
Computer Graphics
CMU 15-462/15-662

Texture Mapping and
Supersampling

 CMU 15-462/662

MiniHW2: awesome pictures!

 CMU 15-462/662

MiniHW3 — due before class Monday 2/13

A1.5 — due 11:59pm
Monday 2/13

covered in class today (and maybe a little bit of Wednesday)

 CMU 15-462/662

Texture Mapping and
Supersampling

Overall goal — display nice looking textures on
objects in our scene, both for closeups and for
distance shots!

▪ Part I:
- Sampling, aliasing, and supersampling

▪ Part II:
- Perspective correct interpolation (or ..

using barycentric coordinates properly)

▪ Part III:
- Texture mapping
- Upsampling and downsampling with the

mipmap

 CMU 15-462/662

Part I: Sampling, Aliasing, and
Supersampling

 CMU 15-462/662

Sampling 101: Sampling a 1D signal

x

f(x)

 CMU 15-462/662

Sampling = taking measurements of a signal

x1x0 x2 x3 x4

f(x0)
f(x1) f(x2) f(x3)

f(x4)

f(x)

Below: 5 measurements (“samples”) of f(x)

 CMU 15-462/662

Audio file: stores samples of a 1D signal

time

amplitude

(most consumer audio is sampled 44,100 times per second, i.e., at 44.1 KHz)

 CMU 15-462/662

Reconstruction: given a set of samples, how might
we attempt to reconstruct the original signal ?f(x)

x1x0 x2 x3 x4

f(x0) f(x1) f(x2)
f(x3)

f(x4)

 CMU 15-462/662

Piecewise constant approximation

x1

f(x)

x0 x2 x3 x4

̂f(x)

 = value of sample closest to ̂f(x) x

 CMU 15-462/662

Piecewise linear approximation

x1x0 x2 x3 x4

f(x)

̂f(x)

 = linear interpolation between values of two closest samples to ̂f(x) x

 CMU 15-462/662

How can we represent the signal more accurately?

x1x0 x2 x3 x4 x5 x6 x7 x8

Sample signal more densely
(increase sampling rate)

 CMU 15-462/662

Reconstruction from denser sampling

= reconstruction via linear interpolation
= reconstruction via nearest

x1x0 x2 x3 x4 x5 x6 x7 x8

 CMU 15-462/662

2D Sampling & Reconstruction
▪ Basic story doesn’t change much for images:

- sample values measure image (i.e., signal) at sample points
- apply interpolation/reconstruction filter to approximate image

original piecewise constant
(“nearest neighbor”)

piecewise bi-linear

 CMU 15-462/662

Sampling 101: Summary
▪ Sampling = measurement of a signal

- Encode signal as discrete set of samples
- In principle, represent values at specific points (though hard to measure in reality!)

▪ Reconstruction = generating signal from a discrete set of samples

- Construct a function that interpolates or approximates function values

- E.g., piecewise constant/“nearest neighbor”, or piecewise linear

- Many more possibilities! For all kinds of signals (audio, images, geometry…)

[Image credit: Wikipedia]

 CMU 15-462/662

For rasterization, what function are we sampling?

coverage(x, y) := {1, triangle contains point (x, y)
0, otherwise

1
0

 CMU 15-462/662

Simple rasterization: just sample the coverage function

Pixel (x,y)

1

2

3

4

Example:
Here I chose the coverage
sample point to be at a
point corresponding to the
pixel center.

= triangle covers sample

= triangle does not cover sample

(x+0.5, y+0.5)

 CMU 15-462/662

Results of sampling triangle coverage

 CMU 15-462/662

We see this when we look at the screen
(assuming a screen pixel emits a square of perfectly uniform intensity of light)

 CMU 15-462/662

But the real coverage signal looked like this!

 CMU 15-462/662

Aliasing

 CMU 15-462/662

Sampling & Reconstruction
continuous signal

(original)
continuous signal

(approximate)

sample reconstruct

digital information

Goal: reproduce original signal as accurately as possible.

 CMU 15-462/662

1D signal can be expressed as a
superposition of frequencies

f1(x) = sin(!x)

f2(x) = sin(2!x)

f4(x) = sin(4!x)

f(x) = f1(x) + 0.75 f2(x) + 0.5 f4(x)

 CMU 15-462/662

E.g., audio spectrum analyzer shows the
amplitude of each frequency

Intensity of
low-frequencies (bass)

Image credit: ONYX Apps

Intensity of
high frequencies

 CMU 15-462/662

Aliasing in Audio
Get a constant tone by playing a sinusoid of frequency ω:

Q: What happens if we increase ω over time?
ω(t) = 6000 t

Why did that happen?

