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MiniHW2:  awesome pictures!
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MiniHW3 — due before class Monday 2/13

A1.5 — due 11:59pm 
Monday 2/13

covered in class today (and maybe a little bit of Wednesday)
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Texture Mapping and 
Supersampling

Overall goal — display nice looking textures on 
objects in our scene, both for closeups and for 
distance shots! 

▪ Part I: 
- Sampling, aliasing, and supersampling 

▪ Part II: 
- Perspective correct interpolation (or .. 

using barycentric coordinates properly) 

▪ Part III: 
- Texture mapping  
- Upsampling and downsampling with the 

mipmap
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Part I:  Sampling, Aliasing, and 
Supersampling
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Sampling 101: Sampling a 1D signal

x

f(x)
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Sampling = taking measurements of a signal

x1x0 x2 x3 x4

f(x0)
f(x1) f(x2) f(x3)

f(x4)

f(x)

Below: 5 measurements (“samples”) of  f(x)
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Audio file: stores samples of a 1D signal

time

amplitude

(most consumer audio is sampled 44,100 times per second, i.e., at 44.1 KHz)
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Reconstruction: given a set of samples, how might 
we attempt to reconstruct the original signal ?f(x)

x1x0 x2 x3 x4

f(x0) f(x1) f(x2)
f(x3)

f(x4)
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Piecewise constant approximation

x1

f(x)

x0 x2 x3 x4

̂f(x)

 = value of sample closest to ̂f(x) x
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Piecewise linear approximation

x1x0 x2 x3 x4

f(x)

̂f(x)

 = linear interpolation between values of two closest samples to ̂f(x) x
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How can we represent the signal more accurately?

x1x0 x2 x3 x4 x5 x6 x7 x8

Sample signal more densely 
(increase sampling rate)
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Reconstruction from denser sampling

= reconstruction via linear interpolation
= reconstruction via nearest 

x1x0 x2 x3 x4 x5 x6 x7 x8
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2D Sampling & Reconstruction
▪ Basic story doesn’t change much for images: 

- sample values measure image (i.e., signal) at sample points 
- apply interpolation/reconstruction filter to approximate image

original piecewise constant 
(“nearest neighbor”)

piecewise bi-linear
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Sampling 101: Summary
▪ Sampling = measurement of a signal 

- Encode signal as discrete set of samples 
- In principle, represent values at specific points (though hard to measure in reality!) 

▪ Reconstruction = generating signal from a discrete set of samples 

- Construct a function that interpolates or approximates function values 

- E.g., piecewise constant/“nearest neighbor”, or piecewise linear 

- Many more possibilities!  For all kinds of signals (audio, images, geometry…)

[Image credit: Wikipedia]
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For rasterization, what function are we sampling?

coverage(x, y) := {1, triangle contains point (x, y)
0, otherwise

1
0
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Simple rasterization: just sample the coverage function

Pixel (x,y)

1

2

3

4

Example: 
Here I chose the coverage 
sample point to be at a 
point corresponding to the 
pixel center.

= triangle covers sample

= triangle does not cover sample

(x+0.5, y+0.5)
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Results of sampling triangle coverage
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We see this when we look at the screen 
(assuming a screen pixel emits a square of perfectly uniform intensity of light)
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But the real coverage signal looked like this!
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Aliasing
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Sampling & Reconstruction
continuous signal 

(original)
continuous signal 

(approximate)

sample reconstruct

digital information

Goal: reproduce original signal as accurately as possible.
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1D signal can be expressed as a 
superposition of frequencies

f1(x) = sin(!x)

f2(x) = sin(2!x)

f4(x) = sin(4!x)

f(x) = f1(x) + 0.75 f2(x) + 0.5 f4(x) 
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E.g., audio spectrum analyzer shows the 
amplitude of each frequency

Intensity of 
low-frequencies (bass)

Image credit: ONYX Apps 

Intensity of 
high frequencies



 CMU 15-462/662

Aliasing in Audio
Get a constant tone by playing a sinusoid of frequency ω:

Q: What happens if we increase ω over time?
ω(t) = 6000 t

Why did that happen?
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Undersampling high-frequency signals results in aliasing

Low-frequency signal: sampled 
adequately for accurate 
reconstruction

f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

x

High-frequency signal is 
insufficiently sampled: 
reconstruction appears to be 
from a low frequency signal

“Aliasing”: high frequencies in the original signal masquerade 
as low frequencies after reconstruction (due to undersampling)
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Images can also be decomposed into “frequencies”

SpectrumSpatial domain result
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Low frequencies only (smooth gradients)

Spectrum (after low-pass filter) 
All frequencies above cutoff have 0 magnitude

Spatial domain result
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Mid-range frequencies

Spatial domain result Spectrum (after band-pass filter)



 CMU 15-462/662

Mid-range frequencies

Spatial domain result Spectrum (after band-pass filter)



 CMU 15-462/662

High frequencies (edges)

Spatial domain result 
(strongest edges)

Spectrum (after high-pass filter) 
All frequencies below threshold 

have 0 magnitude
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An image as a sum of its frequency components

+ + +

=
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Spatial aliasing: the function sin(x2 + y2)

(0,0)

Rings in center-left: 
Actual signal (low 
frequency oscillation)

Right: 
aliasing from 
undersampling high 
frequency oscillation 
makes it appear that 
rings are low-frequency 
(they’re not!)

Middle: ring 
frequency 
approaches limit of 
what we can 
represent w/ 
individual pixels

Figure credit: Pat Hanrahan and Bryce Summers

x

y
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Temporal aliasing: wagon wheel effect

Camera’s frame rate (temporal sampling rate) is too low for rapidly spinning wheel.



Nyquist-Shannon theorem
▪ Consider a band-limited signal: has no frequencies above some threshold 

- 1D example: low-pass filtered audio signal 
- 2D example: blurred image example from a few slides ago

ω0

▪ The signal can be perfectly reconstructed if sampled with period T = 1 / 2ω0  
▪ …and if interpolation is performed using a “sinc filter” 

– ideal filter with no frequencies above cutoff (infinite extent!)

sinc(x) = 1
πx sin(πx)
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▪ Signals are often not band-limited in computer graphics. 
Why?

Challenges of sampling in computer graphics

Hint:

▪ Also, infinite extent of “ideal” reconstruction filter (sinc) is 
impractical for efficient implementations. Why?
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Aliasing artifacts in images
▪ Imperfect sampling + imperfect reconstruction 

leads to image artifacts 
- “Jaggies” in a static image 

- “Roping” or “shimmering” of images when animated 

- Moiré patterns in high-frequency areas of images
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How can we reduce aliasing?
▪ No matter what we do, aliasing is a fact of life: any 

sampled representation eventually fails to capture 
frequencies that are too high.  

▪ But we can still do our best to try to match sampling 
and reconstruction so that the signal we reproduce 
looks as much as possible like the signal we acquire 

▪ For instance, if we think of a pixel as a “little square” 
of light, then we want the total light emitted to be 
the same as the total light in that pixel 
- I.e., we want to integrate the signal over the pixel 

(“box filter”)

Let’s (approximately) integrate the signal coverage (x,y) by sampling…
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Initial coverage sampling rate (1 sample per pixel)
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Increase frequency of sampling coverage signal
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Supersampling
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Resampling

Coarsely sampled signalReconstructed signal 
(lacks high frequencies)

Dense sampling of 
reconstructed signal

Converting from one discrete sampled representation to another

Original signal 
(high frequency edge)
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Resample to display’s pixel resolution 
(Because a screen displays one sample value per screen pixel...)
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Resample to display’s pixel rate (box filter)
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Resample to display’s pixel rate (box filter)



 CMU 15-462/662

Displayed result (note anti-aliased edges)

100% 0%

50%

50%

100%

25%100%
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Recall: the real coverage signal was this
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Single Sample vs. Supersampling

single sampling 2x2 supersampling
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Single Sample vs. Supersampling

single sampling 4x4 supersampling
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Single Sample vs. Supersampling

single sampling 32x32 supersampling



 CMU 15-462/662

Checkerboard — Exact Solution
In very special cases we can compute the exact coverage:

Such cases are extremely rare—want solutions 
that will work in the general case!

