
Computer Graphics
CMU 15-462/15-662

Perspective Projection and
Rasterization

 CMU 15-462/662

Rasterizer A1.0 due Friday Feb 3
▪ Checkpoint A1.0 [40pts]:

- A1T1 transforms [5pts]
- A1T2 lines [15pts]
- A1T3 flat triangles [15pts]
- A1T4 depth + blending [3pts]
- writeup-A1.txt [2pts]

Last Wednesday’s class
Today

Wednesday’s class

 CMU 15-462/662

Mini-HW 1 is out — also due Friday Feb 3

Reminder: you may omit up to 2 Mini HW without penalty

(You may not want to omit this one)

 CMU 15-462/662

Perspective & Rasterization
▪ PREVIOUSLY:

- transformations
(how to manipulate primitives in space)

▪ TODAY:
- special case of perspective projection
- using our “camera” to turn triangles into

pixels on the screen

 CMU 15-462/662

Perspective Projection

 CMU 15-462/662

Perspective projection

distant objects
appear smaller

parallel lines
converge at
the horizon

 CMU 15-462/662

Early painting: incorrect perspective

Carolingian painting, 8-9th century

Evolution toward correct perspective

Masaccio, c.1427

Brunelleschi, c. 1428Lorenzetti, c. 1344

 CMU 15-462/662

Later… rejection of proper perspective projection

Picasso, 1910

 CMU 15-462/662

Return of perspective in computer graphics

 CMU 15-462/662

Rejection of perspective in computer graphics

 CMU 15-462/662

Transformations + Perspective Projection

original description
of objects

[WORLD COORDINATES]

all positions now expressed
relative to camera; camera
is sitting at origin looking

down -z direction

z
x

y

[VIEW COORDINATES]

(-1,-1,-1)

everything visible to the
camera is mapped to unit

cube for easy “clipping”

(1,1,1)

[CLIP COORDINATES]

(0, 0)

(w, h)

coordinates stretched to match image
dimensions (and flipped upside-down)

[IMAGE COORDINATES]

(-1,-1)

(1,1)

unit cube mapped to unit
square via perspective divide

[NORMALIZED COORDINATES]

2D primitives can
now be drawn via

rasterization

 CMU 15-462/662

Simple Perspective Projection

Objects look smaller as they get further away
(“perspective”)
Why does this happen?

2D image

3D object

camera

 CMU 15-462/662

Perspective projection: side view
Where exactly does a point p = (x,y,z) end up on the
image?

Let’s call the image point q=(u,v)

p=(x,y,z)

q=(u,v) 3D object

im
ag

e yv

z

 CMU 15-462/662

Perspective projection: side view
Where exactly does a point p = (x,y,z) end up on the
image?

Let’s call the image point q=(u,v)

Notice two similar triangles:
p=(x,y,z)

q=(u,v)

1
z

y

v
3D object

im
ag

e

Assume camera has unit size, origin is at
pinhole c
Then v/1 = y/z, i.e., vertical coordinate is just
the slope y/z

c

 CMU 15-462/662

Perspective Projection in Homogeneous Coordinates

Q: How can we perform
perspective projection* using
homogeneous coordinates?

The basic idea of the pinhole
camera model is to “divide by z”

So, we can build a matrix that
“copies” the z coordinate into
the homogeneous coordinate

Division by the homogeneous
coordinate now gives us
perspective projection onto the
plane z = 1

(x, y, z) ↦ (x/z, y/z)

*Assuming a pinhole camera at (0,0,0) looking down the z-axis

 CMU 15-462/662

Let’s make this a little more
interesting

 CMU 15-462/662

Simple camera transform
Consider camera at , looking down -axis, object given in world coordinates:(4,2,0) x

Q: What spatial transformation puts in the object in a coordinate system where
the camera is at the origin, looking down the axis?−z

y

z

x

(4,2,0)

