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What we know how to do so far…

project objects onto the screen 
(perspective projection)

(0, 0)

(w, h)

sample triangle coverage 
(rasterization)

z
x

y

position objects in the world 
(3D transformations)

Today

put samples into frame buffer 
(depth & alpha)

???

interpolate vertex attributes 
(barycentric coodinates)
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Coverage(x,y)
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⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x

Previously discussed how to sample 
coverage given the 2D position of the 
triangle’s vertices.

x
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What if our triangle is not all the same color  
(or any other property)?
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Consider sampling color(x,y)
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⇥
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green [0,1,0]

blue [0,0,1]

red [0,0,1]

x

What is the triangle’s color at the point       ? 

Lecture 3 Math

Rotations arbitrary:

u� v �w

R�1 = RT

R =

2

4
ux vx wx

uy vy wy

uz vz wz

3

5

R�1 = RT =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

RTu =
⇥
u · u v · u w · u

⇤T
=

⇥
1 0 0

⇤T

RTv =
⇥
u · v v · v w · v

⇤T
=

⇥
0 1 0

⇤T

RTw =
⇥
u ·w v ·w w ·w

⇤T
=

⇥
0 0 1

⇤T

R�1 = RT
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

Rw,✓ = RT
uvwRz,✓Ruvw

Homogeneous:

x =
⇥
xx xy 1

⇤T

wx =
⇥
wxx wxy w

⇤T

Projection:

x

x2D =
⇥
xx/xz xy/xz

⇤T

x =
⇥
xx xy xz 1

⇤

P =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0

3

775

Px =
⇥
xx xy xz xz

⇤T

x2D-H =
⇥
xx xy xz

⇤T

x2D =
⇥
xx/xz xy/xz

⇤T

Standard strategy: interpolate color values at vertices.
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Linear interpolation in 1D
Suppose we’ve sampled values of a function f(x) at points xi, i.e.,  fi := f(xi)
Q: How do we construct a function that “connects the dots” between xi and xi+1?
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Linear interpolation in 2D
Suppose we’ve likewise sampled values of a function  at points  in 2D 

Q: How do we “connect the dots” this time?  E.g., how do we fit a plane?

f(p) pi, pj, pk

pi = (xi, yi)
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Linear interpolation in 2D
▪ Want to fit a linear (really, affine) function to three values 

▪ Any such function has three unknown coefficients a, b, and c: 

▪ To interpolate, we need to find coefficients such that the 
function matches the sample values at the sample points:

▪ Yields three linear equations in three unknowns.  Solution?

This is ugly. There has to be a better way to think about this…
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1D Linear Interpolation, revisited
▪ Let’s think about how we did linear interpolation in 1D:

▪ Can think of this as a linear combination of two functions:

▪ As we move closer to t=0, we approach the value of f at xi 

▪ As we move closer to t=1, we approach the value of f at xj



2D Linear Interpolation, revisited
▪ We can construct analogous functions for a triangle 
▪ For a given point x, measure the distance to each edge; then 

divide by the height of the triangle:

Q: Is this the same as the (ugly) function we found before?
Interpolate by taking linear combination:
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2D Interpolation, another way
▪ I claim we can also get the same three basis 

functions as a ratio of triangle areas:

Q: Do you buy it? (Why or why not?)



Barycentric Coordinates
▪ No matter how you compute them, the values of the three functions 

, ,  for a given point are called barycentric coordinates 

▪ Can be used to interpolate any attribute associated with vertices.  
(color*, texture coordinates, etc.) 

▪ Importantly, these same three values fall out of the half-plane tests 
used for triangle rasterization! (Why?) 

▪ Hence, get them for “free” during rasterization

ϕi(x) ϕj(x) ϕk(x)

*Note: we haven’t explained yet how to encode colors as 
numbers!  We’ll talk about that in a later lecture…
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Occlusion
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Occlusion: which triangle is visible at each 
covered sample point? 

