The Rendering Equation

Computer Graphics
CMU 15-462/15-662

Recap, with units

Radiant Energy (total number of hits) Joules (J)

Radiant Flux

(total hits per second) Joules per second $(\mathrm{J} / \mathrm{s})=$ Watts (W)

Φ

Radiant Energy Density (hits per unit area)
 Joules per square meter ($\mathrm{J} / \mathrm{m}^{2}$)

Radiant Flux Density

 a.k.a. Irradiance(hits per second per unit area)
Watts per square meter (W/m²)

E

Recap: Radiance

- Radiance is the solid angle density of irradiance

$$
L(\mathrm{p}, \omega)=\lim _{\Delta \rightarrow 0} \frac{\Delta E_{\omega}(\mathrm{p})}{\Delta \omega}=\frac{\mathrm{d} E_{\omega}(\mathrm{p})}{\mathrm{d} \omega}\left[\frac{\mathrm{~W}}{\mathrm{~m}^{2} \mathrm{sr}}\right]
$$

where E_{ω} denotes that the differential surface area is oriented to face in the direction ω

In other words, radiance is energy along a ray defined by origin point p and direction ω

Energy per unit time per unit area per unit solid angle...!

Recap: What is Radiance?

- Radiance is a fundamental field quantity that characterizes the distribution of light in an environment
- Radiance is the quantity associated with a ray
- Rendering is all about computing radiance
- Radiance is constant along a ray (in a vacuum)
- A pinhole camera measures radiance

Surface Radiance

- Equivalently,

$$
L(\mathrm{p}, \omega)=\frac{\mathrm{d} E(\mathrm{p})}{\mathrm{d} \omega \cos \theta}=\frac{\mathrm{d}^{2} \Phi(\mathrm{p})}{\mathrm{d} A \mathrm{~d} \omega \cos \theta}
$$

- Previous slide described measuring radiance at a surface oriented in ray direction
- cos(theta) accounts for different surface orientation

Recap: What is radiance?

- Radiance at point pin direction N is radiant energy ("\#hits") per unit time, per solid angle, per unit area perpendicular to N .

Incident vs. Exitant Radiance

- Often need to distinguish between incident radiance and exitant radiance functions at a point on a surface

In general: $L_{i}(\mathbf{p}, \omega) \neq L_{o}(\mathbf{p}, \omega)$

Incident vs. Exitant Radiance

INCIDENT

EXITANT

In both cases: intensity of illumination is highly dependent on direction (not just location in space or moment in time).

Irradiance from the environment

Computing flux per unit area on surface, due to incoming light from all directions:

$$
E(\mathrm{p})=\int_{H^{2}} L_{i}(\mathrm{p}, \omega) \cos \theta d \omega
$$

(This is what we often want to do for rendering!)

Radiance and Irradiance

angle between ω and normal

Irradiance and effect of area lights

Generally "softer" appearance than point lights:

...and better model of real-world lights!

Question du jour:

How do we use all this stuff
 to generate images?

The Rendering Equation

- Core functionality of photorealistic renderer is to estimate radiance at a given point p, in a given direction ω_{0}
- Summed up by the rendering equation (Kajiya):
point of interest direction of interest $L_{\mathcal{H}}^{2}$

Key challenge: to evaluate incoming radiance, we have to compute yet another integral. I.e., rendering equation is recursive.

Recursive Raytracing

- Basic strategy: recursively evaluate rendering equation!

(This is why you're writing a ray tracer—rasterizer isn't enough!)

Renderer measures radiance along a ray

At each "bounce," want to measure radiance traveling in the direction opposite the ray direction.

Renderer measures radiance along a ray

Radiance entering camera in direction $\mathrm{d}=$ light from scene light sources that is reflected off surface in direction d.

How does reflection of light affect the outgoing radiance?

$$
L_{o}\left(\mathbf{p}, \omega_{0}\right)=\int_{\mathcal{H}^{2}} f_{r}\left(\mathbf{p}, \omega_{i}, \omega_{0}\right) \dot{\phi}_{i}\left(\mathbf{p}, \omega_{i}\right) \cos \theta \mathrm{d} \omega_{i}
$$

Reflection models

- Reflection is the process by which light incident on a surface interacts with the surface such that it leaves on the incident (same) side without change in frequency
- Choice of reflection function determines surface appearance

Some basic reflection functions

- Ideal specular

Perfect mirror

- Ideal diffuse

Uniform reflection in all directions

- Glossy specular

Majority of light distributed in reflection direction

- Retro-reflective

Reflects light back toward source

Diagrams illustrate how incoming light energy from
 given direction is reflected in various directions.

