
Computer Graphics
CMU 15-462/15-662

Geometry Processing

 CMU 15-462/662

Last time — Adjacency List (Array-like)
Store triples of coordinates (x,y,z), tuples of indices
E.g., tetrahedron:

0

1

2

3

 x y z
0: -1 -1 -1
1: 1 -1 1
2: 1 1 -1
3: -1 1 1

VERTICES
i j k
0 2 1
0 3 2
3 0 1
3 1 2

POLYGONS

Q: How do we find all the polygons touching vertex 2?
Ok, now consider a more complicated mesh:

Very expensive to find the neighboring polygons! (What’s the cost?)

~1 billion polygons

 CMU 15-462/662

Last time — Incidence Matrices
If we want to know who our neighbors are, why not just store a list of
neighbors?

Can encode all neighbor information via incidence matrices

E.g., tetrahedron:

e2

v0

v1

v2

v3

e0

e1

e3
e4

f0

f3

f1

f2

e5

 v0 v1 v2 v3
e0 1 1 0 0
e1 0 1 1 0
e2 1 0 1 0
e3 1 0 0 1
e4 0 0 1 1
e5 0 1 0 1

VERTEX⬌EDGE
 e0 e1 e2 e3 e4 e5
f0 1 0 0 1 0 1
f1 0 1 0 0 1 1
f2 1 1 1 0 0 0
f3 0 0 1 1 1 0

EDGE⬌FACE

1 means “touches”; 0 means “does not touch”

Instead of storing lots of 0’s, use sparse matrices

Still large storage cost, but finding neighbors is now O(1)

Hard to change connectivity, since we used fixed indices

Bonus feature: mesh does not have to be manifold

Store some information about neighbors
Don’t need an exhaustive list; just a few key pointers
Key idea: two halfedges act as “glue” between mesh
elements:

Each vertex, edge face points to just one of its halfedges.
 CMU 15-462/662

Last time — Halfedge Data Structure

Ha
lf
ed
ge

twin

ed
ge

next

vertex

face

struct Halfedge
{
 Halfedge* twin;
 Halfedge* next;
 Vertex* vertex;
 Edge* edge;
 Face* face;
};

struct Vertex
{
 Halfedge* halfedge;
};

halfedge

vertex

struct Edge
{
 Halfedge* halfedge;
};ha

lf
ed
ge

ed
ge

struct Face
{
 Halfedge* halfedge;
};

ha
lf
ed
ge

Face

 CMU 15-462/662

Comparison of Polygon Mesh Data Strucutres

Adjacency List
Incidence
Matrices Halfedge Mesh

constant-time
neighborhood access?

NO YES YES

easy to add/remove
mesh elements?

NO NO YES

nonmanifold
geometry?

YES YES NO

Conclusion: pick the right data structure for the job!

 CMU 15-462/662

Ok, but what can we actually do with our
fancy new data structures?

 CMU 15-462/662

Geometry Processing: Reconstruction
Given samples of geometry, reconstruct surface
What are “samples”? Many possibilities:
- points, points & normals, ...
- image pairs / sets (multi-view stereo)
- line density integrals (MRI/CT scans)
How do you get a surface? Many techniques:
- silhouette-based (visual hull)
- Voronoi-based (e.g., power crust)
- PDE-based (e.g., Poisson reconstruction)
- Radon transform / isosurfacing (marching cubes)

 CMU 15-462/662

Geometry Processing: Upsampling
Increase resolution via interpolation
Images: e.g., bilinear, bicubic interpolation
Polygon meshes:
- subdivision
- bilateral upsampling
- ...

 CMU 15-462/662

Decrease resolution; try to preserve shape/appearance
Images: nearest-neighbor, bilinear, bicubic interpolation
Point clouds: subsampling (just take fewer points!)
Polygon meshes:
- iterative decimation, variational shape approximation, ...

