Spatial Transformations

Computer Graphics CMU 15-462/15-662

Assignment 1 goes out today!

Assignment 1: Rasterizer

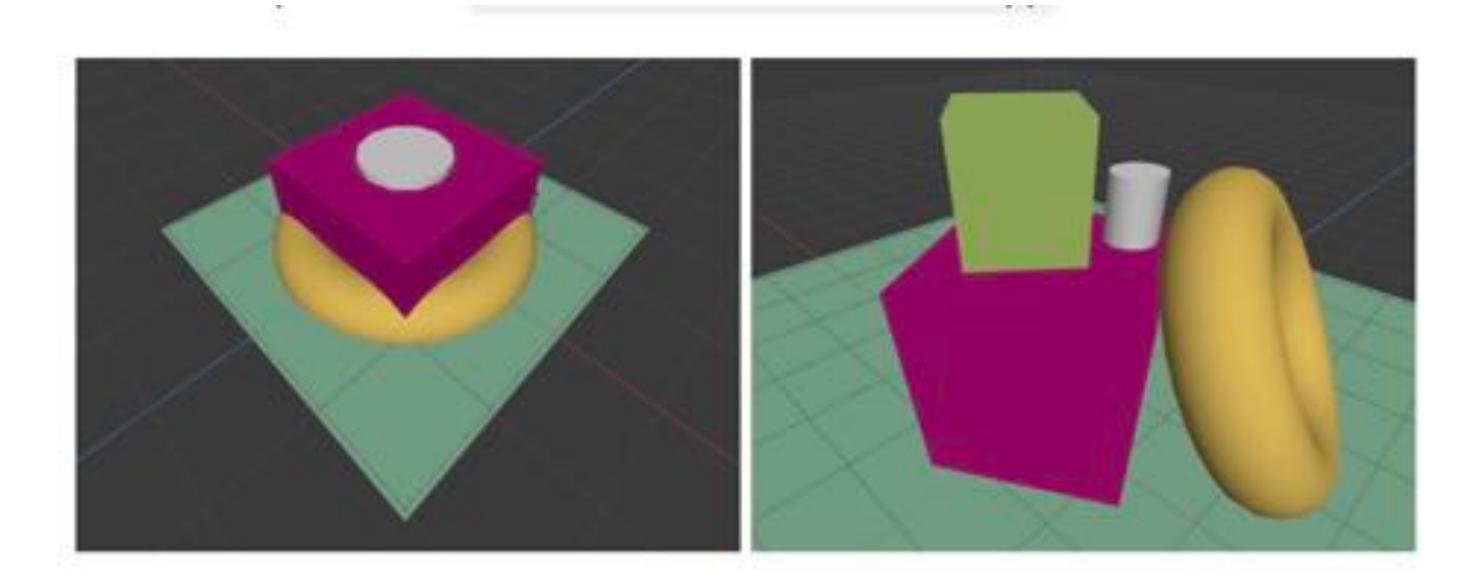
Modern GPUs implement an abstraction called the Rasterization Pipeline. This abstraction breaks the process of converting 3D triangles into 2D pixels into several highly and a signment, you will be implementing parts or a simplified rasterization pipeline in software. It ough simplified, your pipeline will be sufficient to allow Scotty3D to create preview renders without a show

Different graphics APIs may present this pipeline in different ways, but the core steps remains consistent: a GPU draws things by running code (in parallel) on a list of vertices to produce homogeneous screen positions (+ extra varying data), building triangles from that list of vertices, clipping the triangles to remove parts not visible on the screen, performing a division to compute screen positions, computing a list of "fragments" covered by those triangles, running code on each fragment, and composing the results into a framebuffer.

https://github.com/CMU-Graphics/Scotty3D/blob/main/assignments/A1.md#assignment-1-rasterizer

Transforms Lines 47.0 Flat triangles **Depth and blending** • • • Interpolation Mip-mapping A7.5 Supersampling

