Geometry Processing

Computer Graphics
 CMU 15-462/15-662

Last time — Adjacency List (Array-like)

- Store triples of coordinates ($\mathrm{x}, \mathrm{y}, \mathrm{z}$), tuples of indices
- E.g., tetrahedron:

	VERTICES				POLYGONS		
	\mathbf{x}	\mathbf{y}	\mathbf{z}	\mathbf{i}		\mathbf{j}	
$\mathbf{0}$	\mathbf{k}						
$\mathbf{0}$	-1	-1	-1	0	2	1	
$\mathbf{1 :}$	1	-1	1	0	3	2	
$\mathbf{2 :}$	1	1	-1	3	0	1	
$\mathbf{3}:$	-1	1	1	3	1	2	

- Q: How do we find all the polygons touching vertex 2?
- Ok, now consider a more complicated mesh:

Very expensive to find the neighboring polygons! (What's the cost?)

Last time — Incidence Matrices

- If we want to know who our neighbors are, why not just store a list of neighbors?
- Can encode all neighbor information via incidence matrices
- E.g., tetrahedron:

VERTEX \Leftrightarrow EDGE					EDGE \Leftrightarrow FACE						
	vo	v1	v2	v3		e0	e1	e2	e3	e4	5
e0	1	1	0	0	f0	1	0	0	1	0	1
e1	0	1	1	0	f1	0	1	0	0	1	1
e2	1	0	1	0	f2	1	1	1	0	0	0
e3	1	0	0	1	f3	0	0	1	1	1	0
e4	0	0	1	1							
e5	0	1	0	1							

- 1 means"touches"; 0 means "does not touch"
- Instead of storing lots of 0's, use sparse matrices
- Still large storage cost, but finding neighbors is now $\mathbf{0 (1)}$

- Hard to change connectivity, since we used fixed indices
- Bonus feature: mesh does not have to be manifold

Last time — Halfedge Data Structure

- Store some information about neighbors
- Don't need an exhaustive list; just a few key pointers

■ Key idea: two halfedges act as "glue" between mesh

Each vertex, edge face points to just one of its halfedges.

Comparison of Polygon Mesh Data Strucutres

	Adjacency List	Incidence Matrices	Halfedge Mesh
constant-time neighborhood access?	NO	YES	YES
easy to add/remove mesh elements?	NO	NO	YES
nonmanifold geometry?	YES	YES	NO

Conclusion: pick the right data structure for the job!

Ok, but what can we actually do with our fancy new data structures?

Geometry Processing: Reconstruction

- Given samples of geometry, reconstruct surface
- What are "samples"? Many possibilities:
- points, points \& normals, ...
- image pairs / sets (multi-view stereo)
- line density integrals (MRI/CT scans)

- How do you get a surface? Many techniques:
- silhouette-based (visual hull)
- Voronoi-based (e.g., power crust)
- PDE-based (e.g., Poisson reconstruction)
- Radon transform / isosurfacing (marching cubes)

Geometry Processing: Upsampling

- Increase resolution via interpolation

■ Images: e.g., bilinear, bicubic interpolation

- Polygon meshes:
- subdivision
- bilateral upsampling
- ...

Geometry Processing: Downsampling

- Decrease resolution; try to preserve shape/appearance
- Images: nearest-neighbor, bilinear, bicubic interpolation
- Point clouds: subsampling (just take fewer points!)
- Polygon meshes:
- iterative decimation, variational shape approximation, ...

Geometry Processing: Resampling

- Modify sample distribution to improve quality
- Images: not an issue! (Pixels always stored on a regular grid)
- Meshes: shape of polygons is extremely important!
- different notion of "quality" depending on task
- e.g., visualization vs. solving equations

Geometry Processing: Filtering

- Remove noise, or emphasize important features (e.g., edges)
- Images: blurring, bilateral filter, edge detection, ...
- Polygon meshes:
- curvature flow
- bilateral filter
- spectral filter

Geometry Processing: Compression

- Reduce storage size by eliminating redundant data/ approximating unimportant data
- Images:
- run-length, Huffman coding - lossless
- cosine/wavelet (JPEG/MPEG) - lossy
- Polygon meshes:
- compress geometry and connectivity
- many techniques (lossy \& lossless)

Geometry Processing: Shape Analysis

- Identify/understand important semantic features
- Images: computer vision, segmentation, face detection, ...
- Polygon meshes:
- segmentation, correspondence, symmetry detection, ...

Intrinsic symmetry

Subdivision Modeling

- Common modeling paradigm in modern 3D tools:
- Coarse"control cage"
- Perform local operations to control/edit shape
- Global subdivision process determines final surface

Subdivision Modeling—Local Operations

- For general polygon meshes, we can dream up lots of local mesh operations that might be useful for modeling:

...and many, many more!