▪ Translating object vertex positions by (-4, -2, 0) yields position relative to camera
▪ Rotation about by gives position of object in new coordinate system where

camera’s view direction is aligned with the axis
y π/2

−z

Construct vectors , orthogonal to
– e.g., pick an “up” vector , let
Build corresponding rotation matrix

u v w
v u := v × w

 CMU 15-462/662

Camera looking in a different direction
Now consider a camera looking in a direction w ∈ ℝ3

Q: What transform places in the object in a coordinate system where the
camera is at the origin and the camera is looking directly down the -z axis?

y

z

x

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

R
�1 = R

T

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

Ruvwu =
⇥
1 0 0

⇤

Ruvwv =
⇥
0 1 0

⇤

Ruvww =
⇥
0 0 1

⇤

R
�1
uvw = R

T
uvw =

2

4
ux vx wx

uy vy wy

uz vx wz

3

5

4

f(x) = T3,1(S0.5(x))��f(x) = S0.5(T3,1(x))

f(x) = g(x) + b

Euclidean:

|f(x)� f(y)| = |x� y|

f(x) = R⇡/4S[1.5,1.5]x

x =
⇥
2 2

⇤

x =
⇥
0.5 1

⇤

x = e2 + e3

x = 2e1 + 2e2

x =
⇥
0.5 1

⇤

e1 � e2

Rotations arbitrary:

u� v �w

Ruvw =

2

4
ux uy uz

vx vy vz

wx wy wz

3

5

4

Now invert. (How do we do that?)

 maps -axis to , -axis to , -axis to R x −u y v z

-

 CMU 15-462/662

View frustum

“pinhole”
(0,0,0)

z

x

y

-nearz
-farz

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

View frustum is region the camera can see:

Top / bottom / left / right planes correspond to four sides of the image
Near / far planes correspond to closest/furthest thing we want to draw

 CMU 15-462/662

Clipping
▪ “Clipping” eliminates triangles not visible to the camera / in view frustum

- Don’t waste time rasterizing primitives (e.g., triangles) you can’t see!

- Discarding individual fragments is expensive (“fine granularity”)

- Makes more sense to toss out whole primitives (“coarse granularity”)

- Still need to deal with primitives that are partially clipped…

image credit: Jason L. McKesson (https://paroj.github.io/gltut/)

don’t draw

draw

= in frustum

https://paroj.github.io/gltut/

 CMU 15-462/662

Near/Far Clipping

floating point has more “resolution” near zero—hence more precise resolution of primitive-primitive intersection

near = 10-1

far = 103

“Z-fighting”

near = 10-5

far = 105

▪ Why have near/far clipping planes?

- Some primitives (e.g., triangles) may have vertices both in front & behind eye!
(Causes headaches for rasterization, e.g., checking if fragments are behind eye)

- Also important for dealing with finite precision of depth buffer / limitations on
storing depth as floating point values

Mapping frustum to unit cube

z

x

y

-nearz
-farz

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Before projecting to 2D, map view frustum to cube :[−1,1]3

z

x

y

(-1,-1,-1)

(1,1,1)

Why do we do this?
Makes clipping much easier!
- just discard points outside range [-1,1]
- need to think about partially-clipped triangles
Q: How can we express this mapping as a matrix?
A: Solve for unknown entries of Axi = yi A

 = leftl
 = rightr

 = bottomb
 = topt

 = nearn
 = farf

(orthographic projection)

translate
to origin

scale to
size 2

 CMU 15-462/662

Matrix for Perspective Transform
Recall our basic perspective projection matrix

objects shrink
in distance

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

Full perspective matrix takes geometry of view frustum into account:

For a derivation: http://www.songho.ca/opengl/gl_projectionmatrix.html

 = leftl
 = rightr

 = bottomb
 = topt

 = nearn
 = farf

 CMU 15-462/662

Does this look like our pinhole projection matrix?

