Perspective Projection and
Rasterization

Computer Graphics
(MU 15-462/15-662

Rasterizer A1.0 due Friday Feb 3

B Checkpoint A1.0 [40pts]:
- A1T1 transforms [5pts]

- A1T2 lines [15pts] 47 Tod&tj

- A1T3 flat triangles [15pts]

- A1T4 depth + blending [3pts] 4 wed"‘@-s‘i"‘ffs class
= writeup-A1l.txt [2pts]

Lask Wedmesdav’s class

(MU 15-462/662

Mini-HW 1 is out — also due Friday Feb 3

Mini HW 1: Trees and Transformations

Reminder: you may omit up to 2 Mini HW without penalty

(You may not want to omit this one)

(MU 15-462/662

Perspective & Rasterization

= PREVIOUSLY: Vola
- transformations |
m TODAY: A Nk

- special case of perspective projection

- using our “camera” to turn triangles into
pixels on the screen

(MU 15-462/662

Perspective Projection

(MU 15-462/662

Perspective projection

-

e w listant objects

g . ppear smaller
« = parallel lines
~converge af

the horizc

S
e
-

(MU 15-462/662

Early painting: incorrect perspective
f“j -~ ' - |

-~

Xo. -

" L)
., l\
. ...’

. r .
@ - >
£ a Br
1 e e i aee. e«

(MU 15-462/662

Evolution toward correct perspective

-

v

| Lorenzettt,c. 134455 = . [{Jgs s 3

N
= g

| "
-
A~

Later... rejection of proper perspective projection

> > 4

S e Picasso, 1910
CMU 15-462/662

In computer graphics

jve

Return of perspect

(MU 15-462/662

Rejection of perspective in computer graphics

"~
1

CALIPSO

(MU 15-462/662

Transformations + Perspective Projection
[WORLD COORDINATES] [VIEW COORDINATES] [CLIP COORDINATES]

& (1,1,1)

e
A
(-1,-1,-1)
original description all positions now expressed everything visible to the
of objects relative to camera; camera camera is mapped to unit
is sitting at origin looking cube for easy “clipping”
down -z direction l
[IMAGE COORDINATES] [NORMALIZED COORDINATES]
(w, h) (1,1)
2D primitives can .
now be drawn via « h —
rasterization % %
(0,0) (-1,-1)
coordinates stretched to match image unit cube mapped to unit
dimensions (and flipped upside-down) square via perspective divide

(MU 15-462/662

Simple Perspective Projection

m Objects look smaller as they get further away
(“perspective”)

m Why does this happen?
D object

amera

2D imag

(MU 15-462/662

Perspective projection: side view

m Where exactly does a point p = (x,y,z) end up on the
image?

m Let’s call the image point g=(u,v)

p=(X,y,

(MU 15-462/662

Perspective projection: side view

m Where exactly does a point p =(x,y,z) end up on the
image?

m Let’s call the image point q=(u,v)

m Notice two similar triangles:

p=(x,y,z)

image

>

a=(u,v) 3D object

m Assume camera has unit size, origin is at
pinhole ¢

m Thenv/1=)'/z, i.e., vertical coordinate is just
the slope y/z

(MU 15-462/662

Perspective Projection in Homogeneous Coordinates

Q: How can we perform
perspective projection™ using
homogeneous coordinates?

The basicidea of the pinhole

. . o =(u,v)
camera model is to “divide by z” =

S0, we can build a matrix that
“copies” the z coordinate into

the homogeneous coordinate 10 0 0 X
0O 1 0 O y
Division by the homogeneous 0O 0 1 O Z
coordinate now gives us 00 1 0 1
perspective projection onto the] -
planez =1 " x/2
— | ¥/z
|

*Assuming a pinhole camera at (0,0,0) looking down the z-axis

3D object

(x,v,2) — (x/z,y/2)

NN e =

CMU 15-462/662

Let’s make this a little more
interesting

Simple camera transform

Consider camera at (4,2,0), looking down x-axis, object given in world coordinates:

(4.2.0) 4

<

Q: What spatial transformation puts in the object in a coordinate system where
the camera is at the origin, looking down the — z axis?

B Translating object vertex positions by (-4, -2, 0) yields position relative to camera

m Rotation about y by 7z/2 gives position of object in new coordinate system where
camera’s view direction is aligned with the — z axis

(MU 15-462/662

Camera looking in a different direction

Now consider a camera looking in a direction w & R

Q: What transform places in the object in a coordinate system where the
camera is at the origin and the Camera is looking directly down the -z axis?

m Construct vectors u, v orthogonal to w Now invert. (How do we do that?)

