Computer Graphics CMU 15-462/15-662

Depth and Transparency

What we know how to do so far...

Coverage(x,y)

Previously discussed how to sample coverage given the 2D position of the triangle's vertices.

What if our triangle is not all the same color (or any other property)?

Consider sampling color(x,y)

a red [0,0,1]

What is the triangle's color at the point \mathbf{x} ? **Standard strategy:** <u>interpolate</u> color values at vertices.

CMU 15-462/662

Linear interpolation in 1D

Suppose we've sampled values of a function f(x) at points x_i , i.e., $f_i := f(x_i)$ **Q:** How do we construct a function that "connects the dots" between x_i and x_{i+1}?

CMU 15-462/662

Linear interpolation in 2D

Suppose we've likewise sampled values of a function $f(\mathbf{p})$ at points \mathbf{p}_i , \mathbf{p}_j , \mathbf{p}_k in 2D Q: How do we "connect the dots" this time? E.g., how do we fit a plane?

CMU 15-462/662

Linear interpolation in 2D

$$\hat{f}(x,y) =$$

To interpolate, we need to find coefficients such that the

$$\hat{f}(x_n, y_n) = f_n, n \in \{i, j, k\}$$

Yields three linear equations in three unknowns. Solution?

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \frac{1}{(x_j y_i - x_i y_j) + (x_k y_j - x_j y_k) + (x_i y_k - x_k y_i)}$$

This is ugly. There <u>has</u> to be a better way to think about this...

Want to fit a linear (really, affine) function to three values

Any such function has three unknown coefficients a, b, and c:

=ax+by+c

function matches the sample values at the sample points:

$$= \begin{bmatrix} f_i(y_k - y_j) + f_j(y_i - y_k) + f_k(y_j - y_i) \\ f_i(x_j - x_k) + f_j(x_k - x_i) + f_k(x_i - x_j) \\ f_i(x_k y_j - x_j y_k) + f_j(x_i y_k - x_k y_i) + f_k(x_j y_i - x_i y_j) \end{bmatrix}$$

1D Linear Interpolation, revisited

Let's think about how we did linear interpolation in 1D:

Can think of this as a linear combination of two functions:

As we move closer to t=0, we approach the value of f at x_i As we move closer to t=1, we approach the value of f at x_j

 $\hat{f}(t) = (1-t)f_i + tf_j$

2D Linear Interpolation, revisited

We can construct analogous functions for a triangle divide by the height of the triangle:

For a given point x, measure the distance to each edge; then

$$\phi_i(x) = d_i(x)/h_i$$

Interpolate by taking linear combination: $\hat{f}(x) = f_i \phi_i + f_j \phi_j + f_k \phi_k$ **Q:** Is this the same as the (ugly) function we found before?

2D Interpolation, another way

I claim we can also get the same three basis functions as a ratio of triangle areas:

Q: Do you buy it? (Why or why not?)

$$\sum_{x_k} \phi_i(x) = \frac{\operatorname{area}(x, x_j, x_k)}{\operatorname{area}(x_i, x_j, x_k)}$$

Barycentric Coordinates

- No matter how you compute them, the values of the three functions $\phi_i(\mathbf{x}), \phi_i(\mathbf{x}), \phi_k(\mathbf{x})$ for a given point are called <u>barycentric coordinates</u>
- Can be used to interpolate any attribute associated with vertices. (color*, texture coordinates, etc.)
- Importantly, these same three values fall out of the half-plane tests used for triangle rasterization! (Why?)
- Hence, get them for "free" during rasterization

 $\operatorname{color}(x) = \operatorname{color}(x_i)\phi_i + \operatorname{color}(x_j)\phi_j + \operatorname{color}(x_k)\phi_k$

*Note: we haven't explained yet how to encode colors as numbers! We'll talk about that in a later lecture...

02

Occlusion

Occlusion: which triangle is visible at each covered sample point?

Opaque Triangles

50% transparent triangles

Sampling Depth

Assume we have a triangle given by: - the projected 2D coordinates (x_i, y_i) of each vertex

– the "depth" d_i of each vertex (i.e., distance from the viewer)

Q: How do we compute the depth d at a given sample point (x, y)?

A: Interpolate it using barycentric coordinates—just like any other attribute that varies linearly over the triangle

The depth-buffer (Z-buffer)

For each sample, depth-buffer stores the depth of the **closest** triangle seen so far

Initialize all depth buffer values to "infinity" (max value)

Depth buffer example

near

Example: rendering three opaque triangles

Processing yellow triangle: depth = 0.5

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0

Color buffer contents

After processing yellow triangle:

Color buffer contents

Processing blue triangle: depth = 0.75

Color buffer contents

After processing blue triangle:

Color buffer contents

Processing red triangle: depth = 0.25

Color buffer contents

After processing red triangle:

Color buffer contents

Occlusion using the depth buffer

```
bool pass depth test(d1, d2)
   return d1 < d2;
```

```
if( pass depth test( d, zbuffer[x][y] ))
  zbuffer[x][y] = d; // update zbuffer
  color[x][y] = c; // update color buffer
// don't update color or depth
```

draw sample(x, y, d, c) //new depth d & color c at (x,y)

// triangle is closest object seen so far at this // sample point. Update depth and color buffers.

