Numerical Integration

Computer Graphics CMU 15-462/15-662

MiniHW 6 out — Real-time Shading!

Due Monday before class

Motivation: The Rendering Equation

Last week, we introduced the rendering equation, which models light "bouncing around the scene":

$$L_{o}(\mathbf{p},\omega_{o}) = L_{e}(\mathbf{p},\omega_{o}) + \int_{\mathcal{H}^{2}} f_{r}(\mathbf{p},\omega_{i} \to \omega_{o}) L_{i}(\mathbf{p},\omega_{i}) \cos \theta \, d\omega_{i}$$

Image credit: Henrik Wann Jensen

Motivation: The Rendering Equation

Last week, we introduced the rendering equation, which models light "bouncing around the scene":

$$L_{o}(\mathbf{p},\omega_{o}) = L_{e}(\mathbf{p},\omega_{o}) + \int_{\mathcal{H}^{2}} f_{r}(\mathbf{p},\omega_{i} \to \omega_{o}) L_{i}(\mathbf{p},\omega_{i}) \cos \theta \, d\omega_{i}$$

TODAY: How can we possibly evaluate this integral?

Numerical Integration—Overview

In graphics, many quantities we're interested in are naturally expressed as integrals (total brightness, total area, ...)

- For very, very simple integrals, we can compute the solution analytically
- For everything else, we have to compute a numerical approximation
- $\int_0^1 \frac{1}{3} x^2 \, dx = \left[x^3 \right]_0^1 = 1$

■ Basic idea:

- integral is "area under curve"
- sample the function at many points
- integral is approximated as weighted sum

Rendering: what are we integrating?

Recall this view of the world:

Want to "sum up"—i.e., integrate!—light from all directions (But let's start a little simpler...)

Review: integral as "area under curve"

Or: average value times size of domain

Simple case: constant function

Affine function: f(x) = cx + d

$$\int_{a}^{b} f(x)dx = \frac{1}{2}(f(a) + f(b))(b - a)$$

$$f(b)$$

$$f(a)$$

$$x = a$$

$$x = b$$

Need only one sample of the function (at just the right place...)

More general polynomials?

Gauss Quadrature

For any polynomial of degree 2n-1 or less, we can always obtain the exact integral by sampling at a special set of n points and taking a special weighted combination

Piecewise affine function

For piecewise functions, just sum integral of each piece:

Key idea so far:

To approximate an integral, we need

- (i) quadrature points, and
- (ii) weights for each point

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} w_{i} f(x_{i})$$

Arbitrary function f(x)?

Trapezoid rule

Approximate integral of f(x) by pretending function is piecewise affine

For equal length segments: $h = \frac{b-a}{n-1}$

Trapezoid rule

Consider cost and accuracy of estimate as $n \to \infty$ (or $h \to 0$)

Work: O(n)

Error can be shown to be: $O(h^2) = O(\frac{1}{n^2})$

What about a 2D function?

How should we approximate the area underneath?

Integration in 2D

Consider integrating f(x,y) using the trapezoidal rule (apply rule twice: when integrating in x and in y)

$$\int_{a_y}^{b_y} \int_{a_x}^{b_x} f(x,y) dx dy = \int_{a_y}^{b_y} \left(O(h^2) + \sum_{i=0}^n A_i f(x_i,y)\right) dy$$
 First application of rule
$$= O(h^2) + \sum_{i=0}^n A_i \int_{a_y}^{b_y} f(x_i,y) dy$$

$$= O(h^2) + \sum_{i=0}^n A_i \left(O(h^2) + \sum_{j=0}^n A_j f(x_i,y_j)\right)$$
 Second application
$$= O(h^2) + \sum_{i=0}^n \sum_{j=0}^n A_i A_j f(x_i,y_j)$$

Errors add, so error still: $O(h^2)$ But work is now: $O(n^2)$

(n x n set of measurements)

Must perform much more work in 2D to get same error bound on integral!

In K-D, let $N=n^k$

Error goes as: $O\left(\frac{1}{N^{2/k}}\right)$

Curse of Dimensionality

How much does it cost to apply the trapezoid rule as we go up in dimension?

- 1D: O(n)
- $2D: O(n^2)$
- -
- $kD: O(n^k)$

- Applying trapezoid rule does not scale!
- Need a fundamentally different approach...

