# Introduction to Geometry 

Computer Graphics<br>CMU 15-462/15-662

## Assignment 2

■ Start building up "Scotty3D"; first part is 3D modeling


## 3D Modeling

## ■ Don't just make great software. . . make great art! :-)


(This mesh was created in Scotty3D in about 5 minutes... you can do much better!)

## Increasing the complexity of our models

Transformations


Geometry


Materials, lighting, ...


## Q: What is geometry?

## A: Geometry is the study of two-column



Ceci n'est pas géométrie.

## What is geometry?

1. The study of shapes, sizes, patterns, and positions.
2. The study of spaces where some quantity (lengths, angles, etc.) can be measured.


Plato: "...the earth is in appearance like one of those balls which have leather coverings in twelve pieces..."

## How can we describe geometry?

## IMPLICIT $x^{2}+y^{2}=1$

LINGUISTIC
"unit circle"

## EXPLICIT



DYNAMIC $\frac{d^{2}}{d t^{2}} x=-x$


DISCRETE


## Given all these options, what's the best way to encode geometry on a computer?

## Examples of geometry



## It's a Jungle Out There!



# No one "best" choice—geometry is hard! 

## "I hate meshes. I cannot believe how hard this is. Geometry is hard."

# —David Baraff 

Senior Research Scientist Pixar Animation Studios

## Many ways to digitally encode geometry

## ■ EXPLICIT

- point cloud
- polygon mesh
- subdivision, NURBS

■ IMPLICIT

- level set
- algebraic surface
- L-systems
- •••

- •••
- Each choice best suited to a different task/type of geometry


## "Implicit" Representations of Geometry

- Points aren't known directly, but satisfy some relationship
- E.g., unit sphere is all points such that $x^{2}+y^{2}+z^{2}=1$
- More generally, $f(x, y, z)=0$



## Many implicit representations in graphics

- algebraic surfaces
- constructive solid geometry
- level set methods
- blobby surfaces
- fractals

■ ...

(Will see some of these a bit later.)

## "Explicit" Representations of Geometry

- All points are given directly
- E.g., points on sphere are $(\cos (u) \sin (v), \sin (u) \sin (v), \cos (v))$, for $0 \leq u<2 \pi$ and $0 \leq v \leq \pi$
■ More generally: $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} ;(u, v) \mapsto(x, y, z)$

- (Might have a bunch of these maps, e.g., one per triangle!)


## Many explicit representations in graphics

- triangle meshes
- polygon meshes
- subdivision surfaces
- NURBS

- point clouds

(Will see some of these a bit later.)


# Ok, so we have many ways to represent surfaces. 

## But what is a surface anyway?

## Manifold Assumption

- First, let's define manifold geometry
- Can be hard to understand motivation at first!
- Let's revisit a more familiar example...



## Bitmap Images, Revisited

To encode images, we used a regular grid of pixels:


# But images are not fundamentally made of little squares: 


photomicrograph of paint

Goyō Hashiguchi, Kamisuki (ca 1920)

## So why did we choose a square grid?


...rather than dozens of possible alternatives?

## Regular grids make life easy

- One reason: SIMPLICITY / EFFICIENCY
- E.g., always have four neighbors
- Easy to index, easy to filter...
- Storage is just a list of numbers
- Another reason: GENERALITY
- Can encode basically any image

|  | $(i, j-1)$ |  |
| :--- | :--- | :--- |
| $(i-1, j)$ | $(i, j)$ | $(i+1, j)$ |
|  | $(i, j+1)$ |  |

- Are regular grids always the best choice for bitmap images?
- No! E.g., suffer from anisotropy, don't capture edges, ...
- But more often than not are a pretty good choice
- Will see a similar story with geometry...


## So, how should we encode surfaces?

## Smooth Surfaces

■ Intuitively, a surface is the boundary or "shell" of an object

- (Think about the candy shell, not the chocolate.)
- Surfaces are manifold:
- If you zoom in far enough, can draw a regular coordinate grid
- E.g., the Earth from space vs. from the ground



## Isn't every shape manifold?

- No, for instance:



Can't draw ordinary 2D grid at center, no matter how close we get.

## Examples—Manifold vs. Nonmanifold

- Which of these shapes are manifold?



