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Last time — Adjacency List (Array-like)
Store triples of coordinates (x,y,z), tuples of indices 
E.g., tetrahedron:

0

1

2

3

    x  y  z
0: -1 -1 -1
1:  1 -1  1
2:  1  1 -1
3: -1  1  1

VERTICES
i  j  k
0  2  1
0  3  2
3  0  1
3  1  2

POLYGONS

Q: How do we find all the polygons touching vertex 2? 
Ok, now consider a more complicated mesh: 

Very expensive to find the neighboring polygons!  (What’s the cost?) 

~1 billion polygons
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Last time — Incidence Matrices
If we want to know who our neighbors are, why not just store a list of 
neighbors? 

Can encode all neighbor information via incidence matrices 

E.g., tetrahedron:

e2

v0

v1

v2

v3

e0

e1

e3
e4

f0

f3

f1

f2

e5

  v0 v1 v2 v3
e0 1  1  0  0
e1 0  1  1  0
e2 1  0  1  0
e3 1  0  0  1
e4 0  0  1  1
e5 0  1  0  1

VERTEX⬌EDGE
  e0 e1 e2 e3 e4 e5
f0 1  0  0  1  0  1
f1 0  1  0  0  1  1
f2 1  1  1  0  0  0
f3 0  0  1  1  1  0

EDGE⬌FACE

1 means “touches”; 0 means “does not touch” 

Instead of storing lots of 0’s, use sparse matrices 

Still large storage cost, but finding neighbors is now O(1) 

Hard to change connectivity, since we used fixed indices 

Bonus feature: mesh does not have to be manifold



Store some information about neighbors 
Don’t need an exhaustive list; just a few key pointers 
Key idea: two halfedges act as “glue” between mesh 
elements: 

Each vertex, edge face points to just one of its halfedges.
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Last time — Halfedge Data Structure
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face

struct Halfedge
{
   Halfedge* twin;
   Halfedge* next;
   Vertex* vertex;
   Edge* edge;
   Face* face;
};

struct Vertex
{
   Halfedge* halfedge;
};

halfedge

vertex

struct Edge
{
   Halfedge* halfedge;
};ha
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struct Face
{
   Halfedge* halfedge;
};

ha
lf
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ge

Face
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Comparison of Polygon Mesh Data Strucutres

Adjacency List
Incidence 
Matrices Halfedge Mesh

constant-time 
neighborhood access?

NO YES YES

easy to add/remove 
mesh elements?

NO NO YES

nonmanifold 
geometry?

YES YES NO

Conclusion: pick the right data structure for the job!
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Ok, but what can we actually do with our 
fancy new data structures?
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Geometry Processing: Reconstruction
Given samples of geometry, reconstruct surface 
What are “samples”?  Many possibilities: 
- points, points & normals, ... 
- image pairs / sets (multi-view stereo) 
- line density integrals (MRI/CT scans) 
How do you get a surface?  Many techniques: 
- silhouette-based (visual hull) 
- Voronoi-based (e.g., power crust) 
- PDE-based (e.g., Poisson reconstruction) 
- Radon transform / isosurfacing (marching cubes)
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Geometry Processing: Upsampling
Increase resolution via interpolation 
Images: e.g., bilinear, bicubic interpolation 
Polygon meshes: 
- subdivision 
- bilateral upsampling 
- ...
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Decrease resolution; try to preserve shape/appearance 
Images: nearest-neighbor, bilinear, bicubic interpolation 
Point clouds: subsampling (just take fewer points!) 
Polygon meshes: 
- iterative decimation, variational shape approximation, ...