Geometry Processing: Downsampling

 CMU 15-462/662

Geometry Processing: Resampling
Modify sample distribution to improve quality
Images: not an issue! (Pixels always stored on a regular grid)
Meshes: shape of polygons is extremely important!
- different notion of “quality” depending on task
- e.g., visualization vs. solving equations

 CMU 15-462/662

Geometry Processing: Filtering
Remove noise, or emphasize important features (e.g., edges)
Images: blurring, bilateral filter, edge detection, ...
Polygon meshes:
- curvature flow
- bilateral filter
- spectral filter

 CMU 15-462/662

Geometry Processing: Compression
Reduce storage size by eliminating redundant data/
approximating unimportant data
Images:
- run-length, Huffman coding - lossless
- cosine/wavelet (JPEG/MPEG) - lossy
Polygon meshes:
- compress geometry and connectivity
- many techniques (lossy & lossless)

840kb840kb

8kb8kb

 CMU 15-462/662

Geometry Processing: Shape Analysis
Identify/understand important semantic features
Images: computer vision, segmentation, face detection, ...
Polygon meshes:
- segmentation, correspondence, symmetry detection, ...

 CMU 15-462/662

Subdivision Modeling
Common modeling paradigm in modern 3D tools:
- Coarse “control cage”
- Perform local operations to control/edit shape
- Global subdivision process determines final surface

 CMU 15-462/662

Subdivision Modeling—Local Operations
For general polygon meshes, we can dream up lots of local
mesh operations that might be useful for modeling:

…and many, many more!

 CMU 15-462/662

A2.0 Diagrams

 CMU 15-462/662

A2.0 Diagrams

 CMU 15-462/662

What is a valid mesh?

 CMU 15-462/662

Mesh Processing:

“If the surface resulting from an
operation can be represented by
some valid mesh, then run the

operation and produce a valid mesh
representing the result.”

 CMU 15-462/662

A few things to consider —

 CMU 15-462/662

Remeshing as resampling
Remember our discussion of aliasing
Bad sampling makes signal appear different than it really is
E.g., undersampled curve looks flat
Geometry is no different!
- undersampling destroys features
- oversampling bad for performance

 CMU 15-462/662

What makes a “good” mesh?
One idea: good approximation of original shape!
Keep only elements that contribute information about shape
Add additional information where, e.g., curvature is large

 CMU 15-462/662

Approximation of position is not enough!
Just because the vertices of a mesh are close to the surface it
approximates does not mean it’s a good approximation!
Can still have wrong appearance, wrong area, wrong…
Need to consider other factors*, e.g., close approximation of
surface normals

vertices exactly on smooth cylinder

smooth cylinder

flattening of smooth cylinder & meshes

true area

*See Hildebrandt et al (2007), “On the convergence of metric and geometric properties of polyhedral surfaces”

 CMU 15-462/662

What else makes a “good” triangle mesh?
Another rule of thumb: triangle

“GOOD” “BAD”

E.g., all angles close to 60 degrees
More sophisticated condition: Delaunay (empty circumcircles)
– often helps with numerical accuracy/stability
– coincides with shockingly many other desirable properties

(maximizes minimum angle, provides smoothest
interpolation, guarantees maximum principle…)

Tradeoffs w/ good geometric approximation*
–e.g., long & skinny might be “more efficient”

*see Shewchuk, “What is a Good Linear Element”

DELAUNAY

pronunciation:

 CMU 15-462/662

degree 20degree 6 subdivide

What else constitutes a “good” mesh?
Another rule of thumb: regular vertex degree
Degree 6 for triangle mesh, 4 for quad mesh

“GOOD” “OK” “BAD”

subdivide

REGULAR

IRREGULAR

Why? Better polygon shape; more regular computation; smoother subdivision:

Fact: in general, can’t have regular vertex degree everywhere!

 CMU 15-462/662

Upsampling via Subdivision

 CMU 15-462/662

Upsampling via Subdivision

Repeatedly split each element into smaller pieces
Replace vertex positions with weighted average of neighbors
Main considerations:
- interpolating vs. approximating

- limit surface continuity (, , ...)