A2.0 Diagrams

A2L1 Flip Edge

Given a non-boundary edge, rotate it to the vertices one step counterclockwise from its current endpoints.

A2L2 Split Edge

Given an edge, add a vertex in the middle and s edge from the newly-added vertex to the next-in-ccw-order-from-the-edge vertex in the face.

Split edge does not subdivide boundary faces.

A2.0 Diagrams

A2L3 Collapse Edge

Merge the two endpoints of an edge at the midpoint of the edge. This will combine all the edges to both endpoints into a new vertex (be careful to not have two edges overlapping).

If collapsing the edge would result in an invalid mesh, you should instead do nothing and return std: :nullopt. Otherwise returns the newly collapsed vertex.

Examples of edge cases that we will be testing would be

What is a valid mesh?

A Molfedge_Mesh structure is a sea of pointers. It is surprisingly easy to tangle these pointers into a mess that fails to represent a manifold mesh (or, really, a consistent mesh at all). In order to provide guidence on what constitutes a reasonable setting for a mesh, we define a valid mesh as one for which the following properties hold:

1. The mesh is self-contained. All pointers are to clements in the vertices, edges, faces, or halfedges lists.
 these are exnetly the hafodges with h-sedge equal to o .
2. Faces correspond to cycles of halfedges. That is, for every face $t, t \rightarrow$ halfespe (->next) n is a cycle of at least three halfedges, and these are exactly the halledges with h-> fase equal to f.
 haifedges, and these are execty the halledges with $h \rightarrow$ vertex equal to v.
S. Vertices are not orphaned, nor is the surface adjacent to them hourglass-shaped. That is, vertices are adjacent to at least one nonboundary face and st most one boundary face.
3. Edges not crphaned. That is, edges are adjacent to at least one non-boundary face.
4. Faces are simple. That is, faces touch each vertex and edge at most once.

These properties are checked by the Hiblfedge Mesh: :valifentet) function, which returns nullopt if the mesh is valid or an element reference and an explanstory message if something is wrong with the mesh.

Mesh Processing:

"If the surface resulting from an
operation can be represented by some valid mesh, then run the operation and produce a valid mesh representing the result."

A few things to consider -

Remeshing as resampling

- Remember our discussion of aliasing
- Bad sampling makes signal appear different than it really is
- E.g., undersampled curve looks flat
- Geometry is no different!
- undersampling destroys features

- oversampling bad for performance

What makes a "good" mesh?

- One idea: good approximation of original shape!

■ Keep only elements that contribute information about shape
■ Add additional information where, e.g., curvature is large

Approximation of position is not enough!

- Just because the vertices of a mesh are close to the surface it approximates does not mean it's a good approximation!
- Can still have wrong appearance, wrong area, wrong... Need to consider other factors*, e.g., close approximation of surface normals
vertices exactly on smooth cylinder

smooth cylinder

flattening of smooth cylinder \& meshes

What else makes a "good" triangle mesh?

- Another rule of thumb: triangle

- E.g., all angles close to 60 degrees
- More sophisticated condition: Delaunay (empty circumcircles)
- often helps with numerical accuracy/stability
- coincides with shockingly many other desirable properties (maximizes minimum angle, provides smoothest interpolation, guarantees maximum principle...)
- Tradeoffs w/ good geometric approximation* -e.g., long \& skinny might be "more efficient"

What else constitutes a "good" mesh?

- Another rule of thumb: regular vertex degree

Why? Better polygon shape; more regular computation; smoother subdivision:

Upsampling via Subdivision

Upsampling via Subdivision

- Repeatedly split each element into smaller pieces

■ Replace vertex positions with weighted average of neighbors
■ Main considerations:

- interpolating vs. approximating

- limit surface continuity (C^{1}, C^{2}, \ldots)
- behavior at irregular vertices

- Many options:
- Quad: Catmull-Clark
- Triangle: Loop, Butterfly, Sqrt(3)

Catmull-Clark Subdivision

■ Step 0: split every polygon (any \# of sides) into quadrilaterals:

- New vertex positions are weighted combination of old ones:

New vertex coords:
$\underline{Q+2 R+(n-3) S}$
n

STEP 2: Edge coords

n - vertex degree
Q - average of face coords around vertex
R - average of edge coords around vertex
S - original vertex position

STEP 3: Vertex coords

Catmull-Clark on quad mesh

few irregular vertices
\Longrightarrow smoothly-varying surface normals

smooth reflection lines

smooth caustics

Catmull-Clark on triangle mesh

many irregular vertices
\Longrightarrow erratic surface normals

jagged reflection lines
jagged caustics

Loop Subdivision

- Alternative subdivision scheme for triangle meshes
- Curvature is continuous away from irregular vertices (" $C^{2 \text { ") }}$)
- Algorithm:
- Split each triangle into four

- Assign new vertex positions according to weights:

n : vertex degree $u: 3 / 16$ if $n=3,3 /(8 n)$ otherwise

Loop Subdivision via Edge Operations

- First, split edges of original mesh in any order:

- Next, flip new edges that touch a new \& old vertex:

(Don't forget to update vertex positions!)

