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Assignment 2
Start building up “Scotty3D”; first part is 3D modeling

Scotty3D
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3D Modeling
Don’t just make great software… make great art! :-)

(This mesh was created in Scotty3D in about 5 minutes... you can do much better!)
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Increasing the complexity of our models
Materials, lighting, ...GeometryTransformations



A: Geometry is the study of two-column 
proofs.
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Q: What is geometry?

Ceci n'est pas géométrie.
See: Paul Lockhart, “A Mathematician’s Lament “
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What is geometry?

ge•om•et•ry   /jēˈämətrē/ n. 
1. The study of shapes, sizes, patterns, and positions. 
2. The study of spaces where some quantity (lengths, 
    angles, etc.) can be measured.

“Earth” “measure”

Plato: “...the earth is in appearance like one of those balls which have leather coverings in twelve pieces...”
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How can we describe geometry?
IMPLICIT EXPLICIT

CURVATURE

LINGUISTIC
“unit circle”

SYMMETRIC
rotate

DYNAMICTOMOGRAPHIC

(constant density)

DISCRETE

n ➞ ∞
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Given all these options, what’s the best 
way to encode geometry on a computer?
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Examples of geometry
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Examples of geometry
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Examples of geometry
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Examples of geometry
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Examples of geometry
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Examples of geometry



 CMU 15-462/662

Examples of geometry
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Examples of geometry
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It’s a Jungle Out There!
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No one “best” choice—geometry is hard!

“I hate meshes. 
  I cannot believe how hard this is. 
  Geometry is hard.”

—David Baraff 
Senior Research Scientist 
Pixar Animation Studios

Slide cribbed from Jeff Erickson.
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Many ways to digitally encode geometry
EXPLICIT 
- point cloud 
- polygon mesh 
- subdivision, NURBS 
- ... 
IMPLICIT 
- level set 
- algebraic surface 
- L-systems 
- ... 
Each choice best suited to a different task/type of geometry
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“Implicit” Representations of Geometry
Points aren’t known directly, but satisfy some relationship 
E.g., unit sphere is all points such that x2+y2+z2=1 
More generally, f(x,y,z) = 0

-1

+1
f(x,y)

0

f = 0
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Many implicit representations in graphics
algebraic surfaces 
constructive solid geometry 
level set methods 
blobby surfaces 
fractals 
...

(Will see some of these a bit later.) 
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“Explicit” Representations of Geometry
All points are given directly 
E.g., points on sphere are 

More generally:

(Might have a bunch of these maps, e.g., one per triangle!)
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Many explicit representations in graphics
triangle meshes 
polygon meshes 
subdivision surfaces 
NURBS 
point clouds 
...

(Will see some of these a bit later.) 
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Ok, so we have many ways to represent 
surfaces.   

But what is a surface anyway?
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Manifold Assumption
First, let’s define manifold geometry 
Can be hard to understand motivation at first! 
Let’s revisit a more familiar example...

u

v
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Bitmap Images, Revisited
To encode images, we used a regular grid of pixels:
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But images are not fundamentally 
made of little squares:

Goyō Hashiguchi, Kamisuki (ca 1920)

photomicrograph of paint
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So why did we choose a square grid?

…rather than dozens of possible alternatives?
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Regular grids make life easy
One reason: SIMPLICITY / EFFICIENCY 
- E.g., always have four neighbors 
- Easy to index, easy to filter… 
- Storage is just a list of numbers 
Another reason: GENERALITY 
- Can encode basically any image 
Are regular grids always the best choice for bitmap images? 
- No!  E.g., suffer from anisotropy, don’t capture edges, ... 
- But more often than not are a pretty good choice 
Will see a similar story with geometry...

(i,j)(i-1,j) (i+1,j)

(i,j-1)

(i,j+1)
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So, how should we encode surfaces?
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Smooth Surfaces
Intuitively, a surface is the boundary or “shell” of an object 
(Think about the candy shell, not the chocolate.) 
Surfaces are manifold: 
- If you zoom in far enough, can draw a regular coordinate grid 
- E.g., the Earth from space vs. from the ground
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Isn’t every shape manifold?
No, for instance:

Can’t draw ordinary 2D grid at center, no matter how close we get.
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Examples—Manifold vs. Nonmanifold
Which of these shapes are manifold?

