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What is geometry?

ge•om•et•ry   /jēˈämətrē/ n. 
1. The study of shapes, sizes, patterns, and positions. 
2. The study of spaces where some quantity (lengths, 
    angles, etc.) can be measured.

“Earth” “measure”

Plato: “...the earth is in appearance like one of those balls which have leather coverings in twelve pieces...”
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How can we describe geometry?
IMPLICIT EXPLICIT

CURVATURE

LINGUISTIC
“unit circle”

SYMMETRIC
rotate

DYNAMICTOMOGRAPHIC

(constant density)

DISCRETE

n ➞ ∞
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Many ways to digitally encode geometry
EXPLICIT 
- point cloud 
- polygon mesh 
- subdivision, NURBS 
- ... 
IMPLICIT 
- level set 
- algebraic surface 
- L-systems 
- ... 
Each choice best suited to a different task/type of geometry
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“Implicit” Representations of Geometry
Points aren’t known directly, but satisfy some relationship 
E.g., unit sphere is all points such that x2+y2+z2=1 
More generally, f(x,y,z) = 0

-1

+1
f(x,y)

0

f = 0
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Many implicit representations in graphics
algebraic surfaces 
constructive solid geometry 
level set methods 
blobby surfaces 
fractals 
...

(Will see some of these a bit later.) 
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But first, let’s play a game: 

I’m thinking of an implicit surface f(x,y,z)=0.  

Find any point on it.
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Give up?

y

xz

( 1.23, 0, 0 )

My function was f(x,y,z) = x - 1.23 (a plane):

Observation: implicit surfaces make some tasks hard (like sampling)
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Let’s play another game. 

I have a new surface f(x,y,z) = x2 + y2 + z2 - 1.  

I want to see if a point is inside it.
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Check if this point is inside the unit sphere

xz

y

Implicit surfaces make other tasks easy (like inside/outside tests).

9/16 + 4/16 + 1/16  =  7/8

7/8 < 1

YES.

How about the point ( 3/4, 1/2, 1/4 )?

( 3/4, 1/2, 1/4 )



 CMU 15-462/662

“Explicit” Representations of Geometry
All points are given directly 
E.g., points on sphere are 

More generally:

(Might have a bunch of these maps, e.g., one per triangle!)
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Many explicit representations in graphics
triangle meshes 
polygon meshes 
subdivision surfaces 
NURBS 
point clouds 
...

(Will see some of these a bit later.) 
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But first, let’s play a game: 

I’ll give you an explicit surface. 

You give me some points on it.
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Sampling an explicit surface

y

xz

My surface is f( u, v ) = ( 1.23, u, v ).

Explicit surfaces make some tasks easy (like sampling).

Just plug in any values u, v!
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Let’s play another game. 

I have a new surface f(u,v). 

I want to see if a point is inside it.



How about the point (1.96, -0.39, 0.9)?
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Check if this point is inside the torus

xz

y

Explicit surfaces make other tasks hard (like inside/outside tests).

My surface is f(u,v) = ( (2+cos u)cos v, (2+cos u)sin v, sin u )

...NO!



 CMU 15-462/662

CONCLUSION: 
Some representations work better 

than others—depends on the task!
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Different representations will also be better 
suited to different types of geometry. 

Let’s take a look at some common 
representations used in computer graphics.



Surface is zero set of a polynomial in x, y, z 
Examples: 

What about more complicated shapes? 

Very hard to come up with polynomials!
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Algebraic Surfaces (Implicit)
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Constructive Solid Geometry (Implicit)
Build more complicated shapes via Boolean operations 
Basic operations: 

Then chain together expressions:

UNION

INTERSECTION

DIFFERENCE



Instead of Booleans, gradually blend surfaces together: 

Easier to understand in 2D:
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Blobby Surfaces (Implicit)

(Gaussian centered at p)

f=.5 f=.4 f=.3

(Sum of Gaussians centered at different points)
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Blending Distance Functions (Implicit)
A distance function gives distance to closest point on object 
Can blend any two distance functions d1, d2: 

Similar strategy to points, though many possibilities.  E.g., 

Appearance depends on how we combine functions 

Q: How do we implement a Boolean union of , ? 

A: Just take the minimum: 

d1(x) d2(x)
f(x) = min(d1(x), d2(x))
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Scene of pure distance functions (not easy!)

see http://iquilezles.org/

http://iquilezles.org/
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Level Set Methods (Implicit)
Implicit surfaces have some nice features (e.g., merging/splitting) 
But, hard to describe complex shapes in closed form 
Alternative: store a grid of values approximating function
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Surface is found where interpolated values equal zero 
Provides much more explicit control over shape (like a texture) 
Unlike closed-form expressions, run into problems of aliasing!
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Level Sets from Medical Data (CT, MRI, etc.)
Level sets encode, e.g., constant tissue density
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Level Sets in Physical Simulation
Level set encodes distance to air-liquid boundary:

see http://physbam.stanford.edu

http://iquilezles.org/www/material/nvscene2008/nvscene2008.htm
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Level Set Storage
Drawback: storage for 2D surface is now O(n3) 
Can reduce cost by storing only a narrow band around surface:
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Fractals (Implicit)
No precise definition; exhibit self-similarity, detail at all scales 
New “language” for describing natural phenomena 
Hard to control shape!
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Mandelbrot Set - Definition
For each point  in the plane: 

- double the angle 
- square the magnitude 

- add the original point  

- repeat 
Complex version: 

- Replace  with  

- repeat

c

c

z z2 + c

If magnitude remains bounded (never goes to ∞), it’s in the Mandelbrot set.
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Mandelbrot Set - Examples

starting point
(converges)

(periodic)

(diverges)



 CMU 15-462/662

Mandelbrot Set - Zooming In

(Colored according to how quickly each point diverges/converges.)
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Iterated Function Systems

Scott Draves (CMU alumn) - see http://electricsheep.org

http://electricsheep.org
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Implicit Representations - Pros & Cons
Pros: 
- description can be very compact (e.g., a polynomial) 
- easy to determine if a point is in our shape (just plug it in!) 
- other queries may also be easy (e.g., distance to surface) 
- for simple shapes, exact description/no sampling error 
- easy to handle changes in topology (e.g., fluid) 
Cons: 
- expensive to find all points in the shape (e.g., for drawing) 
- very difficult to model complex shapes
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What about explicit representations?
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Point Cloud (Explicit)
Easiest representation: list of points (x,y,z) 
Often augmented with normals 
Easily represent any kind of geometry 
Easy to draw dense cloud (>>1 point/pixel) 
Hard to interpolate undersampled regions 
Hard to do processing / simulation / …
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Polygon Mesh (Explicit)
Store vertices and polygons (most often triangles or quads) 
Easier to do processing/simulation, adaptive sampling 
More complicated data structures 
Irregular neighborhoods

(Much more about polygon meshes in upcoming lectures!)
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Triangle Mesh (Explicit)
Store vertices as triples of coordinates (x,y,z) 
Store triangles as triples of indices (i,j,k) 
E.g., tetrahedron:

0

1

2

3

    x  y  z
0: -1 -1 -1
1:  1 -1  1
2:  1  1 -1
3: -1  1  1

VERTICES
i  j  k
0  2  1
0  3  2
3  0  1
3  1  2

TRIANGLES

Use barycentric interpolation to define points inside triangles:

(1,0,0)

(0,1,0)

(0,0,1)
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Recall: Linear Interpolation (1D)
▪ Interpolate values using linear interpolation; in 1D:

▪ Can think of this as a linear combination of two functions:

▪ Why limit ourselves to linear basis functions? 

▪ Can we get more interesting geometry with other bases?
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Bernstein Basis
Linear interpolation essentially uses 1st-order polynomials 
Provide more flexibility by using higher-order polynomials 
Instead of usual basis (1, x, x2, x3, ...), use Bernstein basis:

“n choose k”

k=0,…,n

degree
0≤x≤1

1
2

1

1
2

1



A Bézier curve is a curve expressed in the Bernstein basis:
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Bézier Curves (Explicit)

control points

For n=1, just get a line segment! 
For n=3, get “cubic Bézier”: 
Important features: 
1. interpolates endpoints 
2. tangent to end segments 
3. contained in convex hull (nice for 

rasterization)
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Just keep going…?
What if we want an even more interesting curve? 
High-degree Bernstein polynomials don’t interpolate well:

Very hard to control!
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Piecewise Bézier Curves (Explicit)
Alternative idea: piece together many Bézier curves 
Widely-used technique (Illustrator, fonts, SVG, etc.)

Formally, piecewise Bézier curve:
piecewise Bézier

single Bézier
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Bézier Curves — tangent continuity
To get “seamless” curves, need points and tangents to line up:

Ok, but how? 
Each curve is cubic: u3p0 + 3u2(1-u)p1 + 3u(1-u)2p2 + (1-u)3p3 

Want endpoints of each segment to meet 

Want tangents at endpoints to meet 
Q: How many constraints vs. degrees of freedom? 
Q: Could you do this with quadratic Bézier?  Linear Bézier?

NO
NO

YESp0

p1

p2

p3
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Tensor Product
Can use a pair of curves to get a surface 
Value at any point (u,v) given by product of a curve f at u and 
a curve g at v (sometimes called the “tensor product”):

u
v
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Bézier Patches
Bézier patch is sum of (tensor) products of Bernstein bases

1
2

1

1
2

1
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Bézier Surface
Just as we connected Bézier curves, can connect Bézier 
patches to get a surface:

Q: Can we always get tangent continuity? 
     (Think: how many constraints?  How many degrees of freedom?)

Very easy to draw: just dice each patch into regular (u,v) grid!
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Notice anything fishy 
about the last picture?



 CMU 15-462/662

Bézier Patches are Too Simple
Notice that exactly four patches 
meet around every vertex!

In practice, far too 
constrained.

To make interesting 
shapes (with good 
continuity), we need 
patches that allow 
more interesting 
connectivity...



 CMU 15-462/662

Spline patch schemes
There are many alternatives! 
NURBS, Gregory, Pm, polar… 
Tradeoffs: 
- degrees of freedom 
- continuity 
- difficulty of editing 
- cost of evaluation 
- generality 
- … 
As usual: pick the right tool for the 
job!
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Rational B-Splines (Explicit)
Bézier can’t exactly represent conics—not even the circle! 
Solution: interpolate in homogeneous coordinates, then 
project back to the plane:

Result is called a rational B-spline.
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NURBS (Explicit)
(N)on-(U)niform (R)ational (B)-(S)pline 
- knots at arbitrary locations (non-uniform) 
- expressed in homogeneous coordinates (rational) 
- piecewise polynomial curve (B-Spline) 
 Homogeneous coordinate w controls “strength” of a vertex:

w=2.5

w=1
w=.25



 CMU 15-462/662

NURBS Surface (Explicit)
How do we go from curves to surfaces? 
Use tensor product of NURBS curves to get a patch:

Multiple NURBS patches form a surface

Pros: easy to evaluate, exact conics, high degree of continuity 
Cons: Hard to piece together patches / hard to edit (many DOFs)

patch

surface



 CMU 15-462/662

Subdivision
Alternative starting point for curves/surfaces: subdivision 

Start with “control curve” 

Repeatedly split, take weighted average to get new positions 

For careful choice of averaging rule, approaches nice limit curve 

- Often exact same curve as well-known spline schemes!

Q: Is subdivision an explicit or implicit representation?



One possible scheme: Lane-Riesenfeld 

- insert midpoint of each edge 

- use row  of Pascal’s triangle 
(normalized to 1) as weights for 
neighbors 

- e.g., , get weights 
 

- limit is B-spline of degree 

k

k = 2
(1/4,1/2,1/4)

k + 1

Subdivision—Example 1

1
1 1

31 13
1 2

k = 3 :

k = 2 :

k = 1 :

k = 0 :

iteration 1 iteration 2 iteration 3 limit curve

1/2

1/4
1/4
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Subdivision Surfaces (Explicit)
Start with coarse polygon mesh (“control cage”) 
Subdivide each element 
Update vertices via local averaging 
Many possible rules: 
- Catmull-Clark (quads) 
- Loop (triangles) 
- ... 
Common issues: 
- interpolating or approximating? 
- continuity at vertices? 
Easier than splines for modeling; harder to evaluate pointwise 
Widely used in practice (2019 Academy Awards!)
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Subdivision in Action (Pixar’s “Geri’s Game”)

see: de Rose et al, “Subdivision Surfaces in Character Animation”

https://vimeo.com/168651722
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Many ways to digitally encode geometry
EXPLICIT 
- point cloud 
- polygon mesh 
- subdivision, NURBS 
- ... 
IMPLICIT 
- level set 
- blobbies 
- CSG, fractals… 
- ... 
Each choice best suited to a different task/type of geometry
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Up Next: Spatial Acceleration Data Structures

Speeding up geometric queries for our explicit data structures
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Midterms


