
Computer Graphics
CMU 15-462/15-662

Introduction to Geometry

 CMU 15-462/662

Assignment 2
Start building up “Scotty3D”; first part is 3D modeling

Scotty3D

 CMU 15-462/662

3D Modeling
Don’t just make great software… make great art! :-)

(This mesh was created in Scotty3D in about 5 minutes... you can do much better!)

 CMU 15-462/662

Increasing the complexity of our models
Materials, lighting, ...GeometryTransformations

A: Geometry is the study of two-column
proofs.

 CMU 15-462/662

Q: What is geometry?

Ceci n'est pas géométrie.
See: Paul Lockhart, “A Mathematician’s Lament “

 CMU 15-462/662

What is geometry?

ge•om•et•ry /jēˈämətrē/ n.
1. The study of shapes, sizes, patterns, and positions.
2. The study of spaces where some quantity (lengths,
 angles, etc.) can be measured.

“Earth” “measure”

Plato: “...the earth is in appearance like one of those balls which have leather coverings in twelve pieces...”

 CMU 15-462/662

How can we describe geometry?
IMPLICIT EXPLICIT

CURVATURE

LINGUISTIC
“unit circle”

SYMMETRIC
rotate

DYNAMICTOMOGRAPHIC

(constant density)

DISCRETE

n ➞ ∞

 CMU 15-462/662

Given all these options, what’s the best
way to encode geometry on a computer?

 CMU 15-462/662

Examples of geometry

 CMU 15-462/662

Examples of geometry

 CMU 15-462/662

Examples of geometry

 CMU 15-462/662

Examples of geometry

 CMU 15-462/662

Examples of geometry

 CMU 15-462/662

Examples of geometry

 CMU 15-462/662

Examples of geometry

 CMU 15-462/662

Examples of geometry

 CMU 15-462/662

It’s a Jungle Out There!

 CMU 15-462/662

No one “best” choice—geometry is hard!

“I hate meshes.
 I cannot believe how hard this is.
 Geometry is hard.”

—David Baraff
Senior Research Scientist
Pixar Animation Studios

Slide cribbed from Jeff Erickson.

 CMU 15-462/662

Many ways to digitally encode geometry
EXPLICIT
- point cloud
- polygon mesh
- subdivision, NURBS
- ...
IMPLICIT
- level set
- algebraic surface
- L-systems
- ...
Each choice best suited to a different task/type of geometry

 CMU 15-462/662

“Implicit” Representations of Geometry
Points aren’t known directly, but satisfy some relationship
E.g., unit sphere is all points such that x2+y2+z2=1
More generally, f(x,y,z) = 0

-1

+1
f(x,y)

0

f = 0

 CMU 15-462/662

Many implicit representations in graphics
algebraic surfaces
constructive solid geometry
level set methods
blobby surfaces
fractals
...

(Will see some of these a bit later.)

 CMU 15-462/662

“Explicit” Representations of Geometry
All points are given directly
E.g., points on sphere are

More generally:

(Might have a bunch of these maps, e.g., one per triangle!)

 CMU 15-462/662

Many explicit representations in graphics
triangle meshes
polygon meshes
subdivision surfaces
NURBS
point clouds
...

(Will see some of these a bit later.)

 CMU 15-462/662

Ok, so we have many ways to represent
surfaces.

But what is a surface anyway?

 CMU 15-462/662

Manifold Assumption
First, let’s define manifold geometry
Can be hard to understand motivation at first!
Let’s revisit a more familiar example...

u

v

 CMU 15-462/662

Bitmap Images, Revisited
To encode images, we used a regular grid of pixels:

 CMU 15-462/662

But images are not fundamentally
made of little squares:

Goyō Hashiguchi, Kamisuki (ca 1920)

photomicrograph of paint

 CMU 15-462/662

So why did we choose a square grid?

…rather than dozens of possible alternatives?

 CMU 15-462/662

Regular grids make life easy
One reason: SIMPLICITY / EFFICIENCY
- E.g., always have four neighbors
- Easy to index, easy to filter…
- Storage is just a list of numbers
Another reason: GENERALITY
- Can encode basically any image
Are regular grids always the best choice for bitmap images?
- No! E.g., suffer from anisotropy, don’t capture edges, ...
- But more often than not are a pretty good choice
Will see a similar story with geometry...

(i,j)(i-1,j) (i+1,j)

(i,j-1)

(i,j+1)

 CMU 15-462/662

So, how should we encode surfaces?