Downsampling
 (i.e., what if we want fewer triangles?)

Simplification via Edge Collapse

■ One popular scheme: iteratively collapse edges

- Greedy algorithm:
- assign each edge a cost
- collapse edge with least cost
- repeat until target number of elements is reached
- Particularly effective cost function: quadric error metric*

*invented at CMU (Garland \& Heckbert 1997)

Quadric Error Metric

- Approximate distance to a collection of triangles

■ Q: Distance to plane w/ normal n passing through point \mathbf{p} ?

- $\mathbf{A}: \operatorname{dist}(\mathbf{x})=\langle\mathbf{n}, \mathbf{x}\rangle-\langle\mathbf{n}, \mathbf{p}\rangle=\langle\mathbf{n}, \mathbf{x}-\mathbf{p}\rangle$

■ Quadric error is then sum of squared point-to-plane distances:

Quadric Error - Homogeneous Coordinates

- Suppose in coordinates we have
- a query point $\mathbf{x}=(x, y, z)$
- a normal $\mathbf{n}=(a, b, c)$
- an offset $d:=-\langle\mathbf{n}, \mathbf{p}\rangle$
- In homogeneous coordinates, let
- $\mathbf{u}:=(x, y, z, 1)$
- $\mathbf{v}:=(a, b, c, d)$

$$
K=\left[\begin{array}{llll}
a^{2} & a b & a c & a d \\
a b & b^{2} & b c & b d \\
a c & b c & c^{2} & c d \\
a d & b d & c d & d^{2}
\end{array}\right]
$$

- Signed distance to plane is then just $\langle\mathbf{u}, \mathbf{v}\rangle=a x+b y+c z+d$
- Squared distance is $\langle\mathbf{u}, \mathbf{v}\rangle^{2}=\mathbf{u}^{\top}\left(\mathbf{v} \mathbf{v}^{\top}\right) \mathbf{u}=: \mathbf{u}^{\top} K \mathbf{u}$
- Matrix $K=\mathbf{v} \mathbf{v}^{T}$ encodes squared distance to plane

Key idea: sum of matrices $K \Longleftrightarrow$ distance to union of planes

$$
\mathbf{u}^{\top} K_{1} \mathbf{u}+\mathbf{u}^{\top} K_{2} \mathbf{u}=\mathbf{u}^{\top}\left(K_{1}+K_{2}\right) \mathbf{u}
$$

Quadric Error of Edge Collapse

■ How much does it cost to collapse an edge $e_{i j}$?

- Idea: compute midpoint \mathbf{m}, measure error $Q(\mathbf{m})=\mathbf{m}^{\top}\left(K_{i}+K_{j}\right) \mathbf{m}$
- Error becomes "score" for $e_{i j}$, determining priority

- Better idea: find point x that minimizes error!
- Ok, but how do we minimize quadric error?

Review: Minimizing a Quadratic Function

- Suppose you have a function $f(x)=a x^{2}+b x+c$

■ Q: What does the graph of this function look like?

- Could also look like this!
- Q: How do we find the minimum?
- A: Find where the function looks "flat" if we zoom in really close

(What does x describe for the second function?)

Minimizing Quadratic Polynomial

- Not much harder to minimize a quadratic polynomial in n variables
- Can always write in terms of a symmetric matrix A
- E.g., in 2D: $f(x, y)=a x^{2}+b x y+c y^{2}+d x+e y+g$

$$
\begin{gathered}
\mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad A=\left[\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{l}
d \\
e
\end{array}\right] \\
f(x, y)=\mathbf{x}^{\top} A \mathbf{x}+\mathbf{u}^{\top} \mathbf{x}+g
\end{gathered}
$$

(will have this same form for any n)

- Q: How do we find a critical point ($\mathrm{min} / \mathrm{max} / \mathrm{saddle}$)?
- A: Set derivative to zero!

$$
\begin{aligned}
& 2 A \mathbf{x}+\mathbf{u}=0 \\
& \mathbf{x}=-\frac{1}{2} A^{-1} \mathbf{u}
\end{aligned}
$$

Positive Definite Quadratic Form

■ Just like our 1D parabola, critical point is not always a min!