(x, y, z) ↦ (x/z, y/z)

*Assuming a pinhole camera at
(0,0,0) looking down the z-axis

 = leftl
 = rightr

 = bottomb
 = topt

 = nearn
 = farf

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:
Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

2

 CMU 15-462/662

Screen Transformation (Vulkan, Direct3D)

Q: What transformation(s) would you apply?
(Careful: is down!)y

One last transformation is needed in the rasterization pipeline:
transform from viewing plane to pixel coordinates

E.g., suppose we want to draw all points that fall inside the square [-1,1]
x [-1,1] on the z = 1 plane, into a W x H pixel image with upper-left
origin.

Lecture 3 Math

x

f(x)(0,0)

(1,1)

“normalized device coordinates”

(-1,-1)

Lecture 3 Math

x

f(x)

W

H (W,H)

(0,0)
image space

 CMU 15-462/662

Screen Transformation
Projection will take points to [-1,1] x [-1,1] on the z = 1 plane;
transform into a W x H pixel image

Lecture 3 Math

x

f(x)(0,0)

(1,1)

“normalized device coordinates”

(-1,-1)

Step 2: translate by (1,1)
Step 3: scale by (W/2,H/2)

Lecture 3 Math

x

f(x)

W

H (W,H)

(0,0)
image space

Step 1: reflect about x-axis

 CMU 15-462/662

Screen Transformation (OpenGL)
One last transformation is needed in the rasterization pipeline:
transform from viewing plane to pixel coordinates

E.g., suppose we want to draw all points that fall inside the
square [-1,1] x [-1,1] on the z = 1 plane, into a W x H pixel image

Lecture 3 Math

x

f(x)(0,0)

(1,1)

“normalized device coordinates”

(-1,-1)

Lecture 3 Math

x

f(x)

W

H (W,H)

(0,0)

image space

Q: What transformation(s) would you apply?

 CMU 15-462/662

Transformations: From Objects to the Screen

original description
of objects

[WORLD COORDINATES]

2D primitives can now
be drawn via
rasterization

(-1,1)

(1,1)

unit cube mapped to unit
square via perspective divide

[NORMALIZED COORDINATES]

perspective
divide

everything visible to the
camera is mapped to unit

cube for easy “clipping”

(-1,-1,-1)

(1,1,1)

[CLIP COORDINATES]

projection
transform

all positions now expressed
relative to camera; camera
is sitting at origin looking

down -z direction

z
x

y

[VIEW COORDINATES]

view
transform

(0, 0)

(w, h)

coordinates stretched to match image
dimensions (and flipped upside-down)

[IMAGE COORDINATES]

screen
transform

 CMU 15-462/662

Drawing a Triangle
(and introduction to sampling)

 CMU 15-462/662

Rasterization
▪ Two major techniques for “getting stuff on the screen”

▪ Rasterization (TODAY)
- for each primitive (e.g., triangle), which pixels light up?
- extremely fast (BILLIONS of triangles per second on GPU)
- harder (but not impossible) to achieve photorealism
- perfect match for 2D vector art, fonts, quick 3D preview, …

▪ Ray tracing (LATER)
- for each pixel, which primitives are seen?
- easier to get photorealism
- generally slower
- much more later in the semester!

 CMU 15-462/662

Let’s warm up by drawing some lines

 CMU 15-462/662

Close up photo of pixels on a modern display

 CMU 15-462/662

Output for a raster display
Common abstraction of a raster display:
- Image represented as a 2D grid of “pixels” (picture elements) **
- Each pixel can can take on a unique color value

** We will strongly challenge this notion of a pixel “as a little square” soon enough.
 But let’s go with it for now. ;-)

 CMU 15-462/662

What pixels should we color in to depict a line?
“Rasterization”: process of converting a continuous object to a discrete
representation on a raster grid (pixel grid)

 CMU 15-462/662

What pixels should we color in to depict a line?

Light up all pixels intersected by the line?

 CMU 15-462/662

What pixels should we color in to depict a line?
Diamond rule (used by modern GPUs):

light up pixel if line passes through associated diamond

 CMU 15-462/662

What pixels should we color in to depict a line?
Is there a right answer?

(consider a drawing a “line” with thickness)

 CMU 15-462/662

How do we find the pixels satisfying a
chosen rasterization rule?