See: Inigo Quilez, “Filtering the Checkerboard Pattern” & Apodaca et al, “Advanced Renderman” (p. 273)
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Part II:  Perspective correct interpolation 
(or .. using barycentric coordinates 
properly) 



Remember Barycentric Coordinates?
▪ Values of the three functions , ,  for a given point are 

called barycentric coordinates 

▪ Can be computed from triangle area ratios, as byproduct of half-plane 
tests used for rasterization, among other techniques 

▪ Can be used to interpolate any attribute associated with vertices.  
(color*, texture coordinates, etc.)

ϕi(x) ϕj(x) ϕk(x)
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There is a small difficulty with this simple 
and beautiful idea… 

In general, interpolation in screen space 
using barycentric coordinates will give an 
incorrect answer 

Why? 1 2 3 4 5
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It has to do with perspective projection… 
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Perspective-incorrect interpolation
Due to perspective projection (homogeneous divide), barycentric interpolation of values 
on a triangle with different depths is not an affine function of screen XY coordinates

screen

a0

a1

(a0 + a1)/2

Want to interpolate attribute values linearly in 3D object space, not image space.
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Example: perspective incorrect interpolation
Consider a quadrilateral split into two triangles:

If we compute barycentric coordinates using 2D (projected) coordinates, 
leads to (derivative) discontinuity in interpolation where quad was split
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Perspective Correct Interpolation
▪ Goal: interpolate some attribute ɸ at vertices 

▪ Basic recipe: 

- Compute depth z at each vertex 

- Evaluate Z := 1/z and P := ɸ/z at each vertex 

- Interpolate Z and P using standard (2D) barycentric coords 

- At each fragment, divide interpolated P by interpolated Z 
to get final value

For a derivation, see Low, “Perspective-Correct Interpolation”
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Part III:  Texture mapping + 
Upsampling and downsampling with the 
mipmap 
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Texture Mapping
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Many uses of texture mapping
Define variation in surface reflectance 

Pattern on ball Wood grain on floor
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Describe surface material properties

Multiple layers of texture maps for color, logos, 
scratches, etc.
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Normal & Displacement Mapping

Use texture value to perturb surface normal to 
“fake” appearance of a bumpy surface

normal mapping

dice up surface geometry into tiny triangles & 
offset positions according to texture values 

 (note bumpy silhouette and shadow boundary)

displacement mapping
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Grace Cathedral environment map Environment map used in rendering

Represent precomputed lighting and shadows
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Texture coordinates
“Texture coordinates” define a mapping from 
surface coordinates to points in texture domain 
Often defined by linearly interpolating texture 
coordinates at triangle vertices

(0.0, 0.0) (1.0, 0.0)

(1.0, 1.0)(0.0, 1.0)

(0.0, 0.5) (1.0, 0.5)(0.5, 0.5)

(0.5, 1.0)

(0.5, 0.0)

Suppose each cube face is split into eight triangles, 
with texture coordinates (u,v) at each vertex

Linearly interpolating texture 
coordinates & “looking up” color 
in texture gives this image:

A texture on the [0,1]2 domain can 
be specified by a 2048x2048 image

(location of highlighted triangle 
in texture space shown in red)

example: texture this cube
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Visualization of texture coordinates

red

green

Associating texture coordinates  with colors helps to visualize mapping(u, v)

(0,1)

(0,0) (1,0)black
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More complex mapping

u

v

Each vertex has a coordinate (u,v) in texture space
(Actually coming up with these coordinates is another story!)

Visualization of texture coordinates Triangle vertices in texture space
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Texture mapping adds detail

u

vRendered result Triangle vertices in texture space

Each triangle “copies” a piece of the image back to the surface
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Texture mapping adds detail
rendering with texturerendering without texture texture image

zo
om
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Another example: periodic coordinates

Q: Why do you think texture coordinates might repeat over the surface?
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Textured Sponza

A: Want to tile a texture many times                                             
(rather than store a huge image!)
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Texture Sampling 101
▪ Basic algorithm for texture mapping: 

- for each pixel in the rasterized image:
- interpolate  coordinates across triangle
- sample (evaluate) texture at interpolated 
- set color of fragment to sampled texture value

(u, v)
(u, v)

…sadly not this easy in general!
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Recall: aliasing
Undersampling a high-frequency signal can result in aliasing

f(x)

x
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Visualizing texture samples

Sample positions are uniformly distributed in screen space 
(rasterizer samples triangle’s appearance at these locations)

u

v

sample positions in screen space

1 2 3 4 5

Sample positions in texture space are not uniform 
(texture function is sampled at these locations) 

sample positions in texture space

1
2

3
4

5

Since triangles are projected from 3D to 2D, pixels in screen space 
will correspond to regions of varying size & location in texture

Irregular sampling pattern makes it hard to avoid aliasing!
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Magnification vs. Minification

Figure credit: Akeley and Hanrahan

▪ Magnification (easier): 
- Example: camera is very close to scene object 
- Single screen pixel maps to tiny region of texture 
- Can just interpolate value at screen pixel center 

▪ Minification (harder): 
- Example: scene object is very far away 
- Single screen pixel maps to large region of texture 
- Need to compute average texture value over pixel to avoid aliasing



Bilinear interpolation (magnification)
How can we “look up” a texture value at a non-integer location ?(u, v)

linear (each row)

bilinear

nearest
neighbor fast but ugly: 

just grab value of nearest 
“texel” (texture pixel) Q: What happens if we 

interpolate vertically first?
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Aliasing due to minification
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“Pre-filtering” texture (minification)
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Texture prefiltering — basic idea
Texture aliasing often occurs because a 
single pixel on the screen covers many 
pixels of the texture 

If we just grab the texture value at the 
center of the pixel, we get aliasing (get a 
“random” color that changes if the 
sample moves even very slightly)  

Ideally, would use the average texture 
value—but this is expensive to compute 

Instead, we can pre-compute the 
averages (once) and just look up these 
averages (many times) at run-time

But which averages should we store?  Can’t precompute them all!
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Prefiltered textures

Actual texture: 64x64 image

Actual texture: 700x700 image 
(only a crop is shown)

...
...

Texture minification

Texture magnificationQ: Are two resolutions enough? A: No…
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MIP map (L. Williams 83)

Level 2 = 32x32 Level 3 = 16x16

Level 4 = 8x8 Level 5 = 4x4

Level 1 = 64x64Level 0 = 128x128

Level 6 = 2x2 Level 7 = 1x1

Rough idea: store prefiltered image at “every possible scale” 
Texels at higher levels store average of texture over a region of texture space (downsampled) 
Later: look up a single pixel from MIP map of appropriate size
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Mipmap (L. Williams 83)

Williams’ original proposed 
mip-map layout “Mip hierarchy” 

level = d

u

v

Slide credit: Akeley and Hanrahan

Q: What’s the storage overhead of a mipmap?
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Computing MIP Map Level

Screen space Texture space

Even within a single triangle, may want to sample from different MIP map levels:

u

v

Q: Which pixel should sample from a coarser MIP map level: the blue one, or the red one?
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Computing Mip Map Level
Compute differences between texture coordinate values at neighboring samples

du
dx = u10 − u00

dv
dx = v10 − v00

du
dy = u01 − u00

dv
dy = v01 − v00

mip-map level: d = log2 L

L
du/dx

dv/dx

L2
x = ( du

dx )
2

+ ( dv
dx )

2
L2

y = ( du
dy )

2
+ ( dv

dy )
2

L = max(L2
x , L2

y )

(u, v)10

(u, v)01

(u, v)00

Lx

Ly
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Visualization of mip-map level 
(  clamped to nearest level)d