— e.g., pickan“up”vectorv,letu ;= vXw Rl — pT
m Build corresponding rotation matrix 7
- _ _I/lx T I/ty T I/tZ
—Ux Vx Wy Vy Vy v,
R=1-uy vy —w —Wy —Wy =W,
—U; vV —Wz

R maps x-axis to —u, y-axis to v, Z-axis to
(MU 15-462/662

View frustum

View frustum is region the camera can see:

m Top / bottom / left / right planes correspond to four sides of the image
m Near/far planes correspond to closest/furthest thing we want to draw

(MU 15-462/662

Clipping

® “Clipping” eliminates triangles not visible to the camera/ in view frustum

- Don’t waste time rasterizing primitives (e.g., triangles) you can't see!
- Discarding individual fragments is expensive (“fine granularity”)

- Makes more sense to toss out whole primitives (“coarse granularity”)
- Still need to deal with primitives that are partially clipped...

draw i \

: ; don’t draw

= in frustum

(MU 15-462/662

https://paroj.github.io/gltut/

Near/Far Clipping

®m Why have near/far clipping planes?

- Some primitives (e.g., triangles) may have vertices both in front & behind eye!
(Causes headaches for rasterization, e.g., checking if fragments are behind eye)

- Also important for dealing with finite precision of depth buffer / limitations on
storing depth as floating point values

near=10"1
far=103

4 8§ 16§
||||||}|||||||{

floating point has more “resolution” near zero—hence more precise resolution of primitive-primitive intersection (MU 15-462/662

Mapping frustum to unit cube

Before projecting to 2D, map view frustum to cube [—1,1]°:

—)

X

m Why do we do this?

z-far

[=left D=bottom 7 =near
m Makes clipping much easier! r=right 1=top f=far
- just discard points outside range [-1,1
D o i o o ‘:.[d]. | xi = {Lbn 1} |y = {-1,-1, 11}
- need to think about par.tla y-C |.ppe triang ?.s x, = {rbn1} |y = { 1,1
m Q: How can we express this mapping as a matrix? x3 = {nt,n,1} | y3 = { 1,1}
m A:Solve AX; =y, for unknown entries of A Xg = thtm 1} ye = {- L1}
X5 = {{:labvfal%'i Y5 = {{:_ L :};
1 X = b, f,1 Yo —
o origin x1 = {nt, /i) |y = 11}
X8 — {latafvl} Ys = {_ : }

Recall our basic perspective projection matrix

o O O

S O = O

—_ O O

o O O O

[=left
r=right

0
(B

Matrix for Perspective Transform

1

b = bottom
t=top

bjects shrink
in distance

Il = near

f=far

(MU 15-462/662

Does this look like our pinhole projection matrix?

=u.v) 3D object

(x,v,2) — (x/z,v/2)

"1 0 0 01 x71 | x - -
.]
01 00/ y]|_|v e S U ==
0O 01 O 7 Z 2n t+b
0 0 1 O 1 B 0 t—0b 0
i JL - 0 0 —(f+n) —2fn
- - f—n f—n
X/2 0 0 1 0
— | y/z i _
i 1 _ [= left b =bottom 7 =near

. . r=right 7=top f=far
*Assuming a pinhole camera at

(0,0,0) looking down the z-axis CMU 15-462/662

Screen Transformation (Vulkan, Direct3D)

m One last transformation is needed in the rasterization pipeline:
transform from viewing plane to pixel coordinates

m E.g., suppose we want to draw all points that fall inside the square [-1,1]
X [-1,1] on the z=1 plane, into a W x H pixel image with upper-left
origin.

(0,0) w

» @

(W,H)
CMU 15-462/662

Q: What transformation(s) would you apply?
(Careful: y is down!)

Screen Transformation

m Projection will take points to [-1,1] x[-1,1] on the z=1 plane;
transform into a W x H pixel image

(0,0) w

ol

(W,H)

Step 1: reflect about x-axis
Step 2: translate by (1,1)
Step 3: scale by (W/2,H/2)

(MU 15-462/662

Screen Transformation (OpenGL)

m One last transformation is needed in the rasterization pipeline:
transform from viewing plane to pixel coordinates

m E.g., suppose we want to draw all points that fall inside the
square [-1,1] x[-1,1] on the z=1 plane, into a W x H pixel image

(1,1)

ol

N @

(0,0)

(-1,-1) ' "

CMU 15-462/662

(0,0)

Q: What transformation(s) would you apply?