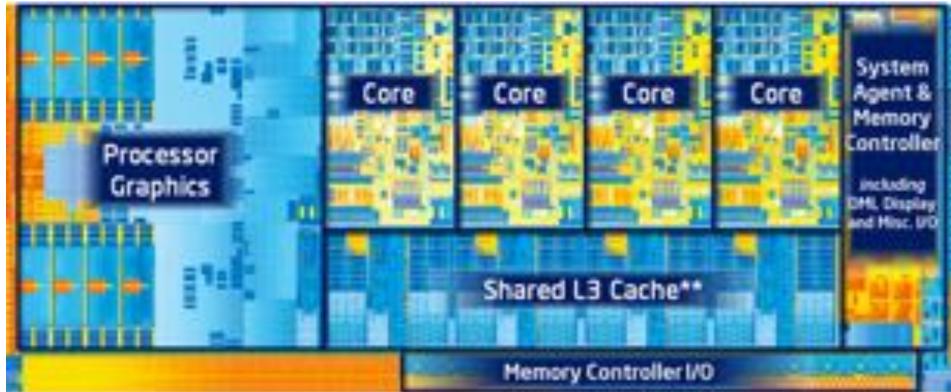
• • • **Extra credit!**



But let's back up a bit

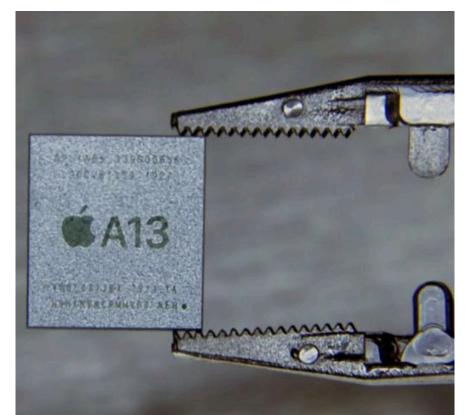
The first part of this class relates to the graphics pipeline

Specialized processors for executing graphics pipeline computations



integrated GPU: part of modern CPU die

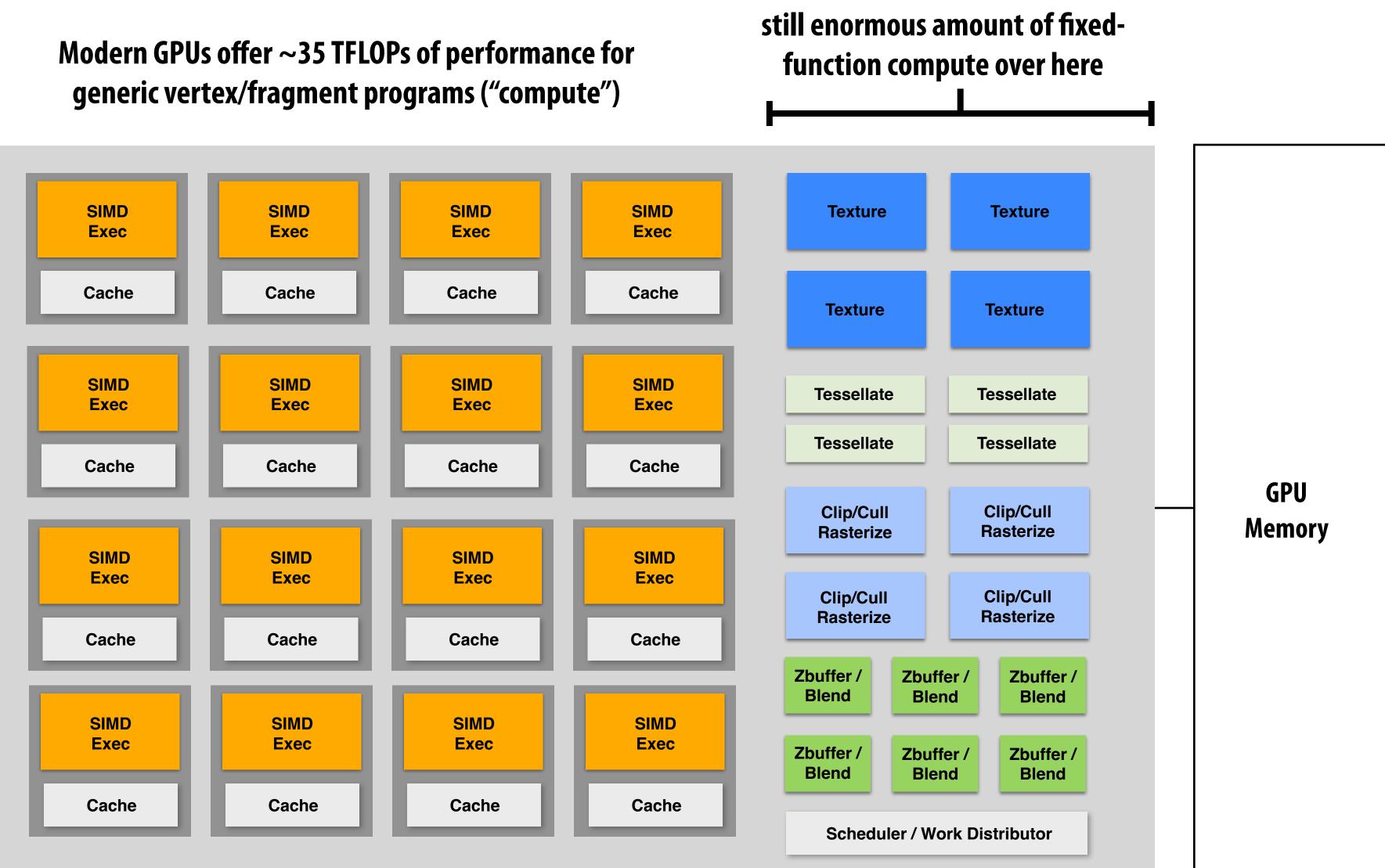
smartphone GPU (integrated)