Could check every single pixel in the image to see if it meets
the condition...

- O(n2) pixels in image vs. at most O(n) “lit up” pixels

- must be able to do better! (e.g., work proportional to
number of pixels in the drawing of the line)

 CMU 15-462/662

Incremental line rasterization
Let’s say a line is represented with integer endpoints: (u1,v1), (u2,v2)
Slope of line: s = (v2-v1) / (u2-u1)
Consider an easy special case:
- u1 < u2, v1 < v2 (line points toward upper-right)
- 0 < s < 1 (more change in x than y)

v = v1;
for(u=u1; u<=u2; u++)
{
 v += s;
 draw(u, round(v))
}

Easy to implement… not how lines are drawn in modern software/hardware!

Assume integer coordinates
are at pixel centers

(u1,v1)

(u2,v2)

v1

u1 u2

 CMU 15-462/662

Ok, we have a basic line algorithm, what
about triangles?

 CMU 15-462/662

▪ Rasterization pipeline converts all primitives to triangles
- even points and lines!

▪ Why?
- can approximate any shape
- always planar, well-defined normal
- easy to interpolate data at corners

- “barycentric coordinates”

▪ Key reason: once everything is reduced to triangles, can focus on
making an extremely well-optimized pipeline for drawing them

Why triangles?

“point”
“line”

 CMU 15-462/662

Let’s draw some triangles on the screen

Question 2: which triangle is closest to
the camera in each pixel? (“occlusion”)

Question 1: what pixels does the triangle overlap?
(“coverage”)

Pixel

 CMU 15-462/662

The visibility problem

Recall the pinhole camera…

Pinhole
Camera

(0,0)

Virtual
Sensor

(x,z)

1

x/z
z-axis

x-axis

 CMU 15-462/662

The visibility problem

Recall the pinhole camera… which we can simplify with a “virtual sensor”:

▪ Visibility problem in terms of rays:
- COVERAGE: What scene geometry is hit by a ray from a pixel through the pinhole?

- OCCLUSION: Which object is the first hit along that ray?

Pinhole
Camera

(0,0)

Virtual
Sensor

(x,z)

1

x/z

z-axis

x-axis

 CMU 15-462/662

Computing triangle coverage

Input:
projected position of triangle vertices: P0, P1, P2

Output:
set of pixels “covered” by the triangle

“Which pixels does the triangle overlap?”

 CMU 15-462/662

What does it mean for a pixel to be covered by a triangle?

Pixel

1

2

3

4

Q: Which triangles “cover” this pixel?

 CMU 15-462/662

One option: compute fraction of pixel area covered by triangle, then
color pixel according to this fraction.

10%

35%

60%

85%

15%

Intuition: if triangle covers 10%
of pixel, then pixel should be
10% red.

 CMU 15-462/662

Coverage gets tricky when considering occlusion

Two regions of triangle 1 contribute to pixel.
One of these regions is not even convex.

1
2 2

1

2

1

Interpenetration of triangles: even trickier

Pixel covered by triangle 1, other
half covered by triangle 2

 CMU 15-462/662

Coverage via sampling
▪ Real scenes are complicated!

- occlusion, transparency, …
- will talk about this more in a future lecture!

▪ Computing exact coverage is not practical

▪ Instead: view coverage as a sampling problem
- don’t compute exact/analytical answer
- instead, test a collection of sample points
- with enough points & smart choice of

sample locations, can start to get a good
estimate

▪ More on this in a week or so ..

 CMU 15-462/662

Simple rasterization: just sample the coverage function

Pixel (x,y)

1

2

3

4

Example:
Here I chose the coverage
sample point to be at a
point corresponding to the
pixel center.

= triangle covers sample

= triangle does not cover sample

(x+0.5, y+0.5)

 CMU 15-462/662

Edge cases (literally)

Is this sample point covered by triangle 1? or triangle 2? or both?