 CMU 15-462/662

Smooth Surfaces
Intuitively, a surface is the boundary or “shell” of an object
(Think about the candy shell, not the chocolate.)
Surfaces are manifold:
- If you zoom in far enough, can draw a regular coordinate grid
- E.g., the Earth from space vs. from the ground

 CMU 15-462/662

Isn’t every shape manifold?
No, for instance:

Can’t draw ordinary 2D grid at center, no matter how close we get.

 CMU 15-462/662

Examples—Manifold vs. Nonmanifold
Which of these shapes are manifold?

❌

❌

✔

✔

✔

 CMU 15-462/662

Suppose we have a polygon mesh
(an explicit representation)

 CMU 15-462/662

A manifold polygon mesh has fans, not fins
For polygonal surfaces just two easy conditions to check:
1. Every edge is contained in only two polygons (no “fins”)
2. The polygons containing each vertex make a single “fan”

NO

YES

NO

YES

 CMU 15-462/662

What about boundary?
The boundary is where the surface “ends.”
E.g., waist & ankles on a pair of pants.
Locally, looks like a half disk
Globally, each boundary forms a loop

Polygon mesh:
- one polygon per boundary edge
- boundary vertex looks like “pacman”

YES

 CMU 15-462/662

Ok, but why is the manifold
assumption useful?

 CMU 15-462/662

Keep it Simple!
Same motivation as for images:
- make some assumptions about our geometry to keep data

structures/algorithms simple and efficient
- in many common cases, doesn’t fundamentally limit what

we can do with geometry

(i,j)(i-1,j) (i+1,j)

(i,j-1)

(i,j+1)

 CMU 15-462/662

Let’s talk about how to encode all this data

 CMU 15-462/662

Warm up: storing numbers
Q: What data structures can we use to store a list of numbers?
One idea: use an array (constant time lookup, coherent access)

Alternative: use a linked list (linear lookup, incoherent access)

Q: Why bother with the linked list?
A: For one, we can easily insert numbers wherever we like...

1.7 2.9 0.3 7.5 9.2 4.8 6.0 0.1

1.7

2.9

0.3
7.5

9.2
4.8

6.0

0.1

 CMU 15-462/662

Polygon Soup
Most basic idea:

- For each triangle, just store
three coordinates

- No other information about
connectivity

- Not much different from point
cloud! (“Triangle cloud?”)

Pros:

- Really stupidly simple

Cons:

- Redundant storage

- Hard to do much beyond simply
drawing the mesh on screen

- Need spatial data structures
(later) to find neighbors

(x0,y0,z0)

(x1,y1,z1)

(x2,y2,z2)

(x3,y3,z3)

x0,y0,z0 x1,y1,z1 x3,y3,z3
x1,y1,z1 x2,y2,z2 x3,y3,z3

 CMU 15-462/662

Adjacency List (Array-like)
Store triples of coordinates (x,y,z), tuples of indices
E.g., tetrahedron:

0

1

2

3

 x y z
0: -1 -1 -1
1: 1 -1 1
2: 1 1 -1
3: -1 1 1

VERTICES
i j k
0 2 1
0 3 2
3 0 1
3 1 2

POLYGONS

Q: How do we find all the polygons touching vertex 2?
Ok, now consider a more complicated mesh:

Very expensive to find the neighboring polygons! (What’s the cost?)

~1 billion polygons

 CMU 15-462/662

Incidence Matrices
If we want to know who our neighbors are, why not just store a list of
neighbors?

Can encode all neighbor information via incidence matrices

E.g., tetrahedron:

e2

v0

v1

v2

v3

e0

e1

e3
e4

f0

f3

f1

f2

e5

 v0 v1 v2 v3
e0 1 1 0 0
e1 0 1 1 0
e2 1 0 1 0
e3 1 0 0 1
e4 0 0 1 1
e5 0 1 0 1

VERTEX⬌EDGE
 e0 e1 e2 e3 e4 e5
f0 1 0 0 1 0 1
f1 0 1 0 0 1 1
f2 1 1 1 0 0 0
f3 0 0 1 1 1 0

EDGE⬌FACE

1 means “touches”; 0 means “does not touch”

Instead of storing lots of 0’s, use sparse matrices

Still large storage cost, but finding neighbors is now O(1)

Hard to change connectivity, since we used fixed indices

Bonus feature: mesh does not have to be manifold

Store some information about neighbors
Don’t need an exhaustive list; just a few key pointers
Key idea: two halfedges act as “glue” between mesh
elements:

Each vertex, edge face points to just one of its halfedges.
 CMU 15-462/662

Halfedge Data Structure (Linked-list-like)

Ha
lf
ed
ge

twin

ed
ge

next

vertex

face

struct Halfedge
{
 Halfedge* twin;
 Halfedge* next;
 Vertex* vertex;
 Edge* edge;
 Face* face;
};

struct Vertex
{
 Halfedge* halfedge;
};

halfedge

vertex

struct Edge
{
 Halfedge* halfedge;
};ha

lf
ed
ge

ed
ge

struct Face
{
 Halfedge* halfedge;
};

ha
lf
ed
ge

Face

Use “twin” and “next” pointers to move around mesh
Use “vertex”, “edge”, and “face” pointers to grab element
Example: visit all vertices of a face:

Example: visit all neighbors of a vertex:

Note: only makes sense if mesh is manifold!
 CMU 15-462/662

Halfedge makes mesh traversal easy

ha
lf
ed
ge

next

next

Face

Halfedge* h = f->halfedge;
do {
 h = h->next;
 // do something w/ h->vertex
}
while(h != f->halfedge);

ha
lf
ed
ge

twin

twin

next

next
Vertex

Halfedge* h = v->halfedge;
do {
 h = h->twin->next;
}
while(h != v->halfedge);

 CMU 15-462/662

Halfedge connectivity is always manifold
Consider simplified halfedge data structure
Require only “common-sense” conditions

struct Halfedge {
 Halfedge *next, *twin;
};

Keep following next, and you’ll get faces.
Keep following twin and you’ll get edges.
Keep following next->twin and you’ll get vertices.

Q: Why, therefore, is it impossible to encode the red figures?

twin->twin == this
twin != this
every he is someone’s “next”

(pointer to yourself!)

Connectivity vs. Geometry
Recall manifold conditions (fans not fins):
- every edge contained in two faces
- every vertex contained in one fan

These conditions say nothing about vertex
positions! Just connectivity

Hence, can have perfectly good (manifold)
connectivity, even if geometry is awful

In fact, sometimes you can have perfectly
good manifold connectivity for which any
vertex positions give “bad” geometry!

Can lead to confusion when debugging: mesh
looks “bad”, even though connectivity is fine

non manifold
connectivity?

…or just a really
skinny triangle?

same connectivity,
random vertex positionscube (manifold)

 CMU 15-462/662

Halfedge meshes are easy to edit
Remember key feature of linked list: insert/delete elements
Same story with halfedge mesh (“linked list on steroids”)
E.g., for triangle meshes, several atomic operations:

b

c

a d

b

c

a d

!ip

b

m

c

a d

b

c

a d

split

a

b

c d

a

b

m

collapse

How? Allocate/delete elements; reassigning pointers.
Must be careful to preserve manifoldness!

 CMU 15-462/662

Edge Flip (Triangles)
Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d):

Long list of pointer reassignments (edge->halfedge = ...)
However, no elements created/destroyed.
Q: What happens if we flip twice?
Challenge: can you implement edge flip such that pointers are
unchanged after two flips?

b

c

a d

b

c

a d

!ip

 CMU 15-462/662

Edge Split (Triangles)
Insert midpoint m of edge (c,b), connect to get four triangles:

This time, have to add new elements.
Lots of pointer reassignments.
Q: Can we “reverse” this operation?

b

m

c

a d

b

c

a d

split

 CMU 15-462/662

Edge Collapse (Triangles)
Replace edge (b,c) with a single vertex m:

Now have to delete elements.
Still lots of pointer assignments!
Q: How would we implement this with an adjacency list?
Any other good way to do it? (E.g., different data structure?)

a

b

c d

a

b

m

collapse

Paul Heckbert (former CMU prof.)
quadedge code - http://bit.ly/1QZLHosMany very similar data structures:

- winged edge

- corner table

- quadedge

- ...
Each stores local neighborhood information
Similar tradeoffs relative to simple polygon list:

- CONS: additional storage, incoherent memory access

- PROS: better access time for individual elements, intuitive
traversal of local neighborhoods

With some thought*, can design halfedge-type data structures with
coherent data storage, support for non manifold connectivity, etc.

 CMU 15-462/662

Alternatives to Halfedge

*see for instance http://geometry-central.net/

http://geometry-central.net/

 CMU 15-462/662

Comparison of Polygon Mesh Data Strucutres

Adjacency List
Incidence
Matrices Halfedge Mesh

constant-time
neighborhood access?