Transformations: From Objects to the Screen

[WORLD COORDINATES] [VIEW COORDINATES] [CLIP COORDINATES]

& (1,1,1)
view projection i
transform transform ==
A
(-1,-1,-1)

original description all positions now expressed everything visible to the
of objects relative to camera; camera camera is mapped to unit

is sitting at origin looking cube for easy “clipping”

down -z direction
perspective
l divide
[IMAGE COORDINATES] [NORMALIZED COORDINATES]
(w, h) (1,1)
2D primitives can now « —
be drawn via
rasterization % screen %
transform
(0,0) (1)
coordinates stretched to match image unit cube mapped to unit
dimensions (and flipped upside-down) square via perspective divide

(MU 15-462/662

Drawing a Triangle
(and introduction to sampling)

Rasterization

m Two major techniques for “getting stuff on the screen”

Rasterization (TODAY)
- for each primitive (e.qg., triangle), which pixels light up?

- extremely fast (BILLIONS of triangles per second on GPU)

- harder (but not impossible) to achieve photorealism

- perfect match for 2D vector art, fonts, quick 3D preview, ...
Ray tracing (LATER)

- for each pixel, which primitives are seen?

- easier to get photorealism
- generally slower
- much more later in the semester!

Let’s warm up by drawing some lines

(MU 15-462/662

Close up photo of pixels on a modern display

Output for a raster display

m Common abstraction of a raster display:
- Image represented as a 2D grid of “pixels” (picture elements) **
- Each pixel can can take on a unique color value

** We will strongly challenge this notion of a pixel “as a little square” soon enough.

But let’s go with it for now. ;-) CMU 15-462/662

What pixels should we color in to depict a line?

“Rasterization”: process of converting a continuous object to a discrete
representation on a raster grid (pixel grid)

(MU 15-462/662

What pixels should we color in to depict a line?

Light up all pixels intersected by the line?

(MU 15-462/662

What pixels should we color in to depict a line?

Diamond rule (used by modern GPUs):
light up pixel if line passes through associated diamond

(MU 15-462/662

What pixels should we color in to depict a line?

Is there a right answer?
(consider a drawing a “line” with thickness)

(MU 15-462/662

How do we find the pixels satisfying a
chosen rasterization rule?

m Could check every single pixel in the image to see if it meets
the condition...

- 0(n2) pixels in image vs. at most O(n) “lit up” pixels

- must be able to do better! (e.q., work proportional to
number of pixels in the drawing of the line)

(MU 15-462/662

Incremental line rasterization

m Let'ssayalineis represented with integer endpoints: (u1,v1), (u2,v2)
m Slopeofline:s =(v2-v1)/(u2-ul)
m Consider an easy special case:

- u1<u2,v1<v2(linepoints toward upper-right)

Assume integer coordinates

- 0<s<1(morechangeinxthany) are at pixel centers

v = vl;
for(u=ul; u<=u2; u+t+)
{ (u2,12)

v += §s;

draw(u, round(v)) ol
} vl

ul u2

Easy to implement... not how lines are drawn in modern software/hardware!

(MU 15-462/662

Ok, we have a basic line algorithm, what
about triangles?

Why triangles?

m Rasterization pipeline converts all primitives to triangles

- even points and lines!
m Why?
- can approximate any shape

- always planar, well-defined normal
- easy to interpolate data at corners /W

- “barycentric coordinates” 7

m Key reason: once everything is reduced to triangles, can focus on
making an extremely well-optimized pipeline for drawing them

”point”N/
lllinell

(MU 15-462/662

Let’s draw some triangles on the screen

Question 1: what pixels does the triangle overlap?
(“coverage”)

Pixel Question 2: which triangle is closest to

the camera in each pixel? (“occlusion”)

(MU 15-462/662

The visibility problem

Recall the pinhole camera...

. =
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

X/z . ===
-------. ——==—_
..-

....

- - - - ---------------------.-.----.--Fd-— P
T e
——': --

- e
- - e hala 200 020 0~ ===

_____ inhoie B

.....

————————————

—— oo B
-
(’)
Virtual

(MU 15-462/662

The visibility problem

Recall the pinhole camera... which we can simplify with a “virtual sensor”:

Pinhole
Camera
(0,0)

Virtual
Sensor

m Visibility problem in terms of rays:

- COVERAGE: What scene geometry is hit by a ray from a pixel through the pinhole?
= OCCLUSION: Which object is the first hit along that ray?

(MU 15-462/662

Computing triangle coverage

“Which pixels does the triangle overlap?”

Input: Output:
projected position of triangle vertices: Py, P1, P; set of pixels “covered” by the triangle

(MU 15-462/662

What does it mean for a pixel to be covered by a triangle?

Q: Which triangles “cover” this pixel?

A
L

44)\

(MU 15-462/662

One option: compute fraction of pixel area covered by triangle, then
color pixel according to this fraction.

Intuition: if triangle covers 10%
of pixel, then pixel should be
10% red.

15%

(MU 15-462/662

Coverage gets tricky when considering occlusion

Pixel covered by triangle 1, other
half covered by triangle 2

Two regions of triangle 1 contribute to pixel.

