Depth and Transparency

Computer Graphics
(MU 15-462/15-662

What we know how to do so far...

(w, h)

W= | 7

(0,0)

position objects in the world project objects onto the screen sample triangle coverage
(3D transformations) (perspective projection) (rasterization)

\ ‘0a,

------1
~J
~J
~J

put samples into frame buffer . .
(depth & alpha) interpolate vertex attributes £
(barycentric coodinates) §

B 1 < - TN - Sy 8 - (o Bea £ < - TR B -y e - =0~ B 1 < e bl R B £

(MU 15-462/662

Coverage(x,y)

Previously discussed how to sample
coverage given the 2D position of the C
triangle’s vertices.

(MU 15-462/662

What if our triangle is not all the same color
(or any other property)?

Consider sampling color(x,y)

C
blue [0,0,1]

b
green [0,1,0]

A
red[0,0,1]

What is the triangle’s color at the point x ?
Standard strateqy: interpolate color values at vertices.

(MU 15-462/662

Linear interpolation in 1D

Suppose we've sampled values of a function f(x) at points x;, i.e., fi := f(x;)
Q: How do we construct a function that “connects the dots” between x; and X;.1?

f(x)1
®
fit /e »
() ® @ fl—l—l
X, Xii -

(MU 15-462/662

Linear interpolation in 2D

Suppose we've likewise sampled values of a function () at points p, P;, Piin2D
Q: How do we “connect the dots” this time? E.a., how do we fit a plane?

f(p)

(MU 15-462/662

Linear interpolation in 2D

m Want to fit a linear (really, affine) function to three values
m Any such function has three unknown coefficients a, b, and c:

F(x,y) = ax + by +c

m To interpolate, we need to find coefficients such that the
function matches the sample values at the sample points:

f(xn,yn) = fa, n € {i,j, k}
m Yields three linear equations in three unknowns. Solution?

SN

1 _ j{igyk—yji “?‘Eyi—yki “;kéyj_yi))
o (i — xiy5) + (i — xye) + (Xiye — Xeyi) _ fi(Xky]‘l— ;C].yk)kJrf]. ;iyl; _ x;yi) +kfkl(x]-yi]— xiy;) |

This is ugly. There has to be a better way to think about this...

(MU 15-462/662

1D Linear Interpolation, revisited

m Let’s think about how we did linear interpolation in 1D:

f(t) = (1 —t)f; +1tf,

m (Can think of this as a linear combination of two functions:

t
m As we move closer to t=0, we approach the value of f at x;

m As we move closer to t=1, we approach the value of f at x;

(MU 15-462/662

2D Linear Interpolation, revisited

m We can construct analogous functions for a triangle

m Fora given point X, measure the distance to each edge; then
divide by the height of the triangle:

IO

Interpolate by taking linear combination: f (x) = fi¢; + fip; + fidx
Q: Is this the same as the (ugly) function we found before?

2D Interpolation, another way

m | claim we can also get the same three basis
functions as a ratio of triangle areas:

area(x, Xj, Xy)

area(x;, X;, Xi)

Q: Do you buy it? (Why or why not?)

(MU 15-462/662

Barycentric Coordinates

® No matter how you compute them, the values of the three functions
¢{(X), P{(X), P, (x) for a given point are called barycentric coordinates

B (an be used to interpolate any attribute associated with vertices.
(color®, texture coordinates, etc.)

m [mportantly, these same three values fall out of the half-plane tests
used for triangle rasterization! (Why?)

1

m Hence, get them for “free” during rasterization

color(x) = color(x;)¢; + color(x;)¢; + color(xx)Py

Occlusion

(MU 15-462/662

Occlusion: which triangle is visible at each

covered sample point?

50% transparent triangles

Opaque Triangles

(MU 15-462/662

Sampling Depth

Assume we have a triangle given by:
— the projected 2D coordinates (.x;, y;) of each vertex

— the “depth” d; of each vertex (i.e., distance from the viewer)

(xi/ yl) d;

(K, Vi)
(%), yj) o

screen

Q: How do we compute the depth d at a given sample point (x, y)?