Materials: diffuse

Materials: plastic

Materials: red semi-gloss paint

Materials: Ford mystic lacquer paint

Materials: mirror

Materials: gold

Materials

Models of Scattering

- How can we model "scattering" of light?
- Many different things that could happen to a photon:
- bounces off surface
- transmitted through surface
- bounces around inside surface
- absorbed \& re-emitted

- What goes in must come out! (Total energy must be conserved)
- In general, can talk about "probability*" a particle arriving from a given direction is scattered in another direction

Hemispherical incident radiance

At any point on any surface in the scene, there's an incident radiance field that gives the directional distribution of illumination at the point

Diffuse reflection

Exitant radiance is the same in all directions

Incident radiance

Exitant radiance

Ideal specular reflection

Incident radiance is "flipped around normal" to get exitant radiance

Incident radiance

Exitant radiance

Plastic

Incident radiance gets "flipped and blurred"

Incident radiance

Exitant radiance

Copper

More blurring, plus coloration (nonuniform absorption across frequencies)

Incident radiance

Exitant radiance

Scattering off a surface: the BRDF

- "Bidirectional reflectance distribution function"
- Encodes behavior of light that "bounces off" surface
- Given incoming direction ω_{i}, how much light gets scattered in any given outgoing direction ω_{0} ?
- Describe as distribution $\mathrm{f}_{r}\left(\omega_{\mathrm{i}} \rightarrow \omega_{0}\right)$

$$
\begin{gathered}
f_{r}\left(\omega_{i} \rightarrow \omega_{0}\right) \geq 0 \\
\int_{\mathcal{H}^{2}} f_{r}\left(\omega_{i} \rightarrow \omega_{0}\right) \cos \theta d \omega_{i}(\leq) 1 \\
f_{r}\left(\omega_{i} \rightarrow \underset{\text { where did the rest of the energy go?! }}{ } \rightarrow \omega_{0}\right)=\underset{r}{\text { "Helmholtz reciprocity" }} f_{r}\left(\omega_{o} \rightarrow \omega_{i}\right)
\end{gathered}
$$

bv (Szymon Rusinkiewicz)

Q: Why should Helmholtz reciprocity hold? Think about little mirrors...

Radiometric description of BRDF

$$
f_{r}\left(\omega_{i} \rightarrow \omega_{0}\right)=\frac{d L_{0}\left(\omega_{0}\right)}{d E_{i}\left(\omega_{i}\right)}=\frac{d L_{0}\left(\omega_{0}\right)}{d L_{i}\left(\omega_{i}\right) \cos \theta_{i}}\left[\frac{1}{s r}\right]
$$

"For a given change in the incident irradiance, how much does the exitant radiance change?"

Example: Lambertian reflection

Assume light is equally likely to be reflected in each output

 direction

$$
f_{r}=c
$$

$$
\begin{aligned}
L_{o}\left(\omega_{o}\right) & =\int_{H^{2}} f_{r} L_{i}\left(\omega_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i} \\
& =f_{r} \int_{H^{2}} L_{i}\left(\omega_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i} \\
& =f_{r} E
\end{aligned}
$$

$$
\begin{aligned}
& \text { "albedo" (between } 0 \text { and } 1 \text {) } \\
& f_{r}=\frac{\rho}{\pi}
\end{aligned}
$$

Example: perfect specular reflection

[Zátonyi Sándor]

Geometry of specular reflection

Top-down view
(looking down on surface)

$$
\omega_{o}=-\omega_{i}+2\left(\omega_{i} \cdot \vec{n}\right) \vec{n}
$$

Specular reflection BRDF

$$
L_{o}\left(\theta_{o}, \phi_{o}\right)=L_{i}\left(\theta_{i}, \phi_{i}\right)
$$

Dirac delta

$$
f_{r}\left(\theta_{i}, \phi_{i} ; \theta_{o}, \phi_{o}\right)=\frac{\delta\left(\cos \theta_{i}-\cos \theta_{o}\right)}{\cos \theta_{i}} \delta\left(\phi_{i}-\phi_{o} \pm \pi\right)
$$

- Strictly speaking, f_{r} is a distribution, not a function
- In practice, no hope of finding reflected direction via random sampling; simply pick the reflected direction!

Transmission

In addition to reflecting off surface, light may be transmitted through surface.

Light refracts when it enters a new medium.

Snell's Law

Transmitted angle depends on relative index of refraction of material ray is leaving/entering.

Medium	η^{*}
Vacuum	1.0
Air (sea level)	1.00029
Water $\left(20^{\circ} \mathrm{C}\right)$	1.333
Glass	$1.5-1.6$
Diamond	2.42

* index of refraction is wavelength dependent (these are averages)
$\eta_{i} \sin \theta_{i}=\eta_{t} \sin \theta_{t}$

Law of refraction

$$
\eta_{i} \sin \theta_{i}=\eta_{t} \sin \theta_{t}
$$

$$
\begin{aligned}
\cos \theta_{t} & =\sqrt{1-\sin ^{2} \theta_{t}} \\
& =\sqrt{1-\left(\frac{\eta_{i}}{\eta_{t}}\right)^{2} \sin ^{2} \theta_{i}} \\
& =\sqrt{1-\left(\frac{\eta_{i}}{\eta_{t}}\right)^{2}\left(1-\cos ^{2} \theta_{i}\right)}
\end{aligned}
$$

Total internal reflection:
When light is moving from a more optically dense

$$
1-\left(\frac{\eta_{i}}{\eta_{t}}\right)^{2}\left(1-\cos ^{2} \theta_{i}\right)<0
$$ medium to a less optically dense medium: $\underline{\eta_{i}}$

$$
>1
$$

Light incident on boundary from large enough angle will not exit medium.