Monte Carlo Integration

Monte Carlo Integration

So far we've discussed techniques that use a fixed set of sample points (e.g., uniformly spaced, or obtained by finding roots of polynomial (Gaussian quadrature))

- Estimate value of integral using random sampling of function
 - Value of the estimate depends on the random samples used
 - But algorithm gives the correct value of integral "on average"
- Only requires function to be evaluated at random points on its domain
 - Applicable to functions with discontinuities, functions that are impossible to integrate directly
- Error of estimate is independent of the dimensionality of the integrand
 - Depends on the number of random samples used: $O\left(\frac{1}{\sqrt{n}}\right)$

Review: random variables

X random variable. Represents a distribution of potential values

 $X \sim p(x)$ probability density function (PDF). Describes relative probability of a random process choosing value x

Uniform PDF: all values over a domain are equally likely

e.g., for an unbiased die

X takes on values 1,2,3,4,5,6

$$p(1) = p(2) = p(3) = p(4) = p(5) = p(6)$$

Discrete probability distributions

n discrete values x_i

With probability p_i

Requirements of a PDF:

$$p_i \ge 0$$

$$\sum_{i=1}^{n} p_i = 1$$

Six-sided die example:
$$p_i = \frac{1}{6}$$

Think: p_i is the probability that a random measurement of X will yield the value x_i X takes on the value x_i with probability p_i

Cumulative distribution function (CDF)

(For a discrete probability distribution)

where:

$$0 \le P_i \le 1$$

$$P_n = 1$$

How do we generate samples of a discrete random variable (with a known PDF?)

Sampling from discrete probability distributions

To randomly select an event, select x_i if

$$P_{i-1} < \xi \le P_i$$

Uniform random variable $\in [0, 1)$

Continuous probability distributions

PDF p(x)

$$p(x) \ge 0$$

$\mathsf{CDF}\ P(x)$

$$P(x) = \int_0^x p(x) \, \mathrm{d}x$$

$$P(x) = \Pr(X < x)$$

$$P(1) = 1$$

$$\Pr(a \le X \le b) = \int_a^b p(x) \, \mathrm{d}x$$

$$= P(b) - P(a)$$

Uniform distribution

(for random variable X defined on [0,1] domain)

Sampling continuous random variables using the inversion method

Cumulative probability distribution function

$$P(x) = \Pr(X < x)$$

Construction of samples:

Solve for
$$x = P^{-1}(\xi)$$

Must know the formula for:

- 1. The integral of p(x)
- 2. The inverse function $P^{-1}(\xi)$

Example—Sampling Quadratic Distribution

- As a toy example, consider the simple probability distribution p(x) := 3(1-x)² over the interval [0,1]
- How do we pick random samples distributed according to p(x)?
- First, integrate probability distribution
 p(x) to get cumulative distribution P(x)
- Invert P(x) by solving $\xi = P(x)$ for x
- Finally, plug uniformly distributed random values ξ in [0,1] into this expression

$$\int_0^x 3(1-s)^2 ds = x^3 - 3x^2 + 3x$$

$$x = P^{-1}(\xi) = 1 - (1 - \xi)^{\frac{1}{3}}$$

How do we uniformly sample the unit circle?

I.e., choose any point P=(px, py) in circle with equal probability)

Uniformly sampling unit circle: first try

- \blacksquare θ = uniform random angle between 0 and 2π
- \blacksquare r = uniform random radius between 0 and 1
- Return point: $(r \cos \theta, r \sin \theta)$

This algorithm <u>does not</u> produce the desired uniform sampling of the area of a circle. Why?

Because sampling is not uniform in area!

Points farther from center of circle are less likely to be chosen

$$\theta = 2\pi \xi_1 \qquad r = \xi_2$$

$$r=\xi_2$$

So how should we pick samples? Well, think about how we integrate over a disk in polar coordinates...

Sampling a circle (via inversion in 2D)

$$A = \int_0^{2\pi} \int_0^1 r \, dr \, d\theta = \int_0^1 r \, dr \int_0^{2\pi} d\theta = \left(\frac{r^2}{2}\right) \Big|_0^1 \theta \Big|_0^{2\pi} = \pi$$

$$p(r,\theta)\,\mathrm{d} r\,\mathrm{d} \theta=rac{1}{\pi}r\,\mathrm{d} r\,\mathrm{d} heta o p(r,\theta)=rac{r}{\pi}$$
 so that we integrate the proof of t

$$p(\theta) = \frac{1}{2\pi}$$

$$P(\theta) = \frac{1}{2\pi}\theta$$

$$p(r) = 2r$$

$$P(r) = r^2$$

$$\xi_1 = P(\theta) = \frac{\theta}{2\pi} - \frac{\theta}{2\pi}$$

$$\theta = 2\pi \xi_1$$

$$\xi_2 = P(r) = r^2$$

$$r = \sqrt{\xi_2}$$

Uniform area sampling of a circle

WRONG probability is uniform; samples are not!

$$\theta = 2\pi \xi_1$$

$$r=\xi_2$$

probability is nonuniform; samples are uniform

$$\theta = 2\pi \xi_1$$

$$r = \sqrt{\xi_2}$$

Uniform sampling via rejection sampling

Completely different idea: pick uniform samples in square (easy)
Then toss out any samples not in square (easy)

Efficiency of technique: area of circle / area of square

Efficiency of Rejection Sampling

If the region we care about covers only a very small fraction of the region we're sampling, rejection is probably a bad idea:

Smarter in this case to "warp" our random variables to follow the spiral.

So how do we use numerical integration to do rendering?