❌

❌

✔

✔

✔
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Suppose we have a polygon mesh 
(an explicit representation)
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A manifold polygon mesh has fans, not fins
For polygonal surfaces just two easy conditions to check: 
1. Every edge is contained in only two polygons (no “fins”) 
2. The polygons containing each vertex make a single “fan”

NO

YES

NO

YES
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What about boundary?
The boundary is where the surface “ends.” 
E.g., waist & ankles on a pair of pants. 
Locally, looks like a half disk 
Globally, each boundary forms a loop 

Polygon mesh: 
- one polygon per boundary edge 
- boundary vertex looks like “pacman”

YES
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Ok, but why is the manifold 
assumption useful?
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Keep it Simple!
Same motivation as for images: 
- make some assumptions about our geometry to keep data 

structures/algorithms simple and efficient 
- in many common cases, doesn’t fundamentally limit what 

we can do with geometry

(i,j)(i-1,j) (i+1,j)

(i,j-1)

(i,j+1)
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Let’s talk about how to encode all this data
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Warm up: storing numbers
Q: What data structures can we use to store a list of numbers? 
One idea: use an array (constant time lookup, coherent access) 

Alternative: use a linked list (linear lookup, incoherent access) 

Q: Why bother with the linked list? 
A: For one, we can easily insert numbers wherever we like...

1.7 2.9 0.3 7.5 9.2 4.8 6.0 0.1

1.7

2.9

0.3
7.5

9.2
4.8

6.0

0.1
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Polygon Soup
Most basic idea: 

- For each triangle, just store 
three coordinates 

- No other information about 
connectivity 

- Not much different from point 
cloud! (“Triangle cloud?”) 

Pros: 

- Really stupidly simple 

Cons: 

- Redundant storage 

- Hard to do much beyond simply 
drawing the mesh on screen 

- Need spatial data structures 
(later) to find neighbors

(x0,y0,z0)

(x1,y1,z1)

(x2,y2,z2)

(x3,y3,z3)

x0,y0,z0  x1,y1,z1  x3,y3,z3
x1,y1,z1  x2,y2,z2  x3,y3,z3
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Adjacency List (Array-like)
Store triples of coordinates (x,y,z), tuples of indices 
E.g., tetrahedron:

0

1

2

3

    x  y  z
0: -1 -1 -1
1:  1 -1  1
2:  1  1 -1
3: -1  1  1

VERTICES
i  j  k
0  2  1
0  3  2
3  0  1
3  1  2

POLYGONS

Q: How do we find all the polygons touching vertex 2? 
Ok, now consider a more complicated mesh: 

Very expensive to find the neighboring polygons!  (What’s the cost?) 

~1 billion polygons
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Incidence Matrices
If we want to know who our neighbors are, why not just store a list of 
neighbors? 

Can encode all neighbor information via incidence matrices 

E.g., tetrahedron:

e2

v0

v1

v2

v3

e0

e1

e3
e4

f0

f3

f1

f2

e5

  v0 v1 v2 v3
e0 1  1  0  0
e1 0  1  1  0
e2 1  0  1  0
e3 1  0  0  1
e4 0  0  1  1
e5 0  1  0  1

VERTEX⬌EDGE
  e0 e1 e2 e3 e4 e5
f0 1  0  0  1  0  1
f1 0  1  0  0  1  1
f2 1  1  1  0  0  0
f3 0  0  1  1  1  0

EDGE⬌FACE

1 means “touches”; 0 means “does not touch” 

Instead of storing lots of 0’s, use sparse matrices 

Still large storage cost, but finding neighbors is now O(1) 

Hard to change connectivity, since we used fixed indices 

Bonus feature: mesh does not have to be manifold



Store some information about neighbors 
Don’t need an exhaustive list; just a few key pointers 
Key idea: two halfedges act as “glue” between mesh 
elements: 

Each vertex, edge face points to just one of its halfedges.
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Halfedge Data Structure (Linked-list-like)