// otherwise, we've seen something closer already;

Depth + Intersection

Q: Does depth-buffer algorithm handle interpenetrating surfaces?

A: Of course!

Occlusion test is based on depth of triangles <u>at a given sample point</u>.

Relative depth of triangles may be different at different sample points.

Intersection

Q: Does depth-buffer algorithm handle interpenetrating surfaces? A: Of course!

Occlusion test is based on depth of triangles <u>at a given sample point</u>.

Relative depth of triangles may be different at different sample points.

Summary: occlusion using a depth buffer

- Store one depth value per sample—this is not always going to be one per pixel!
- Constant additional space per sample
 - Hence, constant space for depth buffer
 - **Doesn't depend on number of overlapping primitives!**
- Constant time occlusion test per covered sample
 - Read-modify write of depth buffer if "pass" depth test
 - Just a read if "fail"
- Not specific to triangles: only requires that surface depth can be evaluated at a screen sample point

But what about semi-transparent surfaces?

Compositing

 $\alpha = 3/4$

 $\alpha = 1/4$

$$\alpha = 0$$
 ully transparent

Alpha channel of an image color channels

Key idea: can use α channel to composite one image on top of another.

α channel

Fringing

Poor treatment of color/alpha can yield dark "fringing":

foreground color

fringing

foreground alpha

background color

no fringing

No fringing

Fringing (...why does this happen?)

Over operator:

Composites image B with opacity $\alpha_B \underline{over}$ image A with opacity α_A

Informally, captures behavior of "tinted glass"

Porter & Duff "Compositing Digital Images" (1984)

Notice: "over" is <u>not</u> commutative A over $B \neq B$ over A

Koala over NYC

Over operator: non-premultiplied alpha

Composite image B with opacity α_B over image A with opacity α_A A first attempt: A B B over A

$$A = (A_r, A_g, A_b)$$
$$B = (B_r, B_g, B_b)$$

<u>Composite color:</u>

what **B** lets through

 $C = \alpha_B B + (1 - \alpha_B) \alpha_A A$

appearance of semi-transparent B

Composite alpha:

 $\alpha_C = \alpha_B + (1 - \alpha_B)\alpha_A$

appearance of semitransparent A

Over operator: premultiplied alpha

Composite image B with opacity α_B over image A with opacity α_A

Premultiplied alpha—multiply color by α , then composite:

$$A' = (\alpha_A A_r, \ \alpha_A A_g, \ \alpha_A A_b, \alpha_B)$$
$$B' = (\alpha_B B_r, \ \alpha_B B_g, \ \alpha_B B_b, \alpha_B)$$
$$C' = B' + (1 - \alpha_B)A'$$

Notice premultiplied alpha composites alpha just like how it composites rgb. (Non-premultiplied alpha composites alpha differently than rgb.)

"Un-premultiply" to get final color:

 $(C_r, C_g, C_b, \alpha_C) \Longrightarrow (C_r/\alpha_C, C_g/\alpha_C, C_b/\alpha_C)$

Q: Does this division remind you of anything?

Compositing with & without premultiplied α

Suppose we upsample an image w/ an α channel, then composite it onto a background:

upsampled alpha

non-premultiplied

upsampled color

upsampled premultiplied color

premultiplied

Q: Why do we get the "green fringe" when we don't premultiply?

Similar problem with non-premultiplied α

Consider pre-filtering (downsampling) a texture with an alpha matte

color

 α

desired downsampled result

More problems: applying "over" repeatedly

Composite image C with opacity α_C over B with opacity α_R over image A with opacity α_A

Premultiplied alpha is closed under composition; non-premultiplied alpha is not!

