Depth and Transparency

Computer Graphics
CMU 15-462/15-662

What we know how to do so far. ..

Coverage(x, y)

Previously discussed how to sample
coverage given the 2D position of the triangle's vertices.

What if our triangle is not all the same color (or any other property)?

Consider sampling color(\mathbf{x}, y)

Linear interpolation in 1D

Suppose we've sampled values of a function $f(x)$ at points $x_{i,}, i . e ., f_{i}:=f\left(x_{i}\right)$
Q: How do we construct a function that "connects the dots" between x_{i} and x_{i+1} ?

$$
\begin{aligned}
& t:=\left(x-x_{i}\right) /\left(x_{i+1}-x_{i}\right) \in[0,1] \\
& \hat{f}(t)=f_{i}+t\left(f_{i+1}-f_{i}\right)=(1-t) f_{i}+t f_{i+1}
\end{aligned}
$$

Linear interpolation in 2D

Suppose we've likewise sampled values of a function $f(\mathbf{p})$ at points $\mathbf{p}_{i}, \mathbf{p}_{j}, \mathbf{p}_{k}$ in 2D
Q: How do we "connect the dots" this time? E.q., how do we fit a plane?

Linear interpolation in 2D

- Want to fit a linear (really, affine) function to three values
- Any such function has three unknown coefficients \mathbf{a}, \mathbf{b}, and \mathbf{c} :

$$
\hat{f}(x, y)=a x+b y+c
$$

- To interpolate, we need to find coefficients such that the function matches the sample values at the sample points:

$$
\hat{f}\left(x_{n}, y_{n}\right)=f_{n}, n \in\{i, j, k\}
$$

- Yields three linear equations in three unknowns. Solution?

$$
\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\frac{1}{\left(x_{i} y_{i}-x_{i} y_{j}\right)+\left(x_{k} y_{j}-x_{j} y_{k}\right)+\left(x_{i} y_{k}-x_{k} y_{i}\right)}\left[\begin{array}{c}
f_{i}\left(y_{k}-y_{j}\right)+f_{f}\left(y_{i}-y_{k}\right)+f_{k}\left(y_{j}-y_{i}\right) \\
f_{i}\left(x_{j}-x_{k}\right)+f_{j}\left(x_{k}-x_{i}\right)+f_{k}\left(x_{i}-x_{j}\right) \\
f_{i}\left(x_{k} y_{j}-x_{j} y_{k}\right)+f_{j}\left(x_{i} y_{k}-x_{k} y_{i}\right)+f_{k}\left(x_{j} y_{i}-x_{i} y_{j}\right)
\end{array}\right]
$$

This is ugly. There has to be a better way to think about this...

1D Linear Interpolation, revisited

- Let's think about how we did linear interpolation in 1D:

$$
\hat{f}(t)=(1-t) f_{i}+t f_{j}
$$

- Can think of this as a linear combination of two functions:

- As we move closer to $t=0$, we approach the value of f at x_{i}
- As we move closer to $t=1$, we approach the value of f at x_{j}

2D Linear Interpolation, revisited

- We can construct analogous functions for a triangle
- For a given point x, measure the distance to each edge; then divide by the height of the triangle:

Interpolate by taking linear combination: $\hat{f}(x)=f_{i} \phi_{i}+f_{j} \phi_{j}+f_{k} \phi_{k}$
Q: Is this the same as the (ugly) function we found before?

2D Interpolation, another way

- I claim we can also get the same three basis functions as a ratio of triangle areas:

$$
\phi_{i}(x)=\frac{\operatorname{area}\left(x, x_{j}, x_{k}\right)}{\operatorname{area}\left(x_{i}, x_{j}, x_{k}\right)}
$$

Q: Do you buy it? (Why or why not?)

Barycentric Coordinates

- No matter how you compute them, the values of the three functions $\phi_{i}(\mathbf{x}), \phi_{j}(\mathbf{x}), \phi_{k}(\mathbf{x})$ for a given point are called barycentric coordinates
- Can be used to interpolate any attribute associated with vertices. (color*, texture coordinates, etc.)
- Importantly, these same three values fall out of the half-plane tests used for triangle rasterization! (Why?)
- Hence, get them for "free" during rasterization

$$
\operatorname{color}(x)=\operatorname{color}\left(x_{i}\right) \phi_{i}+\operatorname{color}\left(x_{j}\right) \phi_{j}+\operatorname{color}\left(x_{k}\right) \phi_{k}
$$

Occlusion

Occlusion: which triangle is visible at each covered sample point?