Ha
lf
ed
ge

twin

ed
ge

next

vertex

face

struct Halfedge
{
   Halfedge* twin;
   Halfedge* next;
   Vertex* vertex;
   Edge* edge;
   Face* face;
};

struct Vertex
{
   Halfedge* halfedge;
};

halfedge

vertex

struct Edge
{
   Halfedge* halfedge;
};ha

lf
ed
ge

ed
ge

struct Face
{
   Halfedge* halfedge;
};

ha
lf
ed
ge

Face



Use “twin” and “next” pointers to move around mesh 
Use “vertex”, “edge”, and “face” pointers to grab element 
Example: visit all vertices of a face: 

Example: visit all neighbors of a vertex: 

Note: only makes sense if mesh is manifold!
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Halfedge makes mesh traversal easy

ha
lf
ed
ge

next

next

Face

Halfedge* h = f->halfedge;
do {
   h = h->next;
   // do something w/ h->vertex
}
while( h != f->halfedge );

ha
lf
ed
ge

twin

twin

next

next
Vertex

Halfedge* h = v->halfedge;
do {
   h = h->twin->next;
}
while( h != v->halfedge );
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Halfedge connectivity is always manifold
Consider simplified halfedge data structure 
Require only “common-sense” conditions

struct Halfedge {
   Halfedge *next, *twin;
};

Keep following next, and you’ll get faces. 
Keep following twin and you’ll get edges. 
Keep following next->twin and you’ll get vertices.

Q: Why, therefore, is it impossible to encode the red figures?

twin->twin == this
twin != this
every he is someone’s “next”

(pointer to yourself!)



Connectivity vs. Geometry
Recall manifold conditions (fans not fins): 
- every edge contained in two faces 
- every vertex contained in one fan 

These conditions say nothing about vertex 
positions!  Just connectivity 

Hence, can have perfectly good (manifold) 
connectivity, even if geometry is awful  

In fact, sometimes you can have perfectly 
good manifold connectivity for which any 
vertex positions give “bad” geometry! 

Can lead to confusion when debugging: mesh 
looks “bad”, even though connectivity is fine

non manifold 
connectivity?

…or just a really 
skinny triangle?

same connectivity, 
random vertex positionscube (manifold)
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Halfedge meshes are easy to edit
Remember key feature of linked list: insert/delete elements 
Same story with halfedge mesh (“linked list on steroids”) 
E.g., for triangle meshes, several atomic operations:

b

c

a d

b

c

a d

!ip

b

m

c

a d

b

c

a d

split

a

b

c d

a

b

m

collapse

How?  Allocate/delete elements; reassigning pointers. 
Must be careful to preserve manifoldness!
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Edge Flip (Triangles)
Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d): 

Long list of pointer reassignments (edge->halfedge = ...) 
However, no elements created/destroyed. 
Q: What happens if we flip twice? 
Challenge: can you implement edge flip such that pointers are 
unchanged after two flips?

b

c

a d

b

c

a d

!ip
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Edge Split (Triangles)
Insert midpoint m of edge (c,b), connect to get four triangles: 

This time, have to add new elements. 
Lots of pointer reassignments. 
Q: Can we “reverse” this operation?

b

m

c

a d

b

c

a d

split
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Edge Collapse (Triangles)
Replace edge (b,c) with a single vertex m: 

Now have to delete elements. 
Still lots of pointer assignments! 
Q: How would we implement this with an adjacency list? 
Any other good way to do it?  (E.g., different data structure?)

a

b

c d

a

b

m

collapse



Paul Heckbert (former CMU prof.) 
quadedge code - http://bit.ly/1QZLHosMany very similar data structures: 

- winged edge 

- corner table 

- quadedge 

- ... 
Each stores local neighborhood information 
Similar tradeoffs relative to simple polygon list: 

- CONS: additional storage, incoherent memory access 

- PROS: better access time for individual elements, intuitive 
traversal of local neighborhoods 

With some thought*, can design halfedge-type data structures with 
coherent data storage, support for non manifold connectivity, etc.
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Alternatives to Halfedge

*see for instance http://geometry-central.net/

http://geometry-central.net/
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Comparison of Polygon Mesh Data Strucutres

Adjacency List
Incidence 
Matrices Halfedge Mesh

constant-time 
neighborhood access?

NO YES YES

easy to add/remove 
mesh elements?