Opaque Triangles 50% transparent triangles
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Sampling Depth
Assume we have a triangle given by: 

– the projected 2D coordinates  of each vertex 
– the “depth”   of each vertex (i.e., distance from the viewer) 

(xi, yi)
di

Q: How do we compute the depth  at a given sample point ?d (x, y)
A: Interpolate it using barycentric coordinates—just like any 
other attribute that varies linearly over the triangle

sc
re

en
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The depth-buffer (Z-buffer)
For each sample, depth-buffer stores the depth of the closest triangle seen so far

Initialize all depth buffer values to “infinity” (max value)

far

near
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Depth buffer example

farnear



 CMU 15-462/662

Example: rendering three opaque triangles
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Depth buffer contents

Processing yellow triangle: 
depth = 0.5

Color buffer contents

Occlusion using the depth-buffer (Z-buffer)
farnear

— sample passed depth test
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Depth buffer contents

After processing yellow triangle:

Color buffer contents

Occlusion using the depth-buffer (Z-buffer)
farnear

— sample passed depth test
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Depth buffer contents

Processing blue triangle: 
depth = 0.75

Color buffer contents

Occlusion using the depth-buffer (Z-buffer)
farnear

— sample passed depth test
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Depth buffer contents

After processing blue triangle: 

Color buffer contents

Occlusion using the depth-buffer (Z-buffer)
farnear

— sample passed depth test
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Depth buffer contents

Processing red triangle: 
depth = 0.25

Color buffer contents

Occlusion using the depth-buffer (Z-buffer)
farnear

— sample passed depth test
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Depth buffer contents

After processing red triangle: 

Color buffer contents

Occlusion using the depth-buffer (Z-buffer)
farnear

— sample passed depth test
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Occlusion using the depth buffer

draw_sample(x, y, d, c) //new depth d & color c at (x,y)
{
  if( pass_depth_test( d, zbuffer[x][y] ))
  {
    // triangle is closest object seen so far at this
    // sample point. Update depth and color buffers.  
    zbuffer[x][y] = d;  // update zbuffer
    color[x][y] = c;   // update color buffer
  }
  // otherwise, we’ve seen something closer already;
  // don’t update color or depth
}

bool pass_depth_test(d1, d2)
{
   return d1 < d2;   
} 
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Depth + Intersection
Q: Does depth-buffer algorithm handle interpenetrating surfaces? 
A: Of course! 
Occlusion test is based on depth of triangles at a given sample point.  
Relative depth of triangles may be different at different sample points.

Green triangle in 
front of yellow 
triangle

Yellow triangle in 
front of green 
triangle
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Intersection
Q: Does depth-buffer algorithm handle interpenetrating surfaces? 
A: Of course! 
Occlusion test is based on depth of triangles at a given sample point.  
Relative depth of triangles may be different at different sample points.

Green triangle in 
front of yellow 
triangle

Yellow triangle in 
front of green 
triangle
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Summary: occlusion using a depth buffer
▪ Store one depth value per sample—this is not always going to be one per pixel! 

▪ Constant additional space per sample 
- Hence, constant space for depth buffer 
- Doesn’t depend on number of overlapping primitives! 

▪ Constant time occlusion test per covered sample 
- Read-modify write of depth buffer if “pass” depth test 
- Just a read if “fail”  

▪ Not specific to triangles: only requires that surface depth can be evaluated at a 
screen sample point

But what about semi-transparent surfaces?
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Compositing
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Representing opacity as alpha
An “alpha” value  describes the opacity of an object0 ≤ α ≤ 1

α = 3/4

α = 1/2

α = 1/4

α = 1

fully opaque

α = 0
fully transparent
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Alpha channel of an image
 channelαcolor channels

Key idea: can use  channel to composite one image on top of another.α
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Fringing
Poor treatment of color/alpha can yield dark “fringing”:

foreground color foreground alpha background color

fringing no fringing



 CMU 15-462/662

No fringing
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Fringing (…why does this happen?)
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Over operator:
Composites image  with opacity  over image  with opacity B αB A αA

 over B A

B
A

B
A

 over A B

A over B ≠ B over A
Notice: “over” is not commutative

Koala over NYC
 Porter & Duff "Compositing Digital Images” (1984)