 CMU 15-462/662

Undersampling high-frequency signals results in aliasing

Low-frequency signal: sampled
adequately for accurate
reconstruction

f1(x)

f2(x)

f3(x)

f4(x)

f5(x)

x

High-frequency signal is
insufficiently sampled:
reconstruction appears to be
from a low frequency signal

“Aliasing”: high frequencies in the original signal masquerade
as low frequencies after reconstruction (due to undersampling)

 CMU 15-462/662

Images can also be decomposed into “frequencies”

SpectrumSpatial domain result

 CMU 15-462/662

Low frequencies only (smooth gradients)

Spectrum (after low-pass filter)
All frequencies above cutoff have 0 magnitude

Spatial domain result

 CMU 15-462/662

Mid-range frequencies

Spatial domain result Spectrum (after band-pass filter)

 CMU 15-462/662

Mid-range frequencies

Spatial domain result Spectrum (after band-pass filter)

 CMU 15-462/662

High frequencies (edges)

Spatial domain result
(strongest edges)

Spectrum (after high-pass filter)
All frequencies below threshold

have 0 magnitude

 CMU 15-462/662

An image as a sum of its frequency components

+ + +

=

 CMU 15-462/662

Spatial aliasing: the function sin(x2 + y2)

(0,0)

Rings in center-left:
Actual signal (low
frequency oscillation)

Right:
aliasing from
undersampling high
frequency oscillation
makes it appear that
rings are low-frequency
(they’re not!)

Middle: ring
frequency
approaches limit of
what we can
represent w/
individual pixels

Figure credit: Pat Hanrahan and Bryce Summers

x

y

 CMU 15-462/662

Temporal aliasing: wagon wheel effect

Camera’s frame rate (temporal sampling rate) is too low for rapidly spinning wheel.

Nyquist-Shannon theorem
▪ Consider a band-limited signal: has no frequencies above some threshold

- 1D example: low-pass filtered audio signal
- 2D example: blurred image example from a few slides ago

ω0

▪ The signal can be perfectly reconstructed if sampled with period T = 1 / 2ω0
▪ …and if interpolation is performed using a “sinc filter”

– ideal filter with no frequencies above cutoff (infinite extent!)

sinc(x) = 1
πx sin(πx)

 CMU 15-462/662

▪ Signals are often not band-limited in computer graphics.
Why?

Challenges of sampling in computer graphics

Hint:

▪ Also, infinite extent of “ideal” reconstruction filter (sinc) is
impractical for efficient implementations. Why?

 CMU 15-462/662

Aliasing artifacts in images
▪ Imperfect sampling + imperfect reconstruction

leads to image artifacts
- “Jaggies” in a static image

- “Roping” or “shimmering” of images when animated

- Moiré patterns in high-frequency areas of images

 CMU 15-462/662

How can we reduce aliasing?
▪ No matter what we do, aliasing is a fact of life: any

sampled representation eventually fails to capture
frequencies that are too high.

▪ But we can still do our best to try to match sampling
and reconstruction so that the signal we reproduce
looks as much as possible like the signal we acquire

▪ For instance, if we think of a pixel as a “little square”
of light, then we want the total light emitted to be
the same as the total light in that pixel
- I.e., we want to integrate the signal over the pixel

(“box filter”)

Let’s (approximately) integrate the signal coverage (x,y) by sampling…

 CMU 15-462/662

Initial coverage sampling rate (1 sample per pixel)

 CMU 15-462/662

Increase frequency of sampling coverage signal

 CMU 15-462/662

Supersampling

 CMU 15-462/662

Resampling

Coarsely sampled signalReconstructed signal
(lacks high frequencies)

Dense sampling of
reconstructed signal

Converting from one discrete sampled representation to another

Original signal
(high frequency edge)

 CMU 15-462/662

Resample to display’s pixel resolution
(Because a screen displays one sample value per screen pixel...)