Goal: render very high complexity 3D scenes

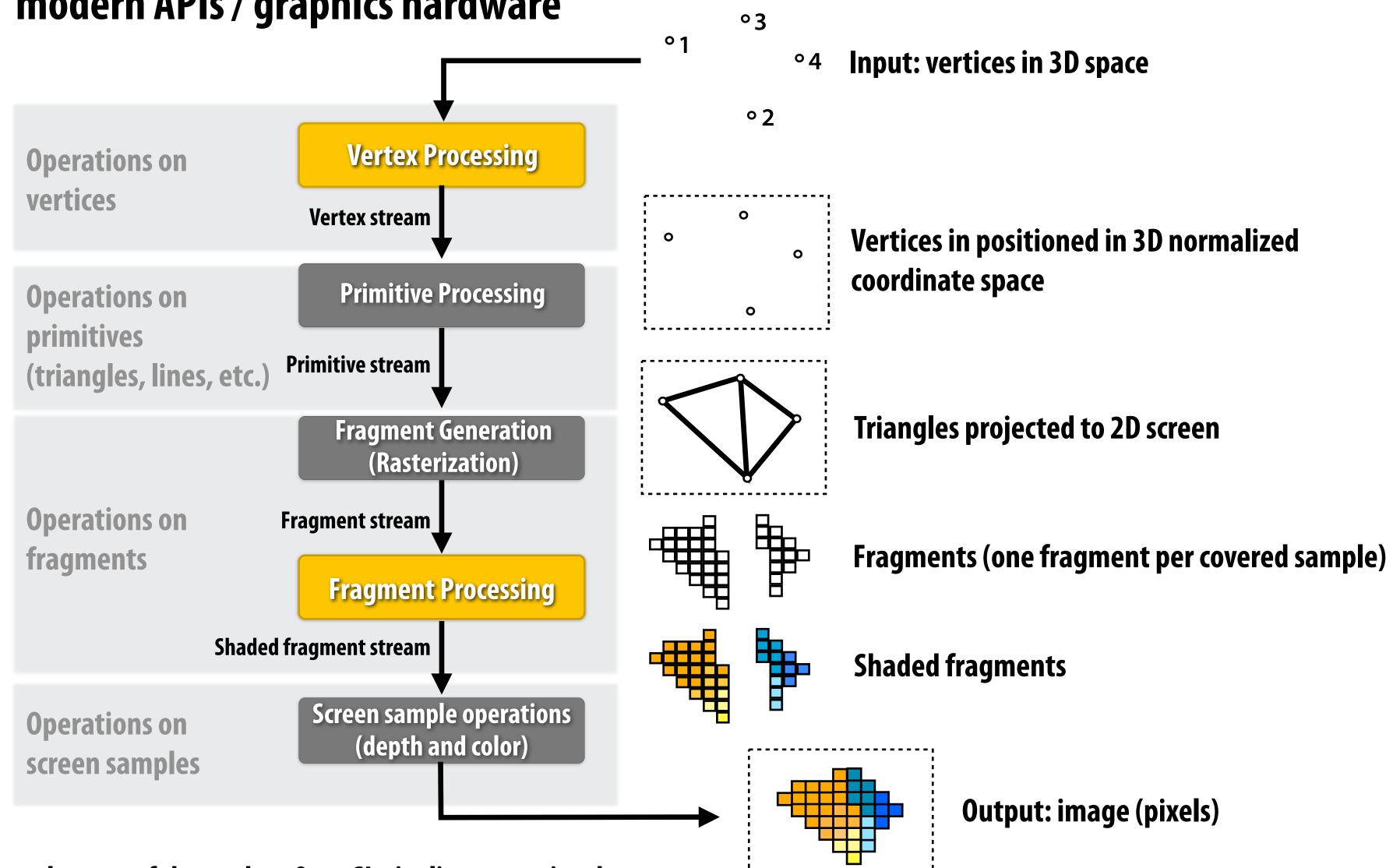
- 100's of thousands to millions to billions of triangles in a scene
 - Complex vertex and fragment shader computations
 - High resolution screen outputs (~10Mpixel + supersampling)
 - 30-120 fps

GPU: heterogeneous, multi-core processor



OpenGL/Direct3D graphics pipeline

Our rasterization pipeline doesn't look much different from "real" pipelines used in modern APIs / graphics hardware