Informally, captures behavior of “tinted glass”

Koala NYC
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Over operator: non-premultiplied alpha
Composite image  with opacity  over image  with opacity  

A first attempt:

B αB A αA

 over B A

B A

appearance of 
semi-transparent B

what B lets through

appearance of semi-
transparent A

Composite color:

A = (Ar, Ag, Ab)
B = (Br, Bg, Bb)

C = αBB + (1 − αB)αAA

Composite alpha:

αC = αB + (1 − αB)αA
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Over operator: premultiplied alpha
Composite image  with opacity  over image  with opacity B αB A αA

Premultiplied alpha—multiply color by , then composite:α

Notice premultiplied alpha composites alpha just like how it composites rgb. 
(Non-premultiplied alpha composites alpha differently than rgb.  )

“Un-premultiply” to get final color:

Q: Does this division remind you of anything?

A′ = (αAAr, αAAg, αAAb, αA)
B′ = (αBBr, αBBg, αBBb, αB)
C′ = B′ + (1 − αB)A′ 

 over B A

B A

(Cr, Cg, Cb, αC) ⟹ (Cr /αC, Cg/αC, Cb/αC)
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Compositing with & without premultiplied α

original 
color

original 
alpha

premultiplied 
color

(αBB, αB)

upsampled colorupsampled alpha upsampled 
premultiplied color

new background  A
(αA = 1)

Q: Why do we get the 
“green fringe” when 
we don’t premultiply?

Suppose we upsample an image w/ an  channel, then composite it onto a background:α

image B

 over  
non-premultiplied

B A

αBB + (1 − αB)A

 over  
premultiplied

B A

B′ + (1 − αB)A′ 
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Similar problem with non-premultiplied α
Consider pre-filtering (downsampling) a texture with an alpha matte

input color input α composited over whitefiltered color filtered α 

desired downsampled result

αcolor

filtered color filtered αpremultiplied 
color

premultiplied 
α

composited over white
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colorcolor

More problems: applying “over” repeatedly
Composite image  with opacity   over  with opacity  over image  with opacity C αC B αB A αA

Premultiplied alpha is closed under composition; 
non-premultiplied alpha is not!

Example: composite 50% bright red over 50% bright red 
(where “bright red” = ,  and )(1,0,0) α = 0.5

 over  over C B A

B A

C

non-premultiplied

alpha

premultiplied

divide by α

alpha

too dark!

bright red
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Summary: advantages of premultiplied alpha

▪ Compositing operation treats all channels the same (color and ) 

▪ Fewer arithmetic operations for “over” operation than with non-
premultiplied representation 

▪ Closed under composition (repeated “over” operations) 

▪ Better representation for filtering (upsampling/downsampling) 
images with alpha channel 

▪ Fits naturally into rasterization pipeline (homogeneous 
coordinates)

α
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Strategy for drawing semi-transparent primitives
Assuming all primitives are semi-transparent, and color values are encoded 
with premultiplied alpha, here’s a strategy for rasterizing an image:

Q: What is the assumption made by this implementation?
Triangles must be rendered in back to front order!

update_color_buffer( x, y, sample_color, sample_depth )
{
   if (pass_depth_test(sample_depth, zbuffer[x][y])
   {
       // (how) should we update depth buffer here??
       color[x][y] = over(sample_color, color[x][y]);
  }
}

over(c1, c2)
{
   return c1.rgba + (1-c1.a) * c2.rgba;   
} 
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Putting it all together
What if we have a mixture of opaque and transparent triangles?