 CMU 15-462/662

Resample to display’s pixel rate (box filter)

 CMU 15-462/662

Resample to display’s pixel rate (box filter)

 CMU 15-462/662

Displayed result (note anti-aliased edges)

100% 0%

50%

50%

100%

25%100%

 CMU 15-462/662

Recall: the real coverage signal was this

 CMU 15-462/662

Single Sample vs. Supersampling

single sampling 2x2 supersampling

 CMU 15-462/662

Single Sample vs. Supersampling

single sampling 4x4 supersampling

 CMU 15-462/662

Single Sample vs. Supersampling

single sampling 32x32 supersampling

 CMU 15-462/662

Checkerboard — Exact Solution
In very special cases we can compute the exact coverage:

Such cases are extremely rare—want solutions
that will work in the general case!

See: Inigo Quilez, “Filtering the Checkerboard Pattern” & Apodaca et al, “Advanced Renderman” (p. 273)

 CMU 15-462/662

Part II: Perspective correct interpolation
(or .. using barycentric coordinates
properly)

Remember Barycentric Coordinates?
▪ Values of the three functions , , for a given point are

called barycentric coordinates

▪ Can be computed from triangle area ratios, as byproduct of half-plane
tests used for rasterization, among other techniques

▪ Can be used to interpolate any attribute associated with vertices.
(color*, texture coordinates, etc.)

ϕi(x) ϕj(x) ϕk(x)

 CMU 15-462/662

There is a small difficulty with this simple
and beautiful idea…

In general, interpolation in screen space
using barycentric coordinates will give an
incorrect answer

Why? 1 2 3 4 5

 CMU 15-462/662

It has to do with perspective projection…

 CMU 15-462/662

Perspective-incorrect interpolation
Due to perspective projection (homogeneous divide), barycentric interpolation of values
on a triangle with different depths is not an affine function of screen XY coordinates

screen

a0

a1

(a0 + a1)/2

Want to interpolate attribute values linearly in 3D object space, not image space.

 CMU 15-462/662

Example: perspective incorrect interpolation
Consider a quadrilateral split into two triangles:

If we compute barycentric coordinates using 2D (projected) coordinates,
leads to (derivative) discontinuity in interpolation where quad was split

 CMU 15-462/662

Perspective Correct Interpolation
▪ Goal: interpolate some attribute ɸ at vertices

▪ Basic recipe:

- Compute depth z at each vertex

- Evaluate Z := 1/z and P := ɸ/z at each vertex

- Interpolate Z and P using standard (2D) barycentric coords

- At each fragment, divide interpolated P by interpolated Z
to get final value

For a derivation, see Low, “Perspective-Correct Interpolation”

 CMU 15-462/662

Part III: Texture mapping +
Upsampling and downsampling with the
mipmap

 CMU 15-462/662

Texture Mapping

 CMU 15-462/662

Many uses of texture mapping
Define variation in surface reflectance

Pattern on ball Wood grain on floor

 CMU 15-462/662

Describe surface material properties

Multiple layers of texture maps for color, logos,
scratches, etc.

 CMU 15-462/662

Normal & Displacement Mapping

Use texture value to perturb surface normal to
“fake” appearance of a bumpy surface

normal mapping

dice up surface geometry into tiny triangles &
offset positions according to texture values

 (note bumpy silhouette and shadow boundary)

displacement mapping

 CMU 15-462/662
Grace Cathedral environment map Environment map used in rendering

Represent precomputed lighting and shadows

 CMU 15-462/662

Texture coordinates
“Texture coordinates” define a mapping from
surface coordinates to points in texture domain
Often defined by linearly interpolating texture
coordinates at triangle vertices

(0.0, 0.0) (1.0, 0.0)

(1.0, 1.0)(0.0, 1.0)

(0.0, 0.5) (1.0, 0.5)(0.5, 0.5)

(0.5, 1.0)

(0.5, 0.0)

Suppose each cube face is split into eight triangles,
with texture coordinates (u,v) at each vertex

Linearly interpolating texture
coordinates & “looking up” color
in texture gives this image:

A texture on the [0,1]2 domain can
be specified by a 2048x2048 image

(location of highlighted triangle
in texture space shown in red)

example: texture this cube

 CMU 15-462/662

Visualization of texture coordinates

red

green

Associating texture coordinates with colors helps to visualize mapping(u, v)

(0,1)

(0,0) (1,0)black

 CMU 15-462/662

More complex mapping

u

v

Each vertex has a coordinate (u,v) in texture space
(Actually coming up with these coordinates is another story!)