* Several stages of the modern OpenGL pipeline are omitted

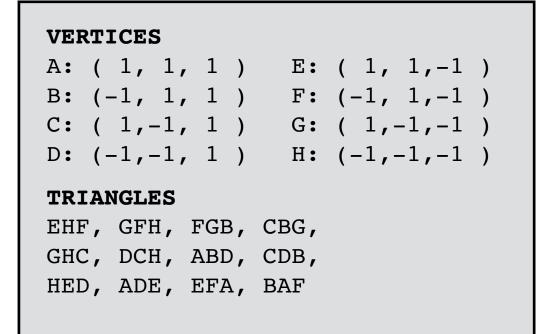
CMU 15-462/662

Rasterization Pipeline

Modern real time image generation based on rasterization - INPUT: 3D "primitives"—essentially all triangles! - possibly with additional attributes (e.g., color) - OUTPUT: bitmap image (possibly w/ depth, alpha, ...) **Our goal: understand the stages in between***

INPUT (TRIANGLES)

RASTERIZATION PIPELINE

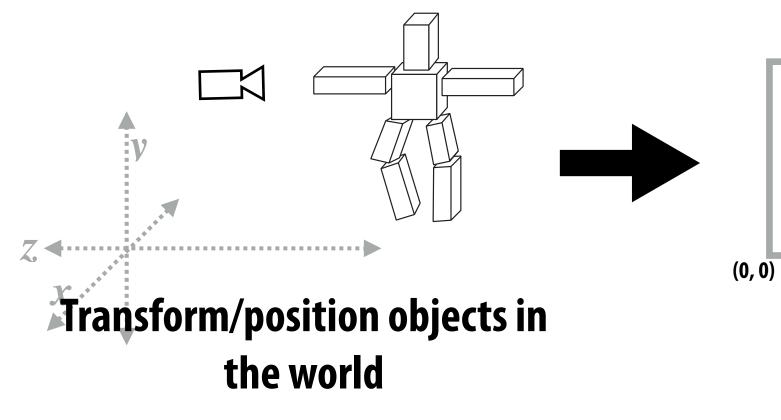


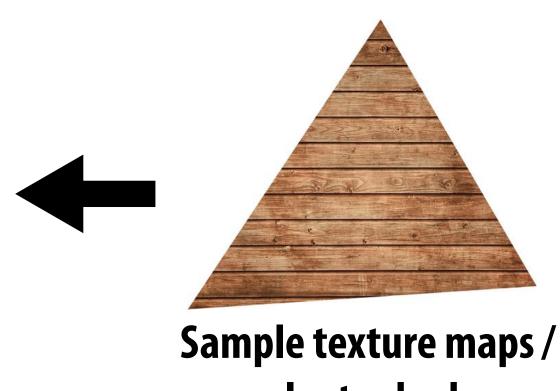
*In practice, usually executed by graphics processing unit (GPU)

OUTPUT (BITMAP IMAGE)

CMU 15-462/662

The Rasterization Pipeline Rough sketch of rasterization pipeline:

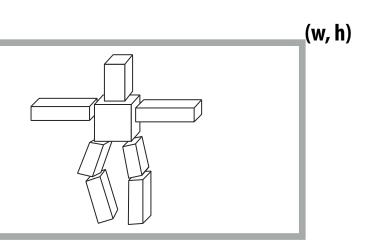




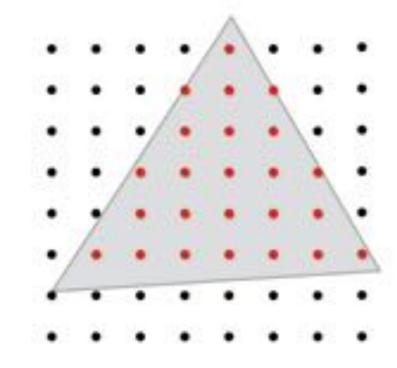
Combine samples into final image (depth, alpha, ...)

evaluate shaders

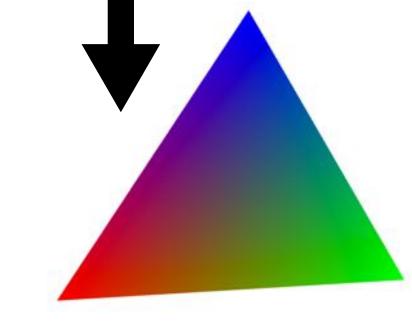
Reflects standard "real world" pipeline (OpenGL/Direct3D) — the rest is just details (e.g., API calls)



