeling
Blendshapes
Correciive
No dodes

C
b Llerdishopes

m Simplest scheme: take linear combination of vertex positions
m Spline used to control choice of weights over time

(MU 15-462/662



Coming up next...

m Even with“computer-aided tweening,” animating everything
by hand takes a lot of work!

m Will see how data, physical simulation can help
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