Visualization of texture coordinates Triangle vertices in texture space

 CMU 15-462/662

Texture mapping adds detail

u

vRendered result Triangle vertices in texture space

Each triangle “copies” a piece of the image back to the surface

 CMU 15-462/662

Texture mapping adds detail
rendering with texturerendering without texture texture image

zo
om

 CMU 15-462/662

Another example: periodic coordinates

Q: Why do you think texture coordinates might repeat over the surface?

 CMU 15-462/662

Textured Sponza

A: Want to tile a texture many times
(rather than store a huge image!)

 CMU 15-462/662

Texture Sampling 101
▪ Basic algorithm for texture mapping:

- for each pixel in the rasterized image:
- interpolate coordinates across triangle
- sample (evaluate) texture at interpolated
- set color of fragment to sampled texture value

(u, v)
(u, v)

…sadly not this easy in general!

 CMU 15-462/662

Recall: aliasing
Undersampling a high-frequency signal can result in aliasing

f(x)

x

 CMU 15-462/662

Visualizing texture samples

Sample positions are uniformly distributed in screen space
(rasterizer samples triangle’s appearance at these locations)

u

v

sample positions in screen space

1 2 3 4 5

Sample positions in texture space are not uniform
(texture function is sampled at these locations)

sample positions in texture space

1
2

3
4

5

Since triangles are projected from 3D to 2D, pixels in screen space
will correspond to regions of varying size & location in texture

Irregular sampling pattern makes it hard to avoid aliasing!

 CMU 15-462/662

Magnification vs. Minification

Figure credit: Akeley and Hanrahan

▪ Magnification (easier):
- Example: camera is very close to scene object
- Single screen pixel maps to tiny region of texture
- Can just interpolate value at screen pixel center

▪ Minification (harder):
- Example: scene object is very far away
- Single screen pixel maps to large region of texture
- Need to compute average texture value over pixel to avoid aliasing

Bilinear interpolation (magnification)
How can we “look up” a texture value at a non-integer location ?(u, v)

linear (each row)

bilinear

nearest
neighbor fast but ugly:

just grab value of nearest
“texel” (texture pixel) Q: What happens if we

interpolate vertically first?

 CMU 15-462/662

Aliasing due to minification

 CMU 15-462/662

“Pre-filtering” texture (minification)

 CMU 15-462/662

Texture prefiltering — basic idea
Texture aliasing often occurs because a
single pixel on the screen covers many
pixels of the texture

If we just grab the texture value at the
center of the pixel, we get aliasing (get a
“random” color that changes if the
sample moves even very slightly)

Ideally, would use the average texture
value—but this is expensive to compute

Instead, we can pre-compute the
averages (once) and just look up these
averages (many times) at run-time

But which averages should we store? Can’t precompute them all!

 CMU 15-462/662

Prefiltered textures

Actual texture: 64x64 image

Actual texture: 700x700 image
(only a crop is shown)

...
...

Texture minification

Texture magnificationQ: Are two resolutions enough? A: No…

 CMU 15-462/662

MIP map (L. Williams 83)

Level 2 = 32x32 Level 3 = 16x16

Level 4 = 8x8 Level 5 = 4x4

Level 1 = 64x64Level 0 = 128x128

Level 6 = 2x2 Level 7 = 1x1

Rough idea: store prefiltered image at “every possible scale”
Texels at higher levels store average of texture over a region of texture space (downsampled)
Later: look up a single pixel from MIP map of appropriate size

 CMU 15-462/662

Mipmap (L. Williams 83)

Williams’ original proposed
mip-map layout “Mip hierarchy”

level = d

u

v

Slide credit: Akeley and Hanrahan

Q: What’s the storage overhead of a mipmap?

 CMU 15-462/662

Computing MIP Map Level

Screen space Texture space

Even within a single triangle, may want to sample from different MIP map levels:

u

v

Q: Which pixel should sample from a coarser MIP map level: the blue one, or the red one?