Project objects onto the screen



Sample triangle coverage



Interpolate triangle attributes at covered samples

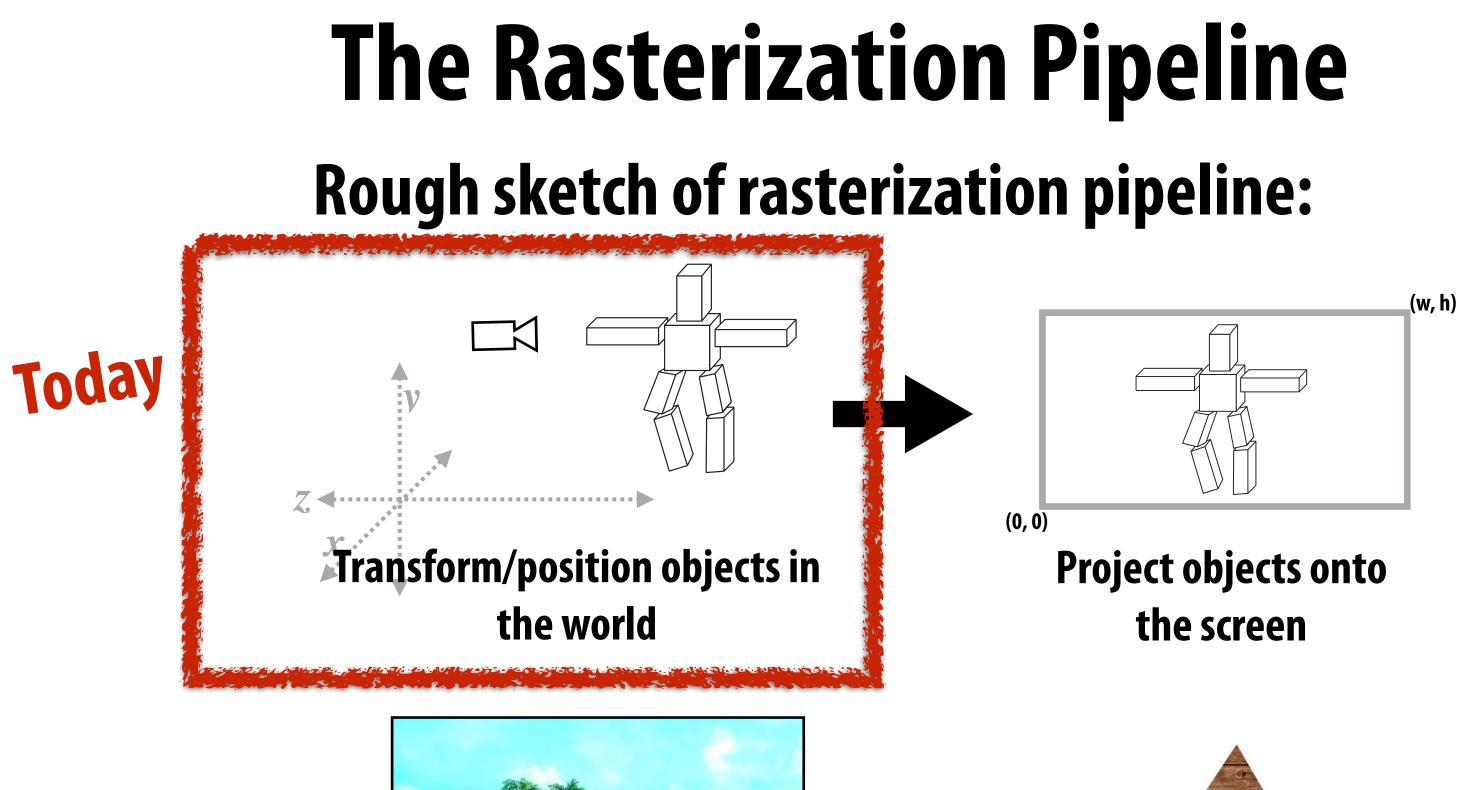
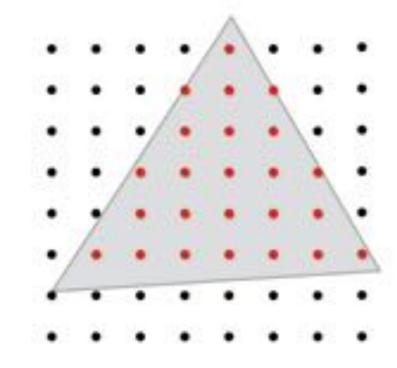


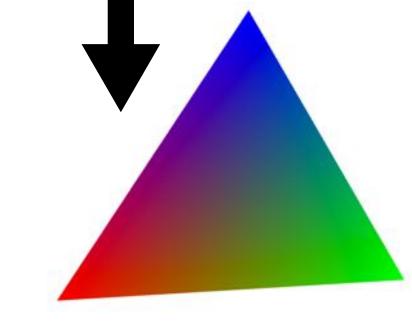
image (depth, alpha, ...)

Sample texture maps / evaluate shaders

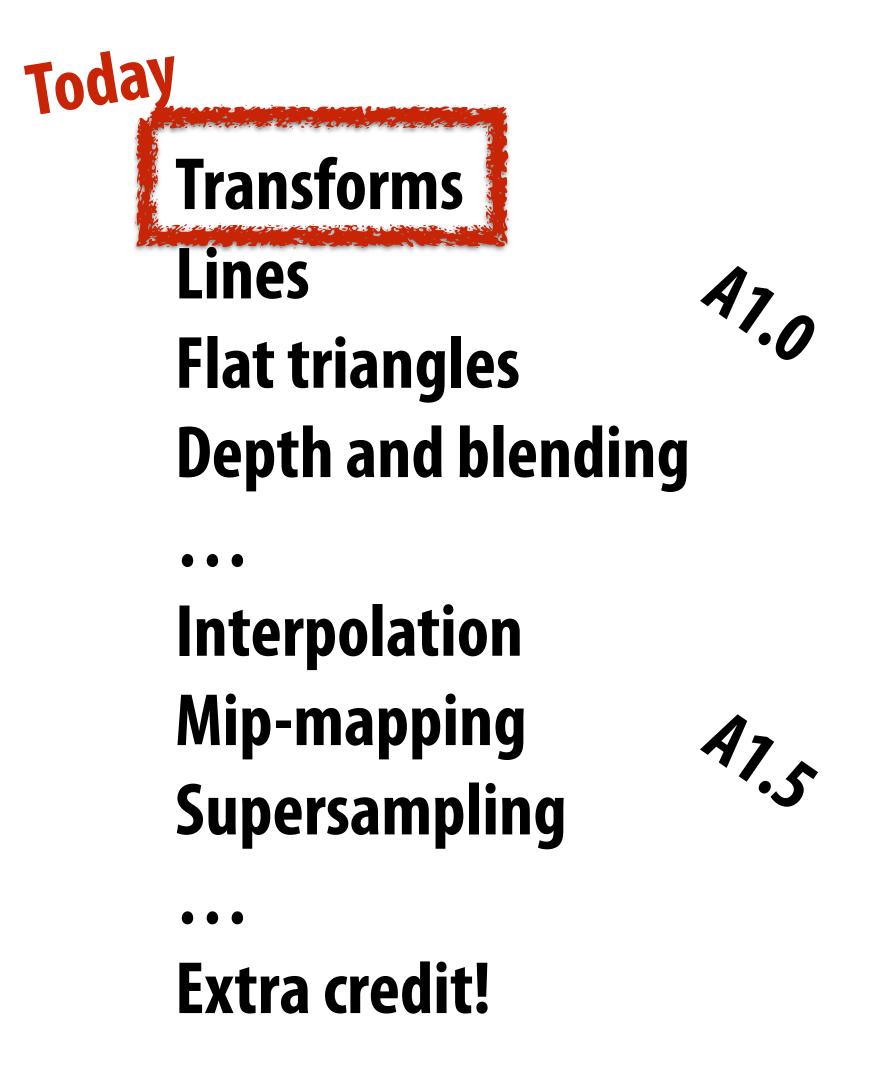
Reflects standard "real world" pipeline (OpenGL/Direct3D) — the rest is just details (e.g., API calls)

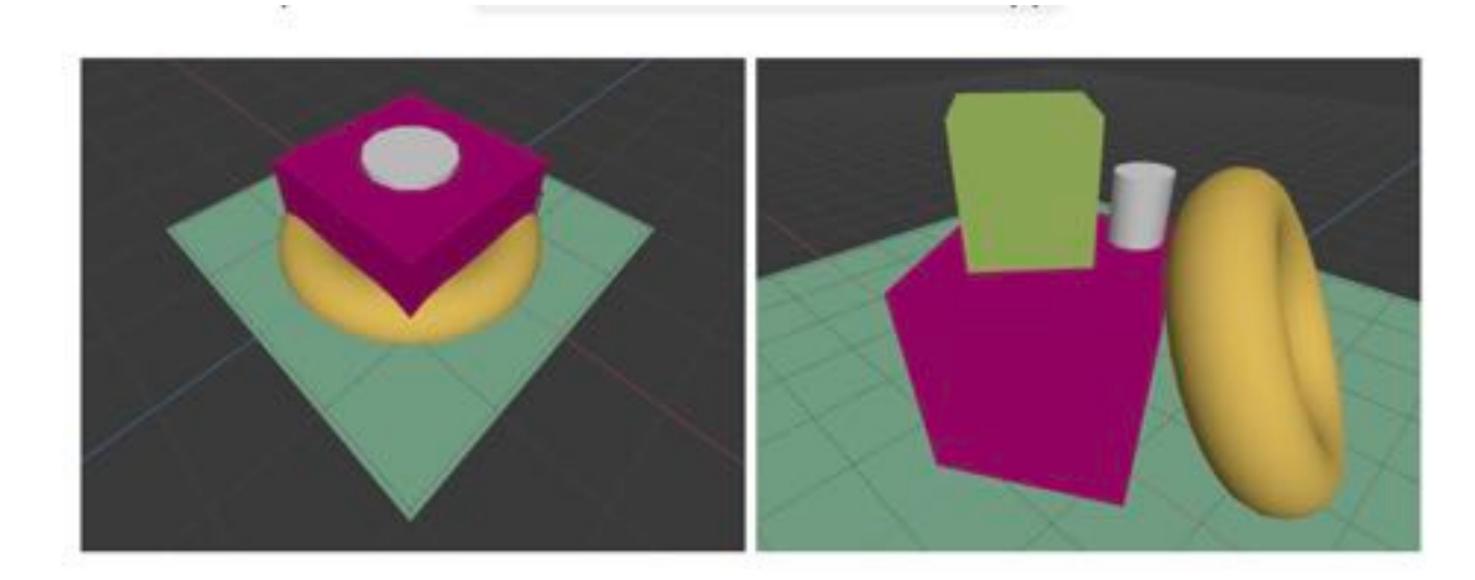


Sample triangle coverage



Interpolate triangle attributes at covered samples

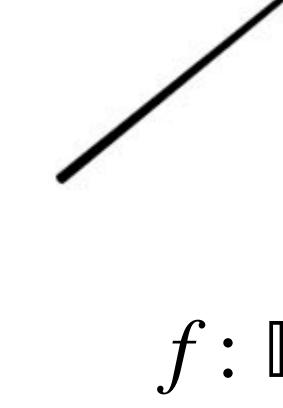




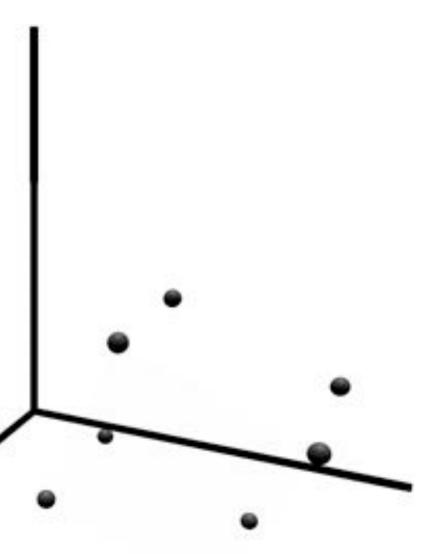
On to Spatial Transformations!

Spatial Transformation

- Today we'll focus on common transformations of space (rotation, scaling, etc.) encoded by <u>linear</u> maps



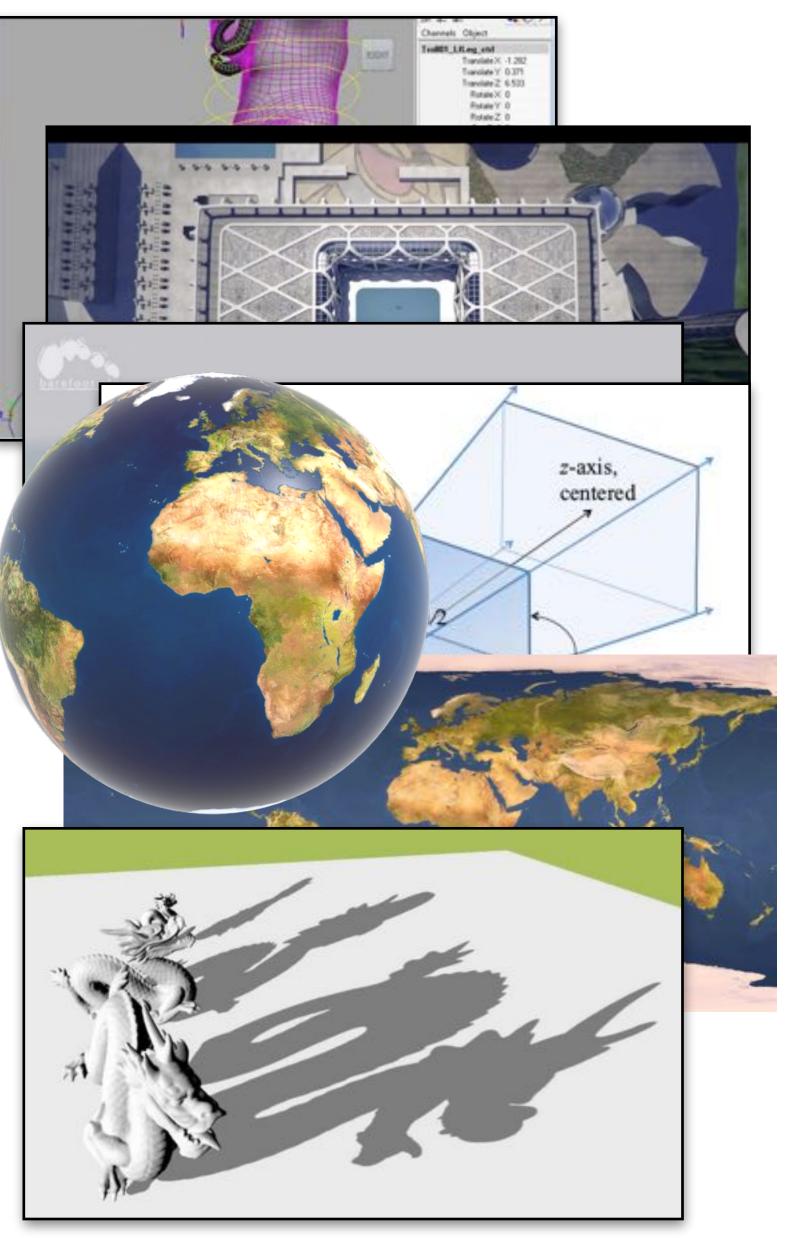
Basically any function that assigns each point a new location



 $f: \mathbb{R}^n \to \mathbb{R}^n$

Transformations in Computer Graphics

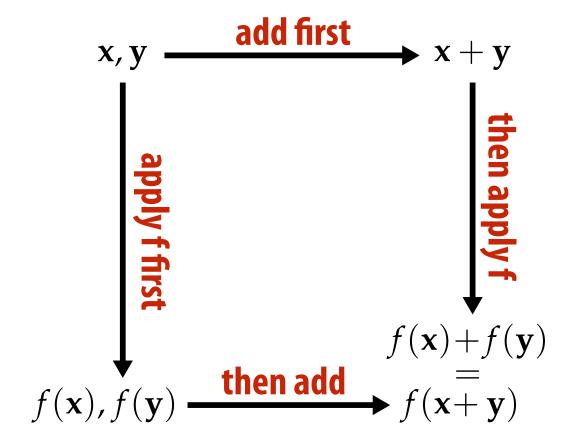
- Where are linear transformations used in computer graphics?
- All over the place!
 - **Position/deform objects in space**
 - Move the camera
- Animate objects over time
- **Project 3D objects onto 2D images**
- Map 2D textures onto 3D objects
- **Project shadows of 3D objects onto** other 3D objects

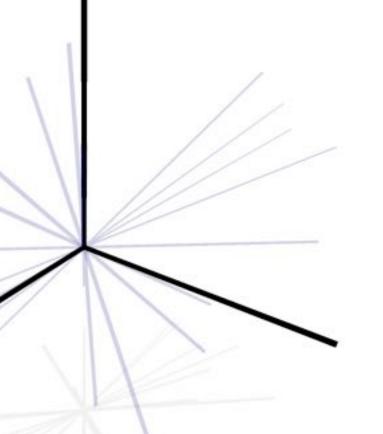


Review: Linear Maps Q: What does it mean for a map $f : \mathbb{R}^n \to \mathbb{R}^n$ to be <u>linear</u>?

Geometrically: it maps <u>lines</u> to <u>lines</u>, and preserves the origin

Algebraically: preserves vector space operations (addition & scaling)





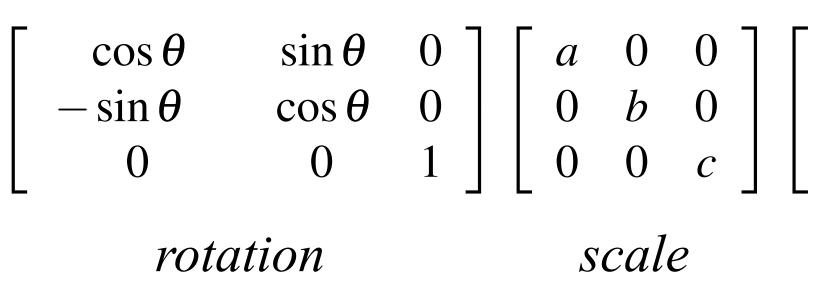
Why do we care about linear transformations?

Cheap to apply

Usually pretty easy to solve for (linear systems)

Composition of linear transformations is linear