Monte Carlo Rendering

- Goal: render a photorealistic image
- Put together many of the ideas we've studied:
 - color
 - materials
 - radiometry
 - numerical integration
 - geometric queries
 - spatial data structures
 - rendering equation

- Combine into final Monte Carlo ray tracing algorithm
- Alternative to rasterization, lets us generate much more realistic images (usually at much greater cost...)

Photorealistic Rendering—Basic Goal

What are the INPUTS and OUTPUTS?

image

Ray Tracing vs. Rasterization—Order

- Both rasterization & ray tracing will generate an image
- What's the difference?
- One basic difference: order in which we process samples

for each **primitive:**for each **sample:**determine coverage
evaluate color

(Use Z-buffer to determine which primitive is visible)

RAY TRACING

for each sample:
 for each primitive:
 determine coverage
 evaluate color

(Use spatial data structure like BVH to determine which primitive is visible)

Ray Tracing vs. Rasterization—Illumination

- More major difference: sophistication of illumination model
 - [LOCAL] rasterizer processes one primitive at a time; hard* to determine things like "A is in the shadow of B"
 - [GLOBAL] ray tracer processes on ray at a time; ray knows about everything it intersects, easy to talk about shadows & other "global" illumination effects

RASTERIZATION

RAY TRACING

Q: What illumination effects are missing from the image on the left?

Monte Carlo Ray Tracing

- To develop a full-blown photorealistic ray tracer, will need to apply Monte Carlo integration to the rendering equation
- To determine color of each pixel, integrate incoming light
- What function are we integrating?
 - illumination along different paths of light
- What does a "sample" mean in this context?
 - each path we trace is a sample

$$L_o$$
 L_o
 L_o

$$L_{o}(\mathbf{p},\omega_{o}) = L_{e}(\mathbf{p},\omega_{o}) + \int_{\mathcal{H}^{2}} f_{r}(\mathbf{p},\omega_{i} \to \omega_{o}) L_{i}(\mathbf{p},\omega_{i}) \cos\theta \, d\omega_{i}$$

Monte Carlo Integration

- One key idea from discussion of numerical integration: take average of random samples
- Will flesh this idea out with some key concepts:
 - EXPECTED VALUE what value do we get on average?
 - VARIANCE what's the expected deviation from the average?
 - IMPORTANCE SAMPLING how do we (correctly) take more samples in more important regions?

$$\lim_{N\to\infty} \frac{|\Omega|}{N} \sum_{i=1}^{N} f(X_i) = \int_{\Omega} f(x) dx$$

Expected Value

Intuition: what value does a random variable take, on average?

- E.g., consider a fair coin where heads = 1, tails = 0
- Equal probability of heads & is tails (1/2 for both)
- **Expected value is then (1/2) \cdot 1 + (1/2) \cdot 0 = 1/2**

Properties of expectation:

$$E\left[\sum_{i} Y_{i}\right] = \sum_{i} E[Y_{i}]$$

$$E[aY] = aE[Y]$$

(Can you show these are true?)

Variance

Intuition: how far are our samples from the average, on average?

Definition

$$V[Y] = E[(Y - E[Y])^2]$$

Q: Which of these has higher variance?

Properties of variance:

$$V[Y] = E[Y^{2}] - E[Y]^{2}$$

$$V\left[\sum_{i=1}^{N} Y_{i}\right] = \sum_{i=1}^{N} V[Y_{i}]$$

$$V[aY] = a^2 V[Y]$$

(Can you show these are true?)

Law of Large Numbers

- Important fact: for any random variable, the average value of N trials approaches the expected value as we increase N
- Decrease in variance is always linear in N:

$$V\left[\frac{1}{N}\sum_{i=1}^{N}Y_{i}\right] = \frac{1}{N^{2}}\sum_{i=1}^{N}V[Y_{i}] = \frac{1}{N^{2}}NV[Y] = \frac{1}{N}V[Y]$$

Consider a coconut...

nCoconuts	estimate of π
1	4.000000
10	3.200000
100	3.240000
1000	3.112000
10000	3.163600
100000	3.139520
1000000	3.141764

Q: Why is the law of large numbers important for Monte Carlo ray tracing?

A: No matter how hard the integrals are (crazy lighting, geometry, materials, etc.), can always* get the right image by taking more samples.

Biasing

- So far, we've picked samples uniformly from the domain (every point is equally likely)
- Suppose we pick samples from some other distribution (more samples in one place than another)
- Q: Can we still use samples f(Xi) to get a (correct) estimate of our integral?
- A: Sure! Just weight contribution of each sample by how likely we were to pick it
- Q: Are we correct to divide by p? Or... should we multiply instead?
- A: Think about a simple example where we sample RED region 8x as often as BLUE region
 - average color over square should be purple
 - if we multiply, average will be TOO RED
 - if we divide, average will be JUST RIGHT

$$\int_{\Omega} f(x)dx \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{p(X_i)}$$

Next Time: Use biasing for Importance Sampling, along with other aspects of effective Monte Carlo Raytracing!