## Suppose we have a polygon mesh (an explicit representation)

## A manifold polygon mesh has fans, not fins

- For polygonal surfaces just two easy conditions to check:

1. Every edge is contained in only two polygons (no "fins")
2. The polygons containing each vertex make a single "fan"


## What about boundary?

- The boundary is where the surface "ends."
- E.g., waist \& ankles on a pair of pants.
- Locally, looks like a half disk
- Globally, each boundary forms a loop

- Polygon mesh:

- one polygon per boundary edge
- boundary vertex looks like"pacman"


## Ok, but why is the manifold assumption useful?

## Keep it Simple!

- Same motivation as for images:
- make some assumptions about our geometry to keep data structures/algorithms simple and efficient
- in many common cases, doesn't fundamentally limit what we can do with geometry

|  | $(i, j-1)$ |  |
| :--- | :--- | :--- |
| $(i-1, j)$ | $(i, j)$ | $(i+1, j)$ |
|  | $(i, j+1)$ |  |



## Let's talk about how to encode all this data

## Warm up: storing numbers

- Q: What data structures can we use to store a list of numbers?
- One idea: use an array (constant time lookup, coherent access)

| 1.7 | 2.9 | 0.3 | 7.5 | 9.2 | 4.8 | 6.0 | 0.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

■ Alternative: use a linked list (linear lookup, incoherent access)


- Q: Why bother with the linked list?
- A: For one, we can easily insert numbers wherever we like...


## Polygon Soup

- Most basic idea:
- For each triangle, just store three coordinates
- No other information about connectivity
- Not much different from point cloud! ("Triangle cloud?")

■ Pros:

- Really stupidly simple
- Cons:
- Redundant storage
- Hard to do much beyond simply drawing the mesh on screen
- Need spatial data structures (later) to find neighbors

$$
\begin{array}{lll}
\mathrm{x} 0, \mathrm{y} 0, \mathrm{z} 0 & \mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1 & \mathrm{x} 3, \mathrm{y} 3, \mathrm{z} 3 \\
\mathrm{x} 1, \mathrm{y} 1, \mathrm{z} 1 & \mathrm{x} 2, \mathrm{y} 2, \mathrm{z} 2 & \mathrm{x} 3, \mathrm{y} 3, \mathrm{z} 3
\end{array}
$$

## Adjacency List (Array-like)

- Store triples of coordinates ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ ), tuples of indices

■ E.g., tetrahedron:

|  | VERTICES |  |
| :--- | ---: | ---: |
|  | $\mathbf{x}$ | $\mathbf{y}$ |
| $\mathbf{0}:$ | $\mathbf{z}$ |  |
| $\mathbf{1}:$ | 1 | -1 |
| $\mathbf{2}:$ | -1 |  |
| $\mathbf{3}:$ | 1 | 1 |
| $\mathbf{3}:$ | -1 | 1 | POLYGONS


| $\mathbf{i}$ | $\mathbf{j}$ | $\mathbf{k}$ |
| :--- | :--- | :--- |
| 0 | 2 | 1 |
| 0 | 3 | 2 |
| 3 | 0 | 1 |
| 3 | 1 | 2 |

■ Q: How do we find all the polygons touching vertex 2?

- Ok, now consider a more complicated mesh:

~1 billion polygons


Very expensive to find the neighboring polygons! (What's the cost?)

## Incidence Matrices

■ If we want to know who our neighbors are, why not just store a list of neighbors?

- Can encode all neighbor information via incidence matrices
- E.g., tetrahedron:

| VERTEX $\Leftrightarrow$ EDGE |  |  |  |  | EDGE $\Leftrightarrow$ FACE |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | v0 | v1 | v2 | v3 |  | e |  | e2 | e3 | e4 | 5 |
| e0 | 1 | 1 | 0 | 0 | f0 | 1 | 0 | 0 | 1 | 0 | 1 |
| e1 | 0 | 1 | 1 | 0 | f1 | 0 | 1 | 0 | 0 | 1 | 1 |
| e2 | 1 | 0 | 1 | 0 | f2 | 1 | 1 | 1 | 0 | 0 | 0 |
| e3 | 1 | 0 | 0 | 1 | f3 | 0 | 0 | 1 | 1 | 1 | 0 |
| e4 | 0 | 0 | 1 | 1 |  |  |  |  |  |  |  |
| e5 | 0 | 1 | 0 | 1 |  |  |  |  |  |  |  |