Step 1: render opaque primitives (in any order) using depth-buffered occlusion 
If pass depth test, triangle overwrites value in color buffer at sample

Step 2: disable depth buffer update, render semi-transparent surfaces in back-to-front order. 
If pass depth test, triangle is composited OVER contents of color buffer at sample
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End-to-end rasterization pipeline
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Goal: turn inputs into an image!

positions = {
    v0x, v0y, v0z, 
    v1x, v1y, v1x,
    v2x, v2y, v2z,
    v3x, v3y, v3x,
    v4x, v4y, v4z,
    v5x, v5y, v5x
};

Size of output image  (W, H)

Object-to-camera-space transform T ∈ ℝ4×4

Perspective projection transform P ∈ ℝ4×4

Inputs:

At this point we have almost all the tools we need to make an image… 
Let’s review!
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Step 1:
Transform triangle vertices into camera space

z

x

y



 CMU 15-462/662

Step 2:
Apply perspective projection transform to transform triangle vertices 
into normalized coordinate space

Pinhole 
Camera 

(0,0)

z

x

y

znear

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

z

x

y

(-1,-1,-1)

(1, 1, 1)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Camera-space positions: 3D Normalized space positions
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Step 3: clipping
▪ Discard triangles that lie complete outside the unit cube (culling) 

- They are off screen, don’t bother processing them further 

▪ Clip triangles that extend beyond the unit cube to the cube 
- (possibly generating new triangles)

z

x

y

(-1,-1,-1)

(1, 1, 1)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)
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Step 4: transform to screen coordinates
Perform homogeneous divide, transform vertex xy positions from 
normalized coordinates into screen coordinates (based on screen w,h)

(0, 0)

(w, h)
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Step 5: setup triangle (triangle preprocessing)
Before rasterizing triangle, can compute a bunch 
of data that will be used by all fragments, e.g., 

• triangle edge equations 

• triangle attribute equations 

• etc.
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Step 6: sample coverage
Evaluate attributes z, u, v at all covered samples
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Step 6: compute triangle color at sample point
e.g., interpolate from vertices using barycentric coordinates
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Step 7: perform depth test (if enabled)

PASS PASSPASS

PASS PASS PASS

PASSPASS

PASS

PASS

FAIL

FAIL

FAIL

FAIL

FAIL

FAIL

PASS

PASS

PASS

PASS

Also update depth value at covered samples (if necessary)
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Step 8: update color buffer* (if depth test passed)

* Possibly using OVER operation for transparency
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OpenGL/Direct3D graphics pipeline

Vertex Processing

Fragment Generation 
(Rasterization)

Fragment Processing

Screen sample operations 
(depth and color) 

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on 
vertices

Operations on 
primitives 
(triangles, lines, etc.)

Operations on  
fragments

Operations on 
screen samples

Triangles projected to 2D screen

Fragments (one fragment per covered sample)

Shaded fragments

Output: image (pixels)

Vertices in positioned in 3D normalized 
coordinate space 

* Several stages of the modern OpenGL pipeline are omitted

Input: vertices in 3D space
1

2

3
4

Our rasterization pipeline doesn’t look much different from “real” pipelines used in 
modern APIs / graphics hardware
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GPU: heterogeneous, multi-core processor

GPU 
Memory

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Cache

SIMD
Exec

Texture Texture

Texture Texture

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Clip/Cull
Rasterize

Tessellate Tessellate

Tessellate Tessellate

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

Zbuffer /
Blend

still enormous amount of fixed-
function compute over here

Scheduler / Work Distributor

Modern GPUs offer ~35 TFLOPs of performance for 
generic vertex/fragment programs (“compute”)

This part (mostly) not used by CUDA/OpenCL; raw 
graphics horsepower still greater than compute!
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Modern Rasterization Pipeline
▪ Trend toward more generic (but still highly parallel!) computation: 

- make stages programmable 
- replace fixed function vertex, fragment processing 
- add geometry, tessellation shaders 
- generic “compute” shaders (whole other story…) 

- more flexible scheduling of stages

(DirectX 12 Pipeline)
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Ray Tracing in Graphics Pipeline
▪ More recently: specialized pipeline for ray tracing (NVIDIA RTX)

https://devblogs.nvidia.com/introduction-nvidia-rtx-directx-ray-tracing/
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GPU Ray Tracing Demo (“Marbles at Night”)



 CMU 15-462/662

Next time: Texture Mapping and Supersampling