- behavior at irregular vertices
Many options:
- Quad: Catmull-Clark
- Triangle: Loop, Butterfly, Sqrt(3)

C1 C2

 CMU 15-462/662

Catmull-Clark Subdivision
Step 0: split every polygon (any # of sides) into quadrilaterals:

New vertex positions are weighted combination of old ones:
STEP 3: Vertex coords

New vertex coords: – vertex degree
– average of face coords around vertex

– average of edge coords around vertex
– original vertex position

STEP 1: Face coords STEP 2: Edge coords

 CMU 15-462/662

Catmull-Clark on quad mesh

smooth
reflection lines

smooth
caustics

few irregular vertices
⟹ smoothly-varying surface normals

 CMU 15-462/662

Catmull-Clark on triangle mesh

jagged
reflection lines

jagged
caustics

many irregular vertices
⟹ erratic surface normals

 CMU 15-462/662

Loop Subdivision
Alternative subdivision scheme for triangle meshes

Curvature is continuous away from irregular vertices (“ ”)

Algorithm:
- Split each triangle into four
- Assign new vertex positions according to weights:

C2

u u

u u

u u1-nu
n: vertex degree
u: 3/16 if n=3, 3/(8n) otherwise

1/8

1/8

3/83/8

 CMU 15-462/662

Loop Subdivision via Edge Operations
First, split edges of original mesh in any order:

split

flip

Images cribbed from Denis Zorin.

(Don’t forget to update vertex positions!)

Next, flip new edges that touch a new & old vertex:

 CMU 15-462/662

Downsampling
(i.e., what if we want fewer triangles?)

 CMU 15-462/662

Simplification via Edge Collapse
One popular scheme: iteratively collapse edges
Greedy algorithm:
- assign each edge a cost
- collapse edge with least cost
- repeat until target number of elements is reached
Particularly effective cost function: quadric error metric*

*invented at CMU (Garland & Heckbert 1997)

30,000 3,000 300

30
#triangles:

dist2(x)

Q = 1

Q = 1
8

Q = 1
2

Q = 0

Quadric Error Metric
Approximate distance to a collection of triangles

Q: Distance to plane w/ normal passing through point ?

A:

Quadric error is then sum of squared point-to-plane distances:

n p
dist(x) = ⟨n, x⟩ − ⟨n, p⟩ = ⟨n, x − p⟩

n1

n2n3
n4

n5

p

p

x
n

⟨n, x − p⟩

Q(x) :=
k

∑
i=1

⟨ni, x − p⟩2

Quadric Error - Homogeneous Coordinates
Suppose in coordinates we have

- a query point

- a normal

- an offset
In homogeneous coordinates, let

-

-

Signed distance to plane is then just

Squared distance is

Matrix encodes squared distance to plane

x = (x, y, z)
n = (a, b, c)
d := − ⟨n, p⟩

u := (x, y, z,1)
v := (a, b, c, d)

⟨u, v⟩ = ax + by + cz + d
⟨u, v⟩2 = u$(vv$)u =: u$Ku

K = vvT

Key idea: sum of matrices ⟺ distance to union of planesK
u$K1u + u$K2u = u$(K1 + K2)u

p

x
n

m

 CMU 15-462/662

Quadric Error of Edge Collapse
How much does it cost to collapse an edge ?

Idea: compute midpoint , measure error

Error becomes “score” for , determining priority

eij

m Q(m) = m$(Ki + Kj)m
eij

collapse

Better idea: find point that minimizes error!

Ok, but how do we minimize quadric error?

x

eiji j

m

 CMU 15-462/662

Review: Minimizing a Quadratic Function
Suppose you have a function

Q: What does the graph of this function look like?
Could also look like this!
Q: How do we find the minimum?
A: Find where the function looks “flat” if we zoom
in really close

I.e., find point where 1st derivative vanishes:

f(x) = ax2 + bx + c

x

x

f(x)

x

f(x)

(What does describe for the second function?)x

 CMU 15-462/662

Minimizing Quadratic Polynomial
Not much harder to minimize a quadratic polynomial in variables
Can always write in terms of a symmetric matrix

E.g., in 2D:

n
A

f(x, y) = ax2 + bxy + cy2 + dx + ey + g

Q: How do we find a critical point (min/max/saddle)?
A: Set derivative to zero!