■ 1 means "touches"; 0 means "does not touch"

- Instead of storing lots of 0's, use sparse matrices
- Still large storage cost, but finding neighbors is now $\mathbf{0}$ (1)

- Hard to change connectivity, since we used fixed indices
- Bonus feature: mesh does not have to be manifold


## Halfedge Data Structure (Linked-list-like)

- Store some information about neighbors
- Don't need an exhaustive list; just a few key pointers

■ Key idea: two halfedges act as "glue" between mesh elements:


Each vertex, edge face points to just one of its halfedges.

## Halfedge makes mesh traversal easy

- Use"twin" and "next" pointers to move around mesh
- Use "vertex", "edge", and "face" pointers to grab element

■ Example: visit all vertices of a face:


- Example: visit all neighbors of a vertex:

```
Halfedge* h = v->halfedge;
do {
        h = h->twin->next;
}
while( h != v->halfedge );
```

■ Note: only makes sense if mesh is manifold!


## Halfedge connectivity is always manifold

■ Consider simplified halfedge data structure
■ Require only "common-sense" conditions

```
struct Halfedge {
    Halfedge *next, *twin;
};
```

```
twin->twin == this
twin != this
every he is someone's "next"
```

- Keep following next, and you'll get faces.
- Keep following twin and you'll get edges.
- Keep following next->twin and you'll get vertices.


Q: Why, therefore, is it impossible to encode the red figures?

## Connectivity vs. Geometry

- Recall manifold conditions (fans not fins):
- every edge contained in two faces
- every vertex contained in one fan
- These conditions say nothing about vertex positions! Just connectivity
- Hence, can have perfectly good (manifold) connectivity, even if geometry is awful

- In fact, sometimes you can have perfectly good manifold connectivity for which any vertex positions give"bad" geometry!
- Can lead to confusion when debugging: mesh looks "bad", even though connectivity is fine



## Halfedge meshes are easy to edit

- Remember key feature of linked list: insert/delete elements
- Same story with halfedge mesh ("linked list on steroids")
- E.g., for triangle meshes, several atomic operations:

- How? Allocate/delete elements; reassigning pointers.
- Must be careful to preserve manifoldness!


## Edge Flip (Triangles)

- Triangles ( $\mathbf{a}, \mathrm{b}, \mathrm{c}$ ), ( $\mathbf{b}, \mathrm{d}, \mathrm{c}$ ) become ( $\mathbf{a}, \mathrm{d}, \mathrm{c}$ ), ( $\mathbf{a}, \mathrm{b}, \mathrm{d}$ ):


■ Long list of pointer reassignments (edge->halfedge = ...)

- However, no elements created/destroyed.
- Q: What happens if we flip twice?
- Challenge: can you implement edge flip such that pointers are unchanged after two flips?


## Edge Split (Triangles)

■ Insert midpoint $m$ of edge ( $\mathbf{c}, \mathrm{b}$ ), connect to get four triangles:


- This time, have to add new elements.
- Lots of pointer reassignments.

■ Q: Can we "reverse" this operation?

## Edge Collapse (Triangles)

- Replace edge ( $b, \mathrm{c}$ ) with a single vertex m :

- Now have to delete elements.
- Still lots of pointer assignments!

■ Q: How would we implement this with an adjacency list?

- Any other good way to do it? (E.g., different data structure?)


## Alternatives to Halfedge

- Many very similar data structures:
- winged edge
- corner table
- quadedge

dodec $\leftrightarrow \rightarrow$ icos
- Each stores local neighborhood information
- Similar tradeoffs relative to simple polygon list:
- CONS: additional storage, incoherent memory access
- PROS: better access time for individual elements, intuitive traversal of local neighborhoods
- With some thought*, can design halfedge-type data structures with coherent data storage, support for non manifold connectivity, etc.