NO YES YES

easy to add/remove
mesh elements?

NO NO YES

nonmanifold
geometry?

YES YES NO

Conclusion: pick the right data structure for the job!

 CMU 15-462/662

Ok, but what can we actually do with our
fancy new data structures?

 CMU 15-462/662

Subdivision Modeling
Common modeling paradigm in modern 3D tools:
- Coarse “control cage”
- Perform local operations to control/edit shape
- Global subdivision process determines final surface

 CMU 15-462/662

Subdivision Modeling—Local Operations
For general polygon meshes, we can dream up lots of local
mesh operations that might be useful for modeling:

…and many, many more!

 CMU 15-462/662

Geometry Processing

reconstruction
filtering

remeshing
compressionparameterizationshape analysis

 CMU 15-462/662

Geometry Processing: Upsampling
Increase resolution via interpolation
Images: e.g., bilinear, bicubic interpolation
Polygon meshes:
- subdivision
- bilateral upsampling
- ...

 CMU 15-462/662

Decrease resolution; try to preserve shape/appearance
Images: nearest-neighbor, bilinear, bicubic interpolation
Point clouds: subsampling (just take fewer points!)
Polygon meshes:
- iterative decimation, variational shape approximation, ...

Geometry Processing: Downsampling

 CMU 15-462/662

Geometry Processing: Resampling
Modify sample distribution to improve quality
Images: not an issue! (Pixels always stored on a regular grid)
Meshes: shape of polygons is extremely important!
- different notion of “quality” depending on task
- e.g., visualization vs. solving equations

 CMU 15-462/662

Geometry Processing: Filtering
Remove noise, or emphasize important features (e.g., edges)
Images: blurring, bilateral filter, edge detection, ...
Polygon meshes:
- curvature flow
- bilateral filter
- spectral filter

 CMU 15-462/662

Geometry Processing: Compression
Reduce storage size by eliminating redundant data/
approximating unimportant data
Images:
- run-length, Huffman coding - lossless
- cosine/wavelet (JPEG/MPEG) - lossy
Polygon meshes:
- compress geometry and connectivity
- many techniques (lossy & lossless)

840kb840kb

8kb8kb

 CMU 15-462/662

Geometry Processing: Shape Analysis
Identify/understand important semantic features
Images: computer vision, segmentation, face detection, ...
Polygon meshes:
- segmentation, correspondence, symmetry detection, ...

 CMU 15-462/662

Remeshing is resampling
Remember our discussion of aliasing
Bad sampling makes signal appear different than it really is
E.g., undersampled curve looks flat
Geometry is no different!
- undersampling destroys features
- oversampling bad for performance

 CMU 15-462/662

What makes a “good” mesh?
One idea: good approximation of original shape!
Keep only elements that contribute information about shape
Add additional information where, e.g., curvature is large

 CMU 15-462/662

Approximation of position is not enough!
Just because the vertices of a mesh are close to the surface it
approximates does not mean it’s a good approximation!
Can still have wrong appearance, wrong area, wrong…
Need to consider other factors*, e.g., close approximation of
surface normals

vertices exactly on smooth cylinder

smooth cylinder

flattening of smooth cylinder & meshes

true area

*See Hildebrandt et al (2007), “On the convergence of metric and geometric properties of polyhedral surfaces”

 CMU 15-462/662

What else makes a “good” triangle mesh?
Another rule of thumb: triangle

“GOOD” “BAD”

E.g., all angles close to 60 degrees
More sophisticated condition: Delaunay (empty circumcircles)
– often helps with numerical accuracy/stability
– coincides with shockingly many other desirable properties

(maximizes minimum angle, provides smoothest
interpolation, guarantees maximum principle…)

Tradeoffs w/ good geometric approximation*
–e.g., long & skinny might be “more efficient”

*see Shewchuk, “What is a Good Linear Element”

DELAUNAY

 CMU 15-462/662

degree 20degree 6 subdivide

What else constitutes a “good” mesh?
Another rule of thumb: regular vertex degree
Degree 6 for triangle mesh, 4 for quad mesh

“GOOD” “OK” “BAD”

subdivide

REGULAR

IRREGULAR

Why? Better polygon shape; more regular computation; smoother subdivision:

Fact: in general, can’t have regular vertex degree everywhere!

 CMU 15-462/662

Next class sessions

Subdivision +
quadric error
Geometric queries
Many different
ways to represent
geometry (a late
intro)