A: Interpolate it using barycentric coordinates—just like any
other attribute that varies linearly over the triangle

(MU 15-462/662

The depth-buffer (Z-buffer)

For each sample, depth-buffer stores the depth of the triangle seen so far

O O O O O O O O O far

near

Initialize all depth buffer values to “infinity” (max value)

(MU 15-462/662

Depth buffer example

far

(MU 15-462/662

Example: rendering three opaque triangles

Occlusion using the depth-buffer (Z-buffer)

Processing yellow triangle:

depth=0.5

O O O

O O O

Color buffer contents

O

O

O

O

O

O

near [T

@ —sample passed depth test

O O O

O O O

O

O

O

O

O

O

Depth buffer contents

far

(MU 15-462/662

Occlusion using the depth-buffer (Z-buffer)

After processing yellow triangle:

O O O

O O O

Color buffer contents

O

O

O

O

O

O

O

O

near [N

@ —sample passed depth test

O O O

O O O

O

O

O

O

O

O

Depth buffer contents

far

(MU 15-462/662

Occlusion using the depth-buffer (Z-buffer)

Processing blue triangle: near far
depth =0.75

@ —sample passed depth test

O O O O O O O O O O O O O O O O O O
O O O O O O O O O O
O O O O O O O O O O
O O O O O O o O
O O O O O O o O
O O O O o o

O O O O O O O O O O O

O O O O O O O O O O O O O O O O O O

Color buffer contents Depth buffer contents

(MU 15-462/662

Occlusion using the depth-buffer (Z-buffer)

After processing blue triangle:

O O O

Color buffer contents

O

O

O

O

O

O

near [N

@ —sample passed depth test

O O
O O
O O
O O
O
O

®
O O

O

O

O

O

O

O

O

O

Depth buffer contents

far

(MU 15-462/662

Occlusion using the depth-buffer (Z-buffer)

Processing red triangle:

depth =0.25

O ® ®

O O O

Color buffer contents

O

O

O

O

O

O

O

O

near [N

@ —sample passed depth test

O O
O O
O O
O O
O

O

O O

Depth buffer contents

far

(MU 15-462/662

Occlusion using the depth-buffer (Z-buffer)

After processing red triangle:

O O O

Color buffer contents

O

O

O

O

O

O

near [T

@ —sample passed depth test

O O
O O
O O
O O
O
O

®
O O

O

O

O

O

O

O

O

O

Depth buffer contents

far

(MU 15-462/662

Occlusion using the depth buffer

bool pass depth test(dl, d2)
!

return dl < d2;

}

draw sample(x, y, d, c)

{
if(pass depth test(d, zbuffer[x][y]))
{
zbuffer[x][y] = d;
color[x][y] = cC;
}

(MU 15-462/662

Depth + Intersection

Q: Does depth-buffer algorithm handle interpenetrating surfaces?
A: Of course!
Occlusion test is based on depth of triangles at a given sample point.

Relative depth of triangles may be different at different sample points.

Green triangle in
front of yellow
triangle

Yellow triangle in
front of green
triangle

CMU 15-462/662

Intersection

Q: Does depth-buffer algorithm handle interpenetrating surfaces?
A: Of course!

Occlusion test is based on depth of triangles at a given sample point.
Relative depth of triangles may be different at different sample points.

Green triangle in

front of yellow \
triangle
Yellow triangle in —

front of green
triangle

(MU 15-462/662

Summary: occlusion using a depth buffer

Store one depth value per sample—this is not always going to be one per pixel!

- Hence, constant space for depth buffer
- Doesn’t depend on number of overlapping primitives!

- Read-modify write of depth buffer if “pass” depth test
- Just a read if “fail”

Not specific to triangles: only requires that surface depth can be evaluated at a
screen sample point

But what about semi-transparent surfaces?

(MU 15-462/662

Compositing

(MU 15-462/662

Representing opacity as alpha

An“alpha”value 0 < a < 1 describes the opacity of an object

fully opaque

a=3/4

a=1/2

a=1/4

a=~0
fully transparent

(MU 15-462/662

Alpha channel of an image

color channels o channel

Key idea: can use o channel to composite one image on top of another.