## Comparison of Polygon Mesh Data Strucutres

|  | Adjacency List | Incidence <br> Matrices | Halfedge Mesh |
| :---: | :---: | :---: | :---: |
| constant-time <br> neighborhood access? | NO | YES | YES |
| easy to add/remove <br> mesh elements? | NO | NO | YES |
| nonmanifold <br> geometry? | YES | YES | NO |

## Conclusion: pick the right data structure for the job!

## Ok, but what can we actually do with our fancy new data structures?

## Subdivision Modeling

- Common modeling paradigm in modern 3D tools:
- Coarse"control cage"
- Perform local operations to control/edit shape
- Global subdivision process determines final surface



## Subdivision Modeling—Local Operations

- For general polygon meshes, we can dream up lots of local mesh operations that might be useful for modeling:

...and many, many more!


## Geometry Processing


reconstruction

remeshing

filtering

compression

## Geometry Processing: Upsampling

- Increase resolution via interpolation

■ Images: e.g., bilinear, bicubic interpolation

- Polygon meshes:
- subdivision
- bilateral upsampling
- ...



## Geometry Processing: Downsampling

- Decrease resolution; try to preserve shape/appearance
- Images: nearest-neighbor, bilinear, bicubic interpolation
- Point clouds: subsampling (just take fewer points!)
- Polygon meshes:
- iterative decimation, variational shape approximation, ...



## Geometry Processing: Resampling

- Modify sample distribution to improve quality
- Images: not an issue! (Pixels always stored on a regular grid)
- Meshes: shape of polygons is extremely important!
- different notion of "quality" depending on task
- e.g., visualization vs. solving equations


## Geometry Processing: Filtering

- Remove noise, or emphasize important features (e.g., edges)
- Images: blurring, bilateral filter, edge detection, ...
- Polygon meshes:
- curvature flow
- bilateral filter
- spectral filter



## Geometry Processing: Compression

- Reduce storage size by eliminating redundant data/ approximating unimportant data
- Images:
- run-length, Huffman coding - lossless
- cosine/wavelet (JPEG/MPEG) - lossy
- Polygon meshes:
- compress geometry and connectivity
- many techniques (lossy \& lossless)



## Geometry Processing: Shape Analysis

- Identify/understand important semantic features

■ Images: computer vision, segmentation, face detection, ...

- Polygon meshes:
- segmentation, correspondence, symmetry detection, ...




Intrinsic symmetry

## Remeshing is resampling

- Remember our discussion of aliasing
- Bad sampling makes signal appear different than it really is
- E.g., undersampled curve looks flat
- Geometry is no different!
- undersampling destroys features

- oversampling bad for performance


## What makes a "good" mesh?

- One idea: good approximation of original shape!

■ Keep only elements that contribute information about shape
■ Add additional information where, e.g., curvature is large

## Approximation of position is not enough!

- Just because the vertices of a mesh are close to the surface it approximates does not mean it's a good approximation!
- Can still have wrong appearance, wrong area, wrong... Need to consider other factors*, e.g., close approximation of surface normals
vertices exactly on smooth cylinder

smooth cylinder

flattening of smooth cylinder \& meshes



## What else makes a "good" triangle mesh?

- Another rule of thumb: triangle


"BAD"

DELAUNAY


## What else constitutes a "good" mesh?

- Another rule of thumb: regular vertex degree


Why? Better polygon shape; more regular computation; smoother subdivision:


## Next class sessions

- Subdivision + quadric error
- Geometric queries

■ Many different ways to represent geometry (a late intro)

Feb 8 3D Rotations

| Feb 13 | Intro to Geometry / Halfedge Data Structure <br> Assignment 1.5 DUE <br> Assignment 2.0 OUT |
| ---: | :--- |
| Feb 15 | Subdivision and Simplification <br> Feb 20 |
| Geometric Queries <br> Assignnent 2.0 DUE <br> Assignment 2.5 OUT |  |
| Feb 22 | Midterm Review |
| Feb 27 | MIDTERM |
| Mar 1 | Other Geometric Representations |
| Mar 6 | SPRING BREAK <br> Mar 8 |
| SPRING BREAK |  |
| Mar 13 | Spatial Data Structures <br> Assignment 3.0 OUT <br> Color |
| Mar 15 | Assignment 2.5 DUE |