 CMU 15-462/662

Computing Mip Map Level
Compute differences between texture coordinate values at neighboring samples

du
dx = u10 − u00

dv
dx = v10 − v00

du
dy = u01 − u00

dv
dy = v01 − v00

mip-map level: d = log2 L

L
du/dx

dv/dx

L2
x = (du

dx)
2

+ (dv
dx)

2
L2

y = (du
dy)

2
+ (dv

dy)
2

L = max(L2
x , L2

y)

(u, v)10

(u, v)01

(u, v)00

Lx

Ly

 CMU 15-462/662

Visualization of mip-map level
(clamped to nearest level)d

 CMU 15-462/662

Sponza (bilinear resampling at level 0)

 CMU 15-462/662

Sponza (bilinear resampling at level 2)

 CMU 15-462/662

Sponza (bilinear resampling at level 4)

 CMU 15-462/662

Sponza (MIP mapped)

retains detail in
the foreground

nicely filters
the background

 CMU 15-462/662

Problem with basic MIP mapping
▪ If we just use the nearest level,

can get artifacts where level
“jumps”—appearance sharply
transitions from detailed to
blurry texture

▪ IDEA: rather than clamping the
MIP map level to the closest
integer, use the original
(continuous) MIP map level

▪ PROBLEM: we only computed a
fixed number of MIP map
levels. How do we interpolate
between levels?

d

clamped d

continuous d

 CMU 15-462/662

Trilinear Filtering
▪ Used bilinear filtering for 2D data;

can use trilinear filtering for 3D data

▪ Given a point ,
and eight closest values

▪ Just iterate linear filtering:

- weighted average along

- weighted average along

- weighted average along

(u, v, w) ∈ [0,1]3

fijk

u
v
w

h0

h1

g00 = (1 − u)f000 + uf100
g10 = (1 − u)f010 + uf110
g01 = (1 − u)f001 + uf101
g11 = (1 − u)f011 + uf111

h0 = (1 − v)g00 + vg10

h1 = (1 − v)g01 + vg11

(1 − w)h0 + wh1

image adapted from: Akeley and Hanrahan

(u, v, w)

g00

g10

g01

g11

f000 f100

f110f010

f001 f101

f111f011

 CMU 15-462/662

MIP Map Lookup

mip-map texels: level ⌊d⌋ + 1

mip-map texels: level ⌊d⌋

▪ MIP map interpolation works essentially
the same way

- not interpolating from 3D grid

- interpolate from two MIP map levels
closest to

- perform bilinear interpolation
independently in each level

- interpolate between two bilinear
values using

d ∈ ℝ

w = d − ⌊d⌋

Bilinear interpolation:
four texel reads
3 linear interpolations (3 mul + 6 add)

Trilinear/MIP map interpolation:
eight texel reads
7 linear interpolations (7 mul + 14 add)

Starts getting expensive! (➟ specialized hardware)

 CMU 15-462/662

Anisotropic Filtering

L

L

isotropic Filtering
(trilinear)

anisotropic Filtering

Overblurring in
 directionu

At grazing angles, samples may be stretched out by (very) different amounts along and u v

u

v
.25

.5
.75

.5 .75.25

texture space viewed from camera
w/ perspective projection

Common solution: combine
multiple MIP map samples
(even more arithmetic/bandwidth!)

 CMU 15-462/662

Texture Sampling Pipeline
1. Compute and from screen sample via barycentric interpolation

2. Approximate , , , by taking differences of screen-adjacent samples

3. Compute mip map level
4. Convert normalized texture coordinate to pixel locations

 in texture image
5. Determine addresses of texels needed for filter (e.g., eight neighbors for trilinear)
6. Load texels into local registers
7. Perform tri-linear interpolation according to
8. (…even more work for anisotropic filtering…)

u v (x, y)
du
dx

du
dy

dv
dx

dv
dy

d
[0,1] (u, v)

(U, V) ∈ [W, H]

(U, V, d)

Takeaway: high-quality texturing requires far more work than just looking up
a pixel in an image! Each sample demands significant arithmetic & bandwidth

For this reason, graphics processing units (GPUs) have dedicated, fixed-
function hardware support to perform texture sampling operations

 CMU 15-462/662

Texture Mapping—Summary
▪ Once we have 2D primitives, can interpolate attributes across vertices using

barycentric coordinates

▪ Important example: texture coordinates, used to copy pieces of a 2D image
onto a 3D surface

▪ Careful texture filtering is needed to avoid aliasing
- Key idea: what’s the average color covered by a pixel?
- For magnification, can just do a bilinear lookup
- For minification, use prefiltering to compute averages ahead of time

- a MIP map stores averages at different levels
- blend between levels using trilinear filtering

- At grazing angles, anisotropic filtering needed to deal w/ “stretching” of
samples

- In general, no perfect solution to aliasing! Try to balance quality & efficiency

 CMU 15-462/662

Next Time: 3D Rotations