Sampling Depth

Assume we have a triangle given by:

- the projected 2D coordinates $\left(x_{i}, y_{i}\right)$ of each vertex
- the "depth" d_{i} of each vertex (i.e., distance from the viewer)

Q: How do we compute the depth d at a given sample point (x, y) ?
A: Interpolate it using barycentric coordinates-just like any other attribute that varies linearly over the triangle

The depth-buffer (Z-buffer)

For each sample, depth-buffer stores the depth of the closest triangle seen so far

0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	far

Initialize all depth buffer values to "infinity" (max value)

Depth buffer example

Example: rendering three opaque triangles

Occlusion using the depth-buffer (Z-buffer)

Processing yellow triangle:
depth $=0.5$

| \circ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \circ |
| \circ |
| \circ |
| \circ |
| \circ |
| \circ |
| \circ |
| \circ |
| | | | | | | | | |
| Color buffer contents | | | | | | | | |

Occlusion using the depth-buffer (Z-buffer)

Occlusion using the depth-buffer (Z-buffer)

Processing blue triangle:
depth $=0.75$

Occlusion using the depth-buffer (Z-buffer)

Occlusion using the depth-buffer (Z-buffer)

Processing red triangle:
depth $=0.25$

Color buffer contents

Occlusion using the depth-buffer (Z-buffer)

Occlusion using the depth buffer

```
bool pass_depth_test(d1, d2)
{
    return d1 < d2;
}
```

```
draw_sample(x, y, d, c) / /new depth d & color c at (x,y)
{
    if( pass_depth_test( d, zbuffer[x][y] ))
    {
        // triangle is closest object seen so far at this
        // sample point. Update depth and color buffers.
        zbuffer[x][y] = d; // update zbuffer
        color[x][y] = c; // update color buffer
    }
    // otherwise, we've seen something closer already;
    // don't update color or depth
}
```


Depth + Intersection

Q: Does depth-buffer algorithm handle interpenetrating surfaces?
A: Of course!
Occlusion test is based on depth of triangles at a given sample point. Relative depth of triangles may be different at different sample points.

Intersection

Q: Does depth-buffer algorithm handle interpenetrating surfaces?
A: Of course!
Occlusion test is based on depth of triangles at a given sample point. Relative depth of triangles may be different at different sample points.

Green triangle in front of yellow triangle

Yellow triangle in front of green triangle

Summary: occlusion using a depth buffer

- Store one depth value per sample-this is not always going to be one per pixel!
- Constant additional space per sample
- Hence, constant space for depth buffer
- Doesn't depend on number of overlapping primitives!
- Constant time occlusion test per covered sample
- Read-modify write of depth buffer if "pass" depth test
- Just a read if "fail"

■ Not specific to triangles: only requires that surface depth can be evaluated at a screen sample point

But what about semi-transparent surfaces?

Compositing

Representing opacity as alpha

An "alpha" value $0 \leq \alpha \leq 1$ describes the opacity of an object

$$
\alpha=1 / 4
$$

$$
\alpha=0
$$

fully transparent

Alpha channel of an image

Key idea: can use α channel to composite one image on top of another.

Fringing

Poor treatment of color/alpha can yield dark "fringing":

foreground color

foreground alpha

background color

fringing

No fringing

Fringing (...why does this happen?)

Over operator:

Composites image B with opacity α_{B} over image A with opacity α_{A}
Informally, captures behavior of "tinted glass"

Notice: "over" is not commutative A over $B \neq B$ over A

Koala over NYC

Over operator: non-premultiplied alpha

Composite image B with opacity α_{B} over image A with opacity α_{A} A first attempt:

$$
\begin{aligned}
& A=\left(A_{r}, A_{g}, A_{b}\right) \\
& B=\left(B_{r}, B_{g}, B_{b}\right)
\end{aligned}
$$

Composite color:

$$
C=\alpha_{B} B+\left(1-\alpha_{B}\right) \alpha_{A} A
$$

appearance of
semi-transparent B
appearance of semi-
transparent A

Composite alpha:

$$
\alpha_{C}=\alpha_{B}+\left(1-\alpha_{B}\right) \alpha_{A}
$$

Over operator: premultiplied alpha

Composite image B with opacity α_{B} over image A with opacity α_{A}

Premultiplied alpha-multiply color by α, then composite:

B over A

$$
\begin{aligned}
& A^{\prime}=\left(\alpha_{A} A_{r}, \alpha_{A} A_{g}, \alpha_{A} A_{b}, \alpha_{A}\right) \\
& B^{\prime}=\left(\alpha_{B} B_{r}, \alpha_{B} B_{g}, \alpha_{B} B_{b}, \alpha_{B}\right) \\
& C^{\prime}=B^{\prime}+\left(1-\alpha_{B}\right) A^{\prime}
\end{aligned}
$$

Notice premultiplied alpha composites alpha just like how it composites rgb. (Non-premultiplied alpha composites alpha differently than rgb.)
"Un-premultiply" to get final color:

$$
\left(C_{r}, C_{g}, C_{b}, \alpha_{C}\right) \Longrightarrow\left(C_{r} / \alpha_{C}, C_{g} / \alpha_{C}, C_{b} / \alpha_{C}\right)
$$

Q: Does this division remind you of anything?