Geometry Processing: Downsampling
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Geometry Processing: Resampling
Modify sample distribution to improve quality 
Images: not an issue! (Pixels always stored on a regular grid) 
Meshes: shape of polygons is extremely important! 
- different notion of “quality” depending on task 
- e.g., visualization vs. solving equations
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Geometry Processing: Filtering
Remove noise, or emphasize important features (e.g., edges) 
Images: blurring, bilateral filter, edge detection, ... 
Polygon meshes: 
- curvature flow 
- bilateral filter 
- spectral filter
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Geometry Processing: Compression
Reduce storage size by eliminating redundant data/
approximating unimportant data 
Images:  
- run-length, Huffman coding - lossless 
- cosine/wavelet (JPEG/MPEG) - lossy 
Polygon meshes: 
- compress geometry and connectivity 
- many techniques (lossy & lossless)

840kb840kb

8kb8kb
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Geometry Processing: Shape Analysis
Identify/understand important semantic features 
Images: computer vision, segmentation, face detection, ... 
Polygon meshes: 
- segmentation, correspondence, symmetry detection, ...
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Subdivision Modeling
Common modeling paradigm in modern 3D tools: 
- Coarse “control cage” 
- Perform local operations to control/edit shape 
- Global subdivision process determines final surface
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Subdivision Modeling—Local Operations
For general polygon meshes, we can dream up lots of local 
mesh operations that might be useful for modeling:

…and many, many more!
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A2.0 Diagrams
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A2.0 Diagrams
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What is a valid mesh?
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Mesh Processing:

“If the surface resulting from an 
operation can be represented by 
some valid mesh, then run the 

operation and produce a valid mesh 
representing the result.”
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A few things to consider —
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Remeshing as resampling
Remember our discussion of aliasing 
Bad sampling makes signal appear different than it really is 
E.g., undersampled curve looks flat 
Geometry is no different! 
- undersampling destroys features 
- oversampling bad for performance
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What makes a “good” mesh?
One idea: good approximation of original shape! 
Keep only elements that contribute information about shape 
Add additional information where, e.g., curvature is large
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Approximation of position is not enough!
Just because the vertices of a mesh are close to the surface it 
approximates does not mean it’s a good approximation! 
Can still have wrong appearance, wrong area, wrong… 
Need to consider other factors*, e.g., close approximation of 
surface normals

vertices exactly on smooth cylinder

smooth cylinder

flattening of smooth cylinder & meshes

true area

*See Hildebrandt et al (2007), “On the convergence of metric and geometric properties of polyhedral surfaces”
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What else makes a “good” triangle mesh?
Another rule of thumb: triangle 

“GOOD” “BAD”

E.g., all angles close to 60 degrees 
More sophisticated condition: Delaunay (empty circumcircles) 
– often helps with numerical accuracy/stability 
– coincides with shockingly many other desirable properties 

(maximizes minimum angle, provides smoothest 
interpolation, guarantees maximum principle…) 

Tradeoffs w/ good geometric approximation* 
–e.g., long & skinny might be “more efficient”

*see Shewchuk, “What is a Good Linear Element”

DELAUNAY

pronunciation:



 CMU 15-462/662

degree 20degree 6 subdivide

What else constitutes a “good” mesh?
Another rule of thumb: regular vertex degree 
Degree 6 for triangle mesh, 4 for quad mesh

“GOOD” “OK” “BAD”

subdivide

REGULAR

IRREGULAR

Why? Better polygon shape; more regular computation; smoother subdivision:

Fact: in general, can’t have regular vertex degree everywhere!
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Upsampling via Subdivision
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Upsampling via Subdivision

Repeatedly split each element into smaller pieces 
Replace vertex positions with weighted average of neighbors 
Main considerations: 
- interpolating vs. approximating 

- limit surface continuity ( , , ...) 

- behavior at irregular vertices 
Many options: 
- Quad: Catmull-Clark 
- Triangle: Loop, Butterfly, Sqrt(3)

C1 C2
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Catmull-Clark Subdivision
Step 0: split every polygon (any # of sides) into quadrilaterals:

New vertex positions are weighted combination of old ones:
STEP 3: Vertex coords

New vertex coords: –   vertex degree
–   average of face coords around vertex

–   average of edge coords around vertex
–   original vertex position

STEP 1: Face coords STEP 2: Edge coords
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Catmull-Clark on quad mesh

smooth 
reflection lines

smooth 
caustics

few irregular vertices
⟹ smoothly-varying surface normals
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Catmull-Clark on triangle mesh

jagged 
reflection lines

jagged 
caustics

many irregular vertices
⟹ erratic surface normals
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Loop Subdivision
Alternative subdivision scheme for triangle meshes 