NO NO YES

nonmanifold 
geometry?

YES YES NO

Conclusion: pick the right data structure for the job!
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Ok, but what can we actually do with our 
fancy new data structures?
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Subdivision Modeling
Common modeling paradigm in modern 3D tools: 
- Coarse “control cage” 
- Perform local operations to control/edit shape 
- Global subdivision process determines final surface
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Subdivision Modeling—Local Operations
For general polygon meshes, we can dream up lots of local 
mesh operations that might be useful for modeling:

…and many, many more!
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Geometry Processing 

reconstruction
filtering

remeshing
compressionparameterizationshape analysis
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Geometry Processing: Upsampling
Increase resolution via interpolation 
Images: e.g., bilinear, bicubic interpolation 
Polygon meshes: 
- subdivision 
- bilateral upsampling 
- ...
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Decrease resolution; try to preserve shape/appearance 
Images: nearest-neighbor, bilinear, bicubic interpolation 
Point clouds: subsampling (just take fewer points!) 
Polygon meshes: 
- iterative decimation, variational shape approximation, ...

Geometry Processing: Downsampling
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Geometry Processing: Resampling
Modify sample distribution to improve quality 
Images: not an issue! (Pixels always stored on a regular grid) 
Meshes: shape of polygons is extremely important! 
- different notion of “quality” depending on task 
- e.g., visualization vs. solving equations
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Geometry Processing: Filtering
Remove noise, or emphasize important features (e.g., edges) 
Images: blurring, bilateral filter, edge detection, ... 
Polygon meshes: 
- curvature flow 
- bilateral filter 
- spectral filter



 CMU 15-462/662

Geometry Processing: Compression
Reduce storage size by eliminating redundant data/
approximating unimportant data 
Images:  
- run-length, Huffman coding - lossless 
- cosine/wavelet (JPEG/MPEG) - lossy 
Polygon meshes: 
- compress geometry and connectivity 
- many techniques (lossy & lossless)

840kb840kb

8kb8kb
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Geometry Processing: Shape Analysis
Identify/understand important semantic features 
Images: computer vision, segmentation, face detection, ... 
Polygon meshes: 
- segmentation, correspondence, symmetry detection, ...
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Remeshing is resampling
Remember our discussion of aliasing 
Bad sampling makes signal appear different than it really is 
E.g., undersampled curve looks flat 
Geometry is no different! 
- undersampling destroys features 
- oversampling bad for performance
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What makes a “good” mesh?
One idea: good approximation of original shape! 
Keep only elements that contribute information about shape 
Add additional information where, e.g., curvature is large
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Approximation of position is not enough!
Just because the vertices of a mesh are close to the surface it 
approximates does not mean it’s a good approximation! 
Can still have wrong appearance, wrong area, wrong… 
Need to consider other factors*, e.g., close approximation of 
surface normals

vertices exactly on smooth cylinder

smooth cylinder

flattening of smooth cylinder & meshes

true area

*See Hildebrandt et al (2007), “On the convergence of metric and geometric properties of polyhedral surfaces”
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What else makes a “good” triangle mesh?
Another rule of thumb: triangle 

“GOOD” “BAD”

E.g., all angles close to 60 degrees 
More sophisticated condition: Delaunay (empty circumcircles) 
– often helps with numerical accuracy/stability 
– coincides with shockingly many other desirable properties 

(maximizes minimum angle, provides smoothest 
interpolation, guarantees maximum principle…) 

Tradeoffs w/ good geometric approximation* 
–e.g., long & skinny might be “more efficient”

*see Shewchuk, “What is a Good Linear Element”

DELAUNAY
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degree 20degree 6 subdivide

What else constitutes a “good” mesh?
Another rule of thumb: regular vertex degree 
Degree 6 for triangle mesh, 4 for quad mesh

“GOOD” “OK” “BAD”

subdivide

REGULAR

IRREGULAR

Why? Better polygon shape; more regular computation; smoother subdivision:

Fact: in general, can’t have regular vertex degree everywhere!



 CMU 15-462/662

Next class sessions

Subdivision + 
quadric error 
Geometric queries 
Many different 
ways to represent 
geometry (a late 
intro)