(MU 15-462/662

Fringing

Poor treatment of color/alpha can yield dark “fringing”:

J N o
L A" 2% %
b ¥ 2N, \‘.‘ b,
B N

W1 N

£
. ¥
.‘\. | '
(S -
\ .‘ o
! ' \ Y > .4 : p
AR TRANE ', -~ i
AN ¢ AT WD ;
{5 ’
\ \..n' N "IN ‘ ,"}',- Ef‘l-u ' Iill‘ "
y W N) .) 4 N
. ‘py‘l’(, '\'l N

' g € O N L
N a &, R OASE a -

fringing no fringing

(MU 15-462/662

No fringing

CMU 15-462/662

Fringing (. : .why does this happen?

ra

CMU 15-462/662

Over operator:

Composites image B with opacity r; overimage A with opacity

Informally, captures behavior of “tinted glass”

Notice: “over” is not commutative
A over B #= B over A

Koala over NYC
Porter & Duff "Compositing Digital Images” (1984) CMU 15-462/662

Over operator: non-premultiplied alpha

Composite image B with opacity a, overimage A with opacity o,

A first attempt:
B A
A — (Al”’ Ag9 Ab)
b = (B,, B,, By) BoverA

Composite color:

C=azB+ (1 —ap)a,A

Composite alpha:

(MU 15-462/662

Over operator: premultiplied alpha

Composite image B with opacity o, overimage A with opacity o,

Premultiplied alpha—multiply color by r, then composite: A

B
A, — (OCAA,,, OCAAg, aAAb, aA)

B' = (azB,, aBBg, agB), ap) B over A
C'=B+ (1 —agA’

Notice premultiplied alpha composites alpha just like how it composites rgb.

(Non-premultiplied alpha composites alpha differently than rgb.)

“Un-premultiply” to get final color:

(C,, C,, Cy ac) => (C,lac, C,lac, Cylac)

Q: Does this division remind you of anything?

(MU 15-462/662

Compositing with & without premultiplied o

Suppose we upsample an image w/ an o channel, then composite it onto a background:

upsampled alpha upsampled color upsampled
premultlplled color

image B

original original premultiplied
alpha color color

Q: Why do we get the
“green fringe” when
we don't premultiply?

new background A BoverA BoverA
(ay = 1) non-premultiplied premultiplied

(MU 15-462/662

Similar problem with non-premultiplied o

Consider pre-filtering (downsampling) a texture with an alpha matte
desired downsampled result

WL+

| 55 | BB

input color input filtered color filtered o composited over white
premultlplled premultlplled filtered color filtered composited over white

color CMU 15-462/662

More problems: applying “over” repeatedly

Composite image C with opacity - over B with opacity a; over image A with opacity o,

Premultiplied alpha is closed under composition;

non-premultiplied alpha is not! 2 A
Example: composite 50% bright red over 50% bright red C
(where “brightred” = (1,0,0), anda = 0.5)
C over B over A
non-premultiplied premultiplied
S(1,0,0) + (1-.5).5(1,0,0) (.5,0,0,.5)+(1-.5)(.5,0,0,.5)
ii too dark! (-75,0,0-75)
(0.75,0,0) l}
bright red (1,(,0)
S+ (1-.5).5=.75

o=0.75

(MU 15-462/662

Summary: advantages of premultiplied alpha

m Compositing operation treats all channels the same (color and)

B Fewer arithmetic operations for “over” operation than with non-
premultiplied representation

B (losed under composition (repeated “over” operations)

m Better representation for filtering (upsampling/downsampling)
images with alpha channel

m Fits naturally into rasterization pipeline (homogeneous
coordinates)

(MU 15-462/662

Strategy for drawing semi-transparent primitives

Assuming all primitives are semi-transparent, and color values are encoded
with premultiplied alpha, here’s a strategy for rasterizing an image:

over(cl, c2)

{

return cl.rgba + (l-cl.a) * c2.rgba;

}

update color buffer(x, y, sample color, sample depth)

1
if (pass depth test(sample depth, zbuffer([x][y])

{

color[x][y] = over(sample color, color[x][Y]):;

}
}

Q: What is the assumption made by this implementation?
Triangles must be rendered in back to front order!

(MU 15-462/662

Putting it all together

What if we have a mixture of opaque and transparent triangles?

Step 1: render opaque primitives (in any order) using depth-buffered occlusion
If pass depth test, triangle overwrites value in color buffer at sample

Step 2: disable depth buffer update, render semi-transparent surfaces in back-to-front order.
If pass depth test, triangle is composited OVER contents of color buffer at sample

(MU 15-462/662

End-to-end rasterization pipeline

(MU 15-462/662

Goal: turn inputs into an image!