 CMU 15-462/662

Sponza (bilinear resampling at level 0)
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Sponza (bilinear resampling at level 2)
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Sponza (bilinear resampling at level 4)
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Sponza (MIP mapped)

retains detail in 
the foreground

nicely filters 
the background
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Problem with basic MIP mapping
▪ If we just use the nearest level, 

can get artifacts where level 
“jumps”—appearance sharply 
transitions from detailed to 
blurry texture 

▪ IDEA: rather than clamping the 
MIP map level to the closest 
integer, use the original 
(continuous) MIP map level  

▪ PROBLEM: we only computed a 
fixed number of MIP map 
levels.  How do we interpolate 
between levels?

d

clamped d

continuous d
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Trilinear Filtering
▪ Used bilinear filtering for 2D data; 

can use trilinear filtering for 3D data 

▪ Given a point , 
and eight closest values  

▪ Just iterate linear filtering: 

- weighted average along  

- weighted average along  

- weighted average along 

(u, v, w) ∈ [0,1]3

fijk

u
v
w

h0

h1

g00 = (1 − u)f000 + uf100
g10 = (1 − u)f010 + uf110
g01 = (1 − u)f001 + uf101
g11 = (1 − u)f011 + uf111

h0 = (1 − v)g00 + vg10

h1 = (1 − v)g01 + vg11

(1 − w)h0 + wh1

image adapted from: Akeley and Hanrahan

(u, v, w)

g00

g10

g01

g11

f000 f100

f110f010

f001 f101

f111f011
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MIP Map Lookup

mip-map texels: level ⌊d⌋ + 1

mip-map texels: level ⌊d⌋

▪ MIP map interpolation works essentially 
the same way 

- not interpolating from 3D grid 

- interpolate from two MIP map levels 
closest to  

- perform bilinear interpolation 
independently in each level 

- interpolate between two bilinear 
values using 

d ∈ ℝ

w = d − ⌊d⌋

Bilinear interpolation: 
four texel reads 
3 linear interpolations  (3 mul + 6 add) 

Trilinear/MIP map interpolation: 
eight texel reads 
7 linear interpolations (7 mul + 14 add)

Starts getting expensive! (➟ specialized hardware)
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Anisotropic Filtering

L

L

isotropic Filtering 
(trilinear)

anisotropic Filtering

Overblurring in 
 directionu

At grazing angles, samples may be stretched out by (very) different amounts along  and u v

u

v
.25

.5
.75

.5 .75.25

texture space viewed from camera 
w/ perspective projection

Common solution: combine 
multiple MIP map samples        
(even more arithmetic/bandwidth!)
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Texture Sampling Pipeline
1. Compute  and  from screen sample  via barycentric interpolation 

2. Approximate , , ,  by taking differences of screen-adjacent samples 

3. Compute mip map level  
4. Convert normalized  texture coordinate  to pixel locations 

 in texture image 
5. Determine addresses of texels needed for filter (e.g., eight neighbors for trilinear) 
6. Load texels into local registers 
7. Perform tri-linear interpolation according to  
8. (…even more work for anisotropic filtering…)

u v (x, y)
du
dx

du
dy

dv
dx

dv
dy

d
[0,1] (u, v)

(U, V) ∈ [W, H]

(U, V, d)

Takeaway: high-quality texturing requires far more work than just looking up 
a pixel in an image!  Each sample demands significant arithmetic & bandwidth 

For this reason, graphics processing units (GPUs) have dedicated, fixed-
function hardware support to perform texture sampling operations
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Texture Mapping—Summary
▪ Once we have 2D primitives, can interpolate attributes across vertices using 

barycentric coordinates 

▪ Important example: texture coordinates, used to copy pieces of a 2D image 
onto a 3D surface 

▪ Careful texture filtering is needed to avoid aliasing 
- Key idea: what’s the average color covered by a pixel? 
- For magnification, can just do a bilinear lookup 
- For minification, use prefiltering to compute averages ahead of time 

- a MIP map stores averages at different levels 
- blend between levels using trilinear filtering 

- At grazing angles, anisotropic filtering needed to deal w/ “stretching” of 
samples 

- In general, no perfect solution to aliasing!  Try to balance quality & efficiency
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Next Time: 3D Rotations