(will have this same form for any)n

(Can you show this is true, at least in 2D?)

f(x, y) = x$Ax + u$x + g

2Ax + u = 0
x = − 1

2 A−1u x = − b/2a

(compare with
our 1D solution)

 CMU 15-462/662

Positive Definite Quadratic Form
Just like our 1D parabola, critical point is not always a min!
Q: In 2D, 3D, nD, when do we get a minimum?
A: When matrix A is positive-definite:

1D: Must have . In other words: is positive!
2D: Graph of function looks like a “bowl”:

xax = ax2 > 0 a

Positive-definiteness extremely important in computer graphics:
means we can find minimizers by solving linear equations. Starting
point for many algorithms (geometry processing, simulation, ...)

positive definite positive semidefinite indefinite

 CMU 15-462/662

Minimizing Quadric Error
Find “best” point for edge collapse by minimizing quadratic form

Now we have a quadratic polynomial in the unknown position
Can minimize as before:

x ∈ ℝ3

Q: Why should be positive-definite?B

Already know fourth (homogeneous) coordinate for a point is 1
So, break up our quadratic function into two pieces:

min
u∈ℝ4

uTKu

= x$Bx + 2w$x + d2

2Bx + 2w = 0 x = − B−1w⟺

 CMU 15-462/662

Quadric Error Simplification: Final Algorithm
Compute for each triangle (squared distance to plane)
Set at each vertex to sum of s from incident triangles

For each edge :

- set

- find point minimizing error, set cost to

Until we reach target number of triangles:

- collapse edge with smallest cost to optimal point

- set quadric at new vertex to

- update cost of edges touching new vertex
More details in assignment writeup!

K
Ki K

eij

Kij = Ki + Kj

x Kij(x)

eij x
Kij

Ki

Kij

K

x

 CMU 15-462/662

Quadric Simplification—Flipped Triangles
Depending on where we put the new vertex, one of the new triangles
might be “flipped” (normal points in instead of out):

Easy solution: for each triangle touching collapsed vertex , consider
normals and (where is other triangle containing edge)

If is negative, don’t collapse this edge!

ijk i
Nijk Nkjl kjl jk

⟨Nijk, Nkjl⟩

l

kj

i
❌

i
j

k
l

✔

 CMU 15-462/662

What if we’re happy with the number of
triangles, but want to improve quality?

 CMU 15-462/662

Already have a good tool: edge flips!

If , flip it!α + β > π

How do we make a mesh “more Delaunay”?

FACT: in 2D, flipping edges eventually yields Delaunay mesh

Theory: worst case ; doesn’t always work for surfaces in 3D

Practice: simple, effective way to improve mesh quality

O(n2)

 CMU 15-462/662

Same tool: edge flips!
If total deviation from degree-6 gets smaller, flip it!

Alternatively: how do we improve degree?

flip

FACT: average degree approaches 6 as number of elements increases
Iterative edge flipping acts like “discrete diffusion” of degree
No (known) guarantees; works well in practice

i
j

k

l

total deviation: |di − 6 | + |dj − 6 | + |dk − 6 | + |dl − 6 |

 CMU 15-462/662

How do we make a triangles “more round”?
Delaunay doesn’t guarantee triangles are “round” (angles near 60°)
Can often improve shape by centering vertices:

average

Simple version of technique called “Laplacian smoothing”
On surface: move only in tangent direction
How? Remove normal component from update vector

 CMU 15-462/662

Isotropic Remeshing Algorithm
Try to make triangles uniform shape & size
Repeat four steps:
- Split any edge over 4/3rds mean edge length
- Collapse any edge less than 4/5ths mean edge length
- Flip edges to improve vertex degree
- Center vertices tangentially

Based on: Botsch & Kobbelt, “A Remeshing Approach to Multiresolution Modeling”

 CMU 15-462/662

What can go wrong when
you resample a signal?

 CMU 15-462/662

Danger of Resampling

downsample

upsa
mple

downsample
upsa

mple

downsample

upsa
mple

Q: What happens if we repeatedly resample an image?

A: Signal quality degrades!

 CMU 15-462/662

Danger of Resampling

downsample upsample

…

Q: What happens if we repeatedly resample a mesh?

A: Signal also degrades!

 CMU 15-462/662

But wait: we have the original signal (mesh).
Why not just project each new sample point
onto the closest point of the original mesh?

 CMU 15-462/662

Next Time: Geometric Queries
Q: Given a point, in space, how do we find the closest point on
a surface? Are we inside or outside the surface? How do we
find intersection of two triangles? Etc.
Do implicit/explicit representations make such tasks easier?
What’s the cost of the naïve algorithm, and how do we
accelerate such queries for large meshes?
So many questions!

p

???