- Q: In 2D, 3D, nD, when do we get a minimum?

■ A: When matrix A is positive-definite:

$$
\mathbf{x}^{\top} A \mathbf{x}>0 \quad \forall \mathbf{x}
$$

- 1D: Must have $x a x=a x^{2}>0$. In other words: a is positive!
- 2D: Graph of function looks like a "bowl":

positive definite

Positive-definiteness extremely important in computer graphics: means we can find minimizers by solving linear equations. Starting point for many algorithms (geometry processing, simulation, ...)

Minimizing Quadric Error

- Find "best" point for edge collapse by minimizing quadratic form

$$
\min _{\mathbf{u} \in \mathbb{R}^{4}} \mathbf{u}^{T} K \mathbf{u}
$$

■ Already know fourth (homogeneous) coordinate for a point is 1

- So, break up our quadratic function into two pieces:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\mathbf{x}^{\top} & 1
\end{array}\right]\left[\begin{array}{cc}
B & \mathbf{w} \\
\mathbf{w}^{\top} & d^{2}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x} \\
1
\end{array}\right]} \\
& \quad=\mathbf{x}^{\top} B \mathbf{x}+2 \mathbf{w}^{\top} \mathbf{x}+d^{2}
\end{aligned}
$$

- Now we have a quadratic polynomial in the unknown position $x \in \mathbb{R}^{3}$
- Can minimize as before:

$$
2 B \mathbf{x}+2 \mathbf{w}=0 \quad \Longleftrightarrow \quad \mathbf{x}=-B^{-1} \mathbf{w}
$$

Q: Why should B be positive-definite?

Quadric Error Simplification: Final Algorithm

- Compute K for each triangle (squared distance to plane)
- Set K_{i} at each vertex to sum of K s from incident triangles
- For each edge $e_{i j}$:
- set $K_{i j}=K_{i}+K_{j}$
- find point x minimizing error, set cost to $K_{i j}(\mathbf{x})$
- Until we reach target number of triangles:
- collapse edge $e_{i j}$ with smallest cost to optimal point \mathbf{x}
- set quadric at new vertex to $K_{i j}$
- update cost of edges touching new vertex

■ More details in assignment writeup!

Quadric Simplification—Flipped Triangles

- Depending on where we put the new vertex, one of the new triangles might be "flipped" (normal points in instead of out):

- Easy solution: for each triangle $i j k$ touching collapsed vertex i, consider normals $N_{i j k}$ and $N_{k j l}$ (where $k j l$ is other triangle containing edge $j k$)
- If $\left\langle N_{i j k}, N_{k j}\right\rangle$ is negative, don't collapse this edge!

What if we're happy with the number of triangles, but want to improve quality?

How do we make a mesh "more Delaunay"?

- Already have a good tool: edge flips!
- If $\alpha+\beta>\pi$, flip it!

- FACT: in 2D, flipping edges eventually yields Delaunay mesh
- Theory: worst case $O\left(n^{2}\right)$; doesn't always work for surfaces in 3D

■ Practice: simple, effective way to improve mesh quality

Alternatively: how do we improve degree?

- Same tool: edge flips!
- If total deviation from degree-6 gets smaller, flip it!

total deviation: $\left|d_{i}-6\right|+\left|d_{j}-6\right|+\left|d_{k}-6\right|+\left|d_{l}-6\right|$
- FACT: average degree approaches 6 as number of elements increases
- Iterative edge flipping acts like "discrete diffusion" of degree
- No (known) guarantees; works well in practice

How do we make a triangles "more round"?

- Delaunay doesn't guarantee triangles are "round" (angles near 60°)
- Can often improve shape by centering vertices:

- Simple version of technique called "Laplacian smoothing"
- On surface: move only in tangent direction
- How? Remove normal component from update vector

Isotropic Remeshing Algorithm

- Try to make triangles uniform shape \& size
- Repeat four steps:
- Split any edge over 4/3rds mean edge length
- Collapse any edge less than 4/5ths mean edge length
- Flip edges to improve vertex degree
- Center vertices tangentially

What can go wrong when you resample a signal?

Danger of Resampling

Q: What happens if we repeatedly resample an image?

A: Signal quality degrades!

Danger of Resampling

Q: What happens if we repeatedly resample a mesh?

A: Signal also degrades!

But wait: we have the original signal (mesh). Why not just project each new sample point onto the closest point of the original mesh?

Next Time: Geometric Queries

- Q: Given a point, in space, how do we find the closest point on a surface? Are we inside or outside the surface? How do we find intersection of two triangles? Etc.
- Do implicit/explicit representations make such tasks easier?
- What's the cost of the naïve algorithm, and how do we accelerate such queries for large meshes?
- So many questions!