Compositing with \& without premultiplied α

Suppose we upsample an image w/ an α channel, then composite it onto a background:

Similar problem with non-premultiplied α

Consider pre-filtering (downsampling) a texture with an alpha matte

input color

input α

filtered color

filtered color
filtered α

filtered α

premultiplied premultiplied color

More problems: applying "over" repeatedly

Composite image C with opacity α_{C} over B with opacity α_{B} over image A with opacity α_{A}
Premultiplied alpha is closed under composition; non-premultiplied alpha is not!

Example: composite 50\% bright red over 50\% bright red (where"bright red" $=(1,0,0)$, and $\alpha=0.5$)

non-premultiplied

alpha

$$
.5+(1-.5) .5=.75
$$

premultiplied

alpha

$$
\alpha=0.75
$$

Summary: advantages of premultiplied alpha

- Compositing operation treats all channels the same (color and α)
- Fewer arithmetic operations for "over" operation than with nonpremultiplied representation
- Closed under composition (repeated "over" operations)
- Better representation for filtering (upsampling/downsampling) images with alpha channel

■ Fits naturally into rasterization pipeline (homogeneous coordinates)

Strategy for drawing semi-transparent primitives

Assuming all primitives are semi-transparent, and color values are encoded with premultiplied alpha, here's a strategy for rasterizing an image:

```
over(c1, c2)
{
    return c1.rgba + (1-c1.a) * c2.rgba;
}
```

```
update_color_buffer( x, y, sample_color, sample_depth )
{
    if (pass_depth_test(sample_depth, zbuffer[x][y])
        {
            // (how) should we update depth buffer here??
            color[x][y] = over(sample_color, color[x][y]);
    }
}
```

Q: What is the assumption made by this implementation?
Triangles must be rendered in back to front order!

Putting it all together

What if we have a mixture of opaque and transparent triangles?

Step 1: render opaque primitives (in any order) using depth-buffered occlusion If pass depth test, triangle overwrites value in color buffer at sample

Step 2: disable depth buffer update, render semi-transparent surfaces in back-to-front order. If pass depth test, triangle is composited OVER contents of color buffer at sample

End-to-end rasterization pipeline

Goal: turn inputs into an image!

Inputs:

```
positions = {
    v0x, v0y, v0z,
    v1x, v1y, v1x,
    v2x, v2y, v2z,
    v3x, v3y, v3x,
    v4x, v4y, v4z,
    v5x, v5y, v5x
};
```

Object-to-camera-space transform $T \in \mathbb{R}^{4 \times 4}$
Perspective projection transform $P \in \mathbb{R}^{4 \times 4}$
Size of output image (W, H)
At this point we have almost all the tools we need to make an image...
Let's review!

Step 1:
Transform triangle vertices into camera space

Step 2:

Apply perspective projection transform to transform triangle vertices into normalized coordinate space

Step 3: clipping

- Discard triangles that lie complete outside the unit cube (culling)
- They are off screen, don't bother processing them further
- Clip triangles that extend beyond the unit cube to the cube
- (possibly generating new triangles)

Triangles before clipping

Triangles after clipping

Step 4: transform to screen coordinates

Perform homogeneous divide, transform vertex xy positions from normalized coordinates into screen coordinates (based on screen w,h)

Step 5: setup triangle (triangle preprocessing)

Before rasterizing triangle, can compute a bunch of data that will be used by all fragments, e.g.,

- triangle edge equations
- triangle attribute equations
- etc.

$$
\begin{array}{ll}
\mathbf{E}_{01}(x, y) & \mathbf{U}(x, y) \\
\mathbf{E}_{12}(x, y) & \mathbf{V}(x, y) \\
\mathbf{E}_{20}(x, y) & \\
\frac{1}{\mathbf{w}}(x, y) & \\
\mathbf{Z}(x, y) &
\end{array}
$$

Step 6: sample coverage

Evaluate attributes $\mathbf{z}, \mathbf{u}, \mathbf{v}$ at all covered samples

Step 6: compute triangle color at sample point

e.g., interpolate from vertices using barycentric coordinates

Step 7: perform depth test (if enabled)

Also update depth value at covered samples (if necessary)

		PASS		O
\bigcirc		PASS	PASS	O
\bigcirc	FAIL	PÅSS	PASS	
	FAIL	PASS	PASS	PASS
\bullet	-	-	\bigcirc	O
FAIL	FAIL	PASS	PASS	PASS
FÄIL				

Step 8: update color buffer* (if depth test passed)

OpenGL/Direct3D graphics pipeline

Our rasterization pipeline doesn't look much different from "real" pipelines used in modern APIs / graphics hardware

GPU: heterogeneous, multi-core processor

This part (mostly) not used by CUDA/OpenCL; raw
graphics horsepower still greater than compute!

Modern Rasterization Pipeline

- Trend toward more generic (but still highly parallel!) computation:
- make stages programmable
- replace fixed function vertex, fragment processing
- add geometry, tessellation shaders
- generic "compute" shaders (whole other story...)
- more flexible scheduling of stages

Ray Tracing in Graphics Pipeline

- More recently: specialized pipeline for ray tracing (NVIDIA RTX)

GPU Ray Tracing Demo ("Marbles at Night")

Next time: Texture Mapping and Supersampling