Curvature is continuous away from irregular vertices (“ ”) 

Algorithm: 
- Split each triangle into four 
- Assign new vertex positions according to weights:

C2

u u

u u

u u1-nu
n: vertex degree
u: 3/16 if n=3, 3/(8n) otherwise

1/8

1/8

3/83/8
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Loop Subdivision via Edge Operations
First, split edges of original mesh in any order:

split

flip

Images cribbed from Denis Zorin.

(Don’t forget to update vertex positions!)

Next, flip new edges that touch a new & old vertex:
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Downsampling 
(i.e., what if we want fewer triangles?)
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Simplification via Edge Collapse
One popular scheme: iteratively collapse edges 
Greedy algorithm: 
- assign each edge a cost 
- collapse edge with least cost 
- repeat until target number of elements is reached 
Particularly effective cost function: quadric error metric*

*invented at CMU (Garland & Heckbert 1997)

30,000 3,000 300

30
#triangles:



dist2(x)

Q = 1

Q = 1
8

Q = 1
2

Q = 0

Quadric Error Metric
Approximate distance to a collection of triangles 

Q: Distance to plane w/ normal  passing through point ? 

A:  

Quadric error is then sum of squared point-to-plane distances:

n p
dist(x) = ⟨n, x⟩ − ⟨n, p⟩ = ⟨n, x − p⟩

n1

n2n3
n4

n5

p

p

x
n

⟨n, x − p⟩

Q(x) :=
k

∑
i=1

⟨ni, x − p⟩2



Quadric Error - Homogeneous Coordinates
Suppose in coordinates we have 

- a query point  

- a normal  

- an offset  
In homogeneous coordinates, let 

-  

-  

Signed distance to plane is then just  

Squared distance is  

Matrix  encodes squared distance to plane

x = (x, y, z)
n = (a, b, c)
d := − ⟨n, p⟩

u := (x, y, z,1)
v := (a, b, c, d)

⟨u, v⟩ = ax + by + cz + d
⟨u, v⟩2 = u$(vv$)u =: u$Ku

K = vvT

Key idea: sum of matrices  ⟺ distance to union of planesK
u$K1u + u$K2u = u$(K1 + K2)u

p

x
n



m
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Quadric Error of Edge Collapse
How much does it cost to collapse an edge ? 

Idea: compute midpoint , measure error  

Error becomes “score” for , determining priority

eij

m Q(m) = m$(Ki + Kj)m
eij

collapse

Better idea: find point  that minimizes error! 

Ok, but how do we minimize quadric error?

x

eiji j

m
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Review: Minimizing a Quadratic Function
Suppose you have a function  

Q: What does the graph of this function look like? 
Could also look like this! 
Q: How do we find the minimum? 
A: Find where the function looks “flat” if we zoom 
in really close 

I.e., find point  where 1st derivative vanishes:

f(x) = ax2 + bx + c

x

x

f(x)

x

f(x)

(What does  describe for the second function?)x
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Minimizing Quadratic Polynomial
Not much harder to minimize a quadratic polynomial in  variables 
Can always write in terms of a symmetric matrix  

E.g., in 2D:   

n
A

f(x, y) = ax2 + bxy + cy2 + dx + ey + g

Q: How do we find a critical point (min/max/saddle)? 
A: Set derivative to zero!