1

2

 CMU 15-462/662

Breaking Ties*
▪ When edge falls directly on a screen sample point, the sample is classified as within

triangle if the edge is a “top edge” or “left edge”
- Top edge: horizontal edge that is above all other edges
- Left edge: an edge that is not exactly horizontal and is on the left side of the

triangle. (triangle can have one or two left edges)

*These are the rules used in OpenGL/Direct3D, i.e., in modern GPUs. Source: Direct3D Programming Guide, Microsoft

 CMU 15-462/662

Results of sampling triangle coverage

 CMU 15-462/662

How do we actually evaluate
coverage(x,y) for a triangle?

 CMU 15-462/662

Point-in-triangle test

P0

P1

P2Q: How do we check if a given
point q is inside a triangle?

A: Check if it’s contained in
three half planes associated
with the edges. q

 CMU 15-462/662

Point-in-triangle test

P0

P1

P2Q: How do we check if a given
point q is inside a triangle?

A: Check if it’s contained in
three half planes associated
with the edges. q

 CMU 15-462/662

Point-in-triangle test

P0

P1

P2Q: How do we check if a given
point q is inside a triangle?

A: Check if it’s contained in
three half planes associated
with the edges. q

 CMU 15-462/662

Point-in-triangle test

P0

P1

P2Q: How do we check if a given
point q is inside a triangle?

A: Check if it’s contained in
three half planes associated
with the edges. q

 CMU 15-462/662

Point-in-triangle test

P0

P1

P2Q: How do we check if a given
point q is inside a triangle?

A: Check if it’s contained in
three half planes associated
with the edges.

Half plane test is then an
exercise in linear algebra/
vector calculus:

GIVEN: points Pi, Pj along an edge, and a query point q
FIND: whether q is to the “left” or “right” of the line from Pi to Pj

q

(Careful to consider triangle coverage edge rules…)

 CMU 15-462/662

Traditional approach: incremental traversal

P0

P1

P2Since half-plane check looks
very similar for different
points, can save arithmetic
by clever “incremental”
schemes.

Incremental approach also
visits pixels in an order that
improves memory
coherence: backtrack, zig-
zag, Hilbert/Morton curves,
…

 CMU 15-462/662

Modern approach: parallel coverage tests

P0

P1

P2

Q: What’s a case where the naïve parallel approach is still very inefficient?

• Incremental traversal is very serial;
modern hardware is highly parallel

• Alternative: test all samples in triangle
“bounding box” in parallel

• Wide parallel execution overcomes cost of
extra tests (most triangles cover many
samples, especially when super-sampling)

• All tests share some “setup” calculations

• Modern graphics processing unit (GPU) has
special-purpose hardware for efficiently
performing point-in-triangle tests

 CMU 15-462/662

Naïve approach can be (very) wasteful…

 CMU 15-462/662

Hybrid approach: tiled triangle traversal

Idea: work “coarse to fine”:

- First, check if large blocks
intersect the triangle

- If not, skip this block entirely
(“early out”)

- If the block is contained inside
the triangle, know all samples
are covered (“early in”)

- Otherwise, test individual
sample points in the block, in
parallel

early
out

early
in

This how real graphics hardware works!

 CMU 15-462/662

Can we do even better for this example?

Hierarchical strategies in computer graphics

Q: Better way to find finest blocks? A: Maybe: incremental traversal!

 CMU 15-462/662

Summary
• Can frame many graphics problems in terms of sampling and reconstruction

- sampling: turn a continuous signal into digital information
- reconstruction: turn digital information into a continuous signal

• Can frame rasterization as sampling problem
- sample coverage function into pixel grid
- reconstruct by emitting a “little square” of light for each pixel
- aliasing manifests as jagged edges, shimmering artifacts, …
- we will talk about how to address such artifacts in a later lecture!

• Triangle rasterization is basic building block for graphics pipeline
- amounts to three half-plane tests
- atomic operation—make it fast!
- several strategies: incremental, parallel, blockwise, hierarchical…

 CMU 15-462/662

Next Time: Depth & Transparency