One of these regions is not even convex.
Interpenetration of triangles: even trickier

(MU 15-462/662

Coverage via sampling

B Real scenes are complicated!

- occlusion, transparency, ...

- will talk about this more in a future lecture!
m Computing exact coverage is not practical
B |[nstead: view coverage as a sampling problem

- don’t compute exact/analytical answer
- instead, test a collection of sample points

- with enough points & smart choice of
sample locations, can start to get a good
estimate

B More on this in a week orso ..

(MU 15-462/662

Simple rasterization: just sample the coverage function

AN A
~ \
NEY

B = triangle covers sample

I\, =triangle does not cover sample

Example:

Here | chose the coverage
sample point to be at a
point corresponding to the
pixel center.

(MU 15-462/662

Edge cases (literally)

Is this sample point covered by triangle 1? or triangle 2? or both?

(MU 15-462/662

Breaking Ties*

®m When edge falls directly on a screen sample point, the sample is classified as within
triangle if the edge is a “top edge” or “left edge”
- Top edge: horizontal edge that is above all other edges
- Left edge: an edge that is not exactly horizontal and is on the left side of the
triangle. (triangle can have one or two left edges)

Pl s | Coverad
. . L A | T’lau.'ﬂe .
(Cross = canter. x.y &2 0.5) ' Fixels

*These are the rules used in OpenGL/Direct3D, i.e., in modern GPUs. Source: Direct3D Programming Guide, Microsoft CMU 15-462/662

Results of sampling triangle coverage

(MU 15-462/662

How do we actually evaluate
coverage(x,y) for a triangle?

(MU 15-462/662

Point-in-triangle test

Q: How do we check if a given P,
point g is inside a triangle?

A: Check if it’s contained in
three half planes associated
with the edges.

(MU 15-462/662

Point-in-triangle test

Q: How do we check if a given P,
point g is inside a triangle?

A: Check if it’s contained in
three half planes associated
with the edges.

(MU 15-462/662

Point-in-triangle test

Q: How do we check if a given P,
point g is inside a triangle?

A: Check if it’s contained in
three half planes associated
with the edges.

(MU 15-462/662

Point-in-triangle test

Q: How do we check if a given P,
point g is inside a triangle?

A: Check if it’s contained in
three half planes associated
with the edges.

(MU 15-462/662

Point-in-triangle test

Q: How do we check if a given P,
point g is inside a triangle?

A: Check if it’s contained in
three half planes associated
with the edges.

Half plane test is then an
exercise in linear algebra/
vector calculus:

Po
GIVEN: points P;, P;along an edge, and a query point q

FIND: whether q is to the “left” or “right” of the line from P; to P,

(Careful to consider triangle coverage edge rules...) CMU 15-462/662

Traditional approach: incremental traversal

Since half-plane check looks
very similar for different
points, can save arithmetic
by clever “incremental”
schemes.

Incremental approach also
visits pixels in an order that
improves memory
coherence: backtrack, zig-
zag, Hilbert/Morton curves,

(MU 15-462/662

Modern approach: parallel coverage tests

- Incremental traversal is very serial;
modern hardware is highly parallel

- Alternative: test all samples in triangle
“bounding box” in parallel

» Wide parallel execution overcomes cost of
extra tests (most triangles cover many
samples, especially when super-sampling)

« All tests share some “setup” calculations

 Modern graphics processing unit (GPU) has
special-purpose hardware for efficiently
performing point-in-triangle tests

Q: What's a case where the naive parallel approach is still very inefficient?

(MU 15-462/662

Naive approach can be (very) wasteful...

(MU 15-462/662

Hybrid approach: tiled triangle traversal

Idea: work “coarse to fine”:

- First, check if large blocks
intersect the triangle

= If not, skip this block entirely
(“early out”)

- If the block is contained inside
the triangle, know all samples
are covered (“early in”)

= Otherwise, test individual
sample points in the block, in
parallel

This how real graphics hardware works!

(MU 15-462/662

Can we do even better for this example?

(MU 15-462/662

Hierarchical strategies in computer graphics

Q: Better way to find finest blocks? A: Maybe: incremental traversal!

Summary

* (Can frame many graphics problems in terms of sampling and reconstruction

= sampling: turn a continuous signal into digital information

= reconstruction: turn digital information into a continuous signal
* (an frame rasterization as sampling problem

- sample coverage function into pixel grid

- reconstruct by emitting a “little square” of light for each pixel

- aliasing manifests as jagged edges, shimmering artifacts, ...

- we will talk about how to address such artifacts in a later lecture!
* Triangle rasterization is basic building block for graphics pipeline

- amounts to three half-plane tests

- atomic operation—make it fast!

- several strategies: incremental, parallel, blockwise, hierarchical...

(MU 15-462/662

Next Time: Depth & Transparency

(MU 15-462/662