Inputs:

positions

}i

Object-to-camera-space transform /' €

v0x,
vlx,
V2X,
v3X,
vidx,
vb5Xx,

= {
vO0y,
vly,
vy,
v3y,
vy,
v5y,

v0z,
vlx,
v2z,
v3X,
vdz,
vhx

W£4X4

Perspective projection transform P € R***

Size of outputimage (W, H)

At this point we have almost all the tools we need to make an image...

Let’s review!

(MU 15-462/662

Step 1:

Transform triangle vertices into camera space

(MU 15-462/662

Step 2:

Apply perspective projection transform to transform triangle vertices
into normalized coordinate space

X Pinhole

Camera

X6

Camera-space positions: 3D Normalized space positions

(MU 15-462/662

Step 3: clipping

B Discard triangles that lie complete outside the unit cube (culling)
- They are off screen, don't bother processing them further

® (lip triangles that extend beyond the unit cube to the cube
- (possibly generating new triangles)

Triangles before dipping Triangles after clipping
(MU 15-462/662

Step 4: transform to screen coordinates

Perform homogeneous divide, transform vertex xy positions from
normalized coordinates into screen coordinates (based on screen w,h)

(w, h)

(0,0)

(MU 15-462/662

Step 5: setup triangle (triangle preprocessing)

Before rasterizing triangle, can compute a bunch
of data that will be used by all fragments, e.g.,

- triangle edge equations
- triangle attribute equations

. efc.

(MU 15-462/662

sample coverage

Step 6

Evaluate attributes z, u, v at all covered samples

(MU 15-462/662

Step 6: compute triangle color at sample point

e.g., interpolate from vertices using barycentric coordinates

(MU 15-462/662

Step 7: perform depth test (if enabled)

Also update depth value at covered samples (if necessary)

®
FAIL

@
FAIL

o
FAIL
o
FAIL
o
FAIL
o
FAIL

PASS

o o
PASS PASS

PASS PASS

o o o
PASS PASS PASS

e 0
PASS PASS PASS
PASS PASS PASS

(MU 15-462/662

Step 8: update color buffer* (if depth test passed)

OpenGL/Direct3D graphics pipeline

Our rasterization pipeline doesn’t look much different from “real” pipelines used in
modern APIs / graphics hardware os
°1 . .
l— °4 |nput: vertices in 3D space
)
Operations on /Ertexirocessing
vertices preroesmroeseoaseeee :
Vertex stream : ° : o . . .
l : © o : Verticesin positioned in 3D normalized
Operations on o coordinate space
primitives o
(triangles, lines, etc,) Prmitive St’eaml Al
Fragment Generation Triangles projected to 2D screen
(Rasterlzatlon) : '
Operations on Fragment stream -----------------------
fragments %:. Fragments (one fragment per covered sample)
EragmentiErocessing

Shaded fragment streaml

% ?- Shaded fragments
Operations on Screen sample operations

(depthand color) [T
screen samples ;

Output: image (pixels)

* Several stages of the modern OpenGL pipeline are omitted CMU 15-462/662

GPU: heterogeneous, multi-core processor

still enormous amount of fixed-
function compute over here

———————————

Modern GPUs offer ~35 TFLOPs of performance for
generic vertex/fragment programs (“compute”)

This part (mostly) not used by CUDA/OpenCL; raw
graphics horsepower still greater than compute!

. . . .
Scheduler / Work Distributor

Tessellate Tessellate
Tessellate Tessellate

_ GPU
Clip/Cull Clip/Culi
Rasterize Rasterize Memory
Clip/Cull Clip/Culi
Rasterize Rasterize

CMU 15-462/662

Modern Rasterization Pipeline

B Trend toward more generic (but still highly parallel!) computation:
- make stages programmable
- replace fixed function vertex, fragment processing
- add geometry, tessellation shaders
- generic“compute” shaders (whole other story...)
- more flexible scheduling of stages

Memory Resources
(Buffer, Texture, Constant Buffer)

(DirectX 12 Pipeline) CMU 15-462/662

Ray Tracing in Graphics Pipeline

m More recently: specialized pipeline for ray tracing

[Ray Genera tion]

https://devblogs.nvidia.com/introduction-nvidia-rtx-directx-ray-tracing/

(MU 15-462/662

GPU Ray Tracing Demo (“Marbles at Night”)

Next time: Texture Mapping and Supersampling

(MU 15-462/662