(will have this same form for any )n

(Can you show this is true, at least in 2D?)

f(x, y) = x$Ax + u$x + g

2Ax + u = 0
x = − 1

2 A−1u x = − b/2a

(compare with 
our 1D solution)
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Positive Definite Quadratic Form
Just like our 1D parabola, critical point is not always a min! 
Q: In 2D, 3D, nD, when do we get a minimum? 
A: When matrix A is positive-definite:

1D: Must have .  In other words:  is positive! 
2D: Graph of function looks like a “bowl”:

xax = ax2 > 0 a

Positive-definiteness extremely important in computer graphics: 
means we can find minimizers by solving linear equations.  Starting 
point for many algorithms (geometry processing, simulation, ...)

positive definite positive semidefinite indefinite
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Minimizing Quadric Error
Find “best” point for edge collapse by minimizing quadratic form

Now we have a quadratic polynomial in the unknown position  
Can minimize as before:

x ∈ ℝ3

Q: Why should  be positive-definite?B

Already know fourth (homogeneous) coordinate for a point is 1 
So, break up our quadratic function into two pieces:

min
u∈ℝ4

uTKu

= x$Bx + 2w$x + d2

2Bx + 2w = 0 x = − B−1w⟺
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Quadric Error Simplification: Final Algorithm
Compute  for each triangle (squared distance to plane) 
Set  at each vertex to sum of s from incident triangles 

For each edge : 

- set  

- find point  minimizing error, set cost to  

Until we reach target number of triangles: 

- collapse edge  with smallest cost to optimal point  

- set quadric at new vertex to  

- update cost of edges touching new vertex 
More details in assignment writeup!

K
Ki K

eij

Kij = Ki + Kj

x Kij(x)

eij x
Kij

Ki

Kij

K

x
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Quadric Simplification—Flipped Triangles
Depending on where we put the new vertex, one of the new triangles 
might be “flipped” (normal points in instead of out):

Easy solution: for each triangle  touching collapsed vertex , consider 
normals  and  (where  is other triangle containing edge ) 

If  is negative, don’t collapse this edge!

ijk i
Nijk Nkjl kjl jk

⟨Nijk, Nkjl⟩

l

kj

i
❌

i
j

k
l

✔
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What if we’re happy with the number of 
triangles, but want to improve quality?
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Already have a good tool: edge flips! 

If , flip it!α + β > π

How do we make a mesh “more Delaunay”?

FACT: in 2D, flipping edges eventually yields Delaunay mesh 

Theory: worst case ; doesn’t always work for surfaces in 3D 

Practice: simple, effective way to improve mesh quality

O(n2)
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Same tool: edge flips! 
If total deviation from degree-6 gets smaller, flip it!

Alternatively: how do we improve degree?

flip

FACT: average degree approaches 6 as number of elements increases 
Iterative edge flipping acts like “discrete diffusion” of degree 
No (known) guarantees; works well in practice

i
j

k

l

total deviation: |di − 6 | + |dj − 6 | + |dk − 6 | + |dl − 6 |
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How do we make a triangles “more round”?
Delaunay doesn’t guarantee triangles are “round” (angles near 60°) 
Can often improve shape by centering vertices:

average

Simple version of technique called “Laplacian smoothing” 
On surface: move only in tangent direction 
How?  Remove normal component from update vector



 CMU 15-462/662

Isotropic Remeshing Algorithm
Try to make triangles uniform shape & size 
Repeat four steps: 
- Split any edge over 4/3rds mean edge length 
- Collapse any edge less than 4/5ths mean edge length 
- Flip edges to improve vertex degree 
- Center vertices tangentially

Based on: Botsch & Kobbelt, “A Remeshing Approach to Multiresolution Modeling”



 CMU 15-462/662

What can go wrong when 
you resample a signal?
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Danger of Resampling

downsample

upsa
mple

downsample
upsa

mple

downsample

upsa
mple

Q: What happens if we repeatedly resample an image?

A: Signal quality degrades!
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Danger of Resampling

downsample upsample

…

Q: What happens if we repeatedly resample a mesh?

A: Signal also degrades!
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But wait: we have the original signal (mesh). 
Why not just project each new sample point 
onto the closest point of the original mesh? 
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Next Time: Geometric Queries
Q: Given a point, in space, how do we find the closest point on 
a surface?  Are we inside or outside the surface? How do we 
find intersection of two triangles?  Etc. 
Do implicit/explicit representations make such tasks easier? 
What’s the cost of the naïve algorithm, and how do we 
accelerate such queries for large meshes? 
So many questions!

p

???