Optical manhole

Only small "cone" visible, due to total internal reflection (TIR)

Fresnel reflection

Many real materials: reflectance increases w/ viewing angle

[Lafortune et al. 1997]

Snell + Fresnel: Example

Without Fresnel (fixed reflectance/transmission)

Glass with Fresnel reflection/transmission

Anisotropic reflection

Reflection depends on azimuthal angle ϕ

Results from oriented microstructure of surface e.g., brushed metal

Translucent materials: Jade

Translucent materials: skin

Subsurface scattering

- Visual characteristics of many surfaces caused by light entering at different points than it exits
- Violates a fundamental assumption of the BRDF
- Need to generalize scattering model (BSSRDF)

[Jensen et al 2001]

[Donner et al 2008]

Scattering functions

- Generalization of BRDF; describes exitant radiance at one point due to incident differential irradiance at another point:

$$
S\left(x_{i}, \omega_{i}, x_{o}, \omega_{o}\right)
$$

- Generalization of reflection equation integrates over all points on the surface and all directions(!)

$$
L\left(x_{o}, \omega_{o}\right)=\int_{A} \int_{H^{2}} S\left(x_{i}, \omega_{i}, x_{o}, \omega_{o}\right) L_{i}\left(x_{i}, \omega_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i} \mathrm{~d} A
$$

BRDF

BSSRDF

Ok, so scattering is complicated!

What's a (relatively simple) algorithm that can capture all this behavior?

We start by returning to reflection without scattering (using the BRDF)

The reflection equation

$$
\begin{gathered}
\mathrm{d} L_{r}\left(\omega_{r}\right)=f_{r}\left(\omega_{i} \rightarrow \omega_{r}\right) \mathrm{d} L_{i}\left(\omega_{i}\right) \cos \theta_{i} \\
L_{r}\left(\mathrm{p}, \omega_{r}\right)=\int_{H^{2}} f_{r}\left(\mathrm{p}, \omega_{i} \rightarrow \omega_{r}\right) L_{i}\left(\mathrm{p}, \omega_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i}
\end{gathered}
$$

The reflection equation

- Key piece of overall rendering equation:

$$
L_{r}\left(\mathrm{p}, \omega_{r}\right)=\int_{H^{2}} f_{r}\left(\mathrm{p}, \omega_{i} \rightarrow \omega_{r}\right) L_{i}\left(\mathrm{p}, \omega_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i}
$$

- Approximate integral via Monte Carlo integration
- Generate directions ω_{j} sampled from some distribution $p(\omega)$

■ Compute the estimator

$$
\frac{1}{N} \sum_{j=1}^{N} \frac{f_{r}\left(\mathrm{p}, \omega_{j} \rightarrow \omega_{r}\right) L_{i}\left(\mathrm{p}, \omega_{j}\right) \cos \theta_{j}}{p\left(\omega_{j}\right)}
$$

■ To reduce variance $p(\omega)$ should match BRDF or incident radiance function

Estimating reflected light

```
// Assume:
// Ray ray hits surface at point hit_p
// Normal of surface at hit point is hit_n
Vector3D wr = -ray.d; // outgoing direction
Spectrum Lr = 0.;
for (int i = 0; i < N; ++i) {
    Vector3D wi; // sample incident light from this direction
    float pdf; // p(wi)
    generate_sample(brdf, &wi, &pdf); // generate sample according to brdf
    Spectrum f = brdf->f(wr, wi);
    Spectrum Li = trace_ray(Ray(hit_p, wi)); // compute incoming Li
    Lr += f * Li * fabs(dot(wi, hit_n)) / pdf;
}
return Lr / N;
```


The rendering equation

Now that we know how to handle reflection, how do we solve the full rendering equation? Have to determine incident radiance...

Key idea in (efficient) rendering: take advantage of special knowledge to break up integration into "easier" components.

Path tracing: overview

- Partition the rendering equation into direct and indirect illumination
- Use Monte Carlo to estimate each partition separately
- One sample for each
- Assumption: 100s of samples per pixel
- Terminate paths with Russian roulette

Direct illumination + reflection + transparency

Global illumination solution

What information are we missing?

- At the beginning, adopted "geometric optics" model of light
- Miss out on small-scale effects (e.g., diffraction/iridescence)
- Also large-scale effects (e.g., bending of light due to gravity)

Next Time: Monte Carlo integration

$$
\int_{\Omega} f(p) d p \approx \operatorname{vol}(\Omega) \frac{1}{N} \sum_{i=1}^{N} f\left(X_{i}\right)
$$