Example: composite 50% bright red over 50% bright red (where "bright red" = (1,0,0), and $\alpha = 0.5$)

non-premultiplied

color .5(1,0,0) + (1-.5).5(1,0,0)too dark! (0.75,0,0)

alpha

$$.5 + (1 - .5) . 5 = .75$$

premultiplied

Summary: advantages of premultiplied alpha

- Compositing operation treats all channels the same (color and α)
- Fewer arithmetic operations for "over" operation than with non-premultiplied representation
- **Closed under composition (repeated "over" operations)**
- **Better representation for filtering (upsampling/downsampling)** images with alpha channel
- Fits naturally into rasterization pipeline (homogeneous coordinates)

Strategy for drawing semi-transparent primitives

Assuming all primitives are semi-transparent, and color values are encoded with premultiplied alpha, here's a strategy for rasterizing an image:

```
over(c1, c2)
   return cl.rgba + (1-cl.a) * c2.rgba;
```

```
{
```

Q: What is the assumption made by this implementation? **Triangles must be rendered in back to front order!**

- update_color_buffer(x, y, sample color, sample depth)
 - if (pass depth test(sample depth, zbuffer[x][y])
 - // (how) should we update depth buffer here?? color[x][y] = over(sample color, color[x][y]);

Putting it all together

What if we have a mixture of opaque and transparent triangles?

<u>Step 1:</u> render opaque primitives (in any order) using depth-buffered occlusion If pass depth test, triangle overwrites value in color buffer at sample

- Step 2: disable depth buffer update, render semi-transparent surfaces in back-to-front order. If pass depth test, triangle is composited OVER contents of color buffer at sample

End-to-end rasterization pipeline

Goal: turn inputs into an image! **Inputs:**

```
positions = {
    v0x, v0y, v0z,
    v1x, v1y, v1x,
    v2x, v2y, v2z,
    v3x, v3y, v3x,
    v4x, v4y, v4z,
    v5x, v5y, v5x
};
```

Object-to-camera-space transform T

Perspective projection transform $P \in \mathbb{R}^{4 \times 4}$

Size of output image (W, H)

$$\in \mathbb{R}^{4 \times 4}$$

At this point we have almost all the tools we need to make an image... Let's review!

Step 1: Transform triangle vertices into camera space

Step 2:

Apply perspective projection transform to transform triangle vertices into normalized coordinate space

Camera-space positions: 3D

Normalized space positions

Step 3: clipping

- Discard triangles that lie complete outside the unit cube (culling)
 - They are off screen, don't bother processing them further
- Clip triangles that extend beyond the unit cube to the cube
 - (possibly generating new triangles)

Triangles before clipping

Triangles after clipping

Step 4: transform to screen coordinates

Perform homogeneous divide, transform vertex xy positions from normalized coordinates into screen coordinates (based on screen w,h)

Step 5: setup triangle (triangle preprocessing)

Before rasterizing triangle, can compute a bunch of data that will be used by all fragments, e.g.,

- triangle edge equations
- triangle attribute equations
- etc.

 $\mathbf{E}_{01}(x,y) \qquad \mathbf{U}(x,y)$ ${f E}_{12}(x,y) = {f V}(x,y) \\ {f E}_{20}(x,y) = {f V}(x,y)$ $\frac{1}{\mathbf{w}}(x,y)$

 $\mathbf{Z}(x,y)$

Step 6: sample coverage

Evaluate attributes z, u, v at all covered samples

Step 6: compute triangle color at sample point

e.g., interpolate from vertices using barycentric coordinates

 \bigcirc

Step 7: perform depth test (if enabled)

Also update depth value at covered samples (if necessary)

0	0	0	0	0	0	0	0
0	0	0	0	0	PASS	0	0
0	0	0	0	0		PASS	0
0	0	0	0	FAIL		PASS	\bigcirc
0	0	0	0	FAIL	PASS	PASS	PASS
0	0	0	FAIL	FAIL	PASS	PASS	PASS
0	0	0	FAIL	FAIL	PASS	PASS	PASS
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

- 0
- 0 0
- Ο
- 0
- 0
- Ο
- 0
- Ο

Step 8: update color buffer* (if depth test passed)

* Possibly using OVER operation for transparency

СМІ

Ο

0

OpenGL/Direct3D graphics pipeline

Our rasterization pipeline doesn't look much different from "real" pipelines used in modern APIs / graphics hardware °3

* Several stages of the modern OpenGL pipeline are omitted

GPU: heterogeneous, multi-core processor

This part (mostly) not used by CUDA/OpenCL; raw graphics horsepower still greater than compute!

Modern Rasterization Pipeline

- Trend toward more generic (but still <u>highly</u> parallel!) computation:
 - make stages programmable
 - replace fixed function vertex, fragment processing add geometry, tessellation shaders

 - generic "compute" shaders (whole other story...)
 - more flexible scheduling of stages

(DirectX 12 Pipeline)

Ray Tracing in Graphics Pipeline

More recently: specialized pipeline for <u>ray tracing</u> (NVIDIA RTX)

https://devblogs.nvidia.com/introduction-nvidia-rtx-directx-ray-tracing/

GPU Ray Tracing Demo ("Marbles at Night")

Next time: Texture Mapping and Supersampling

CMU 15-462/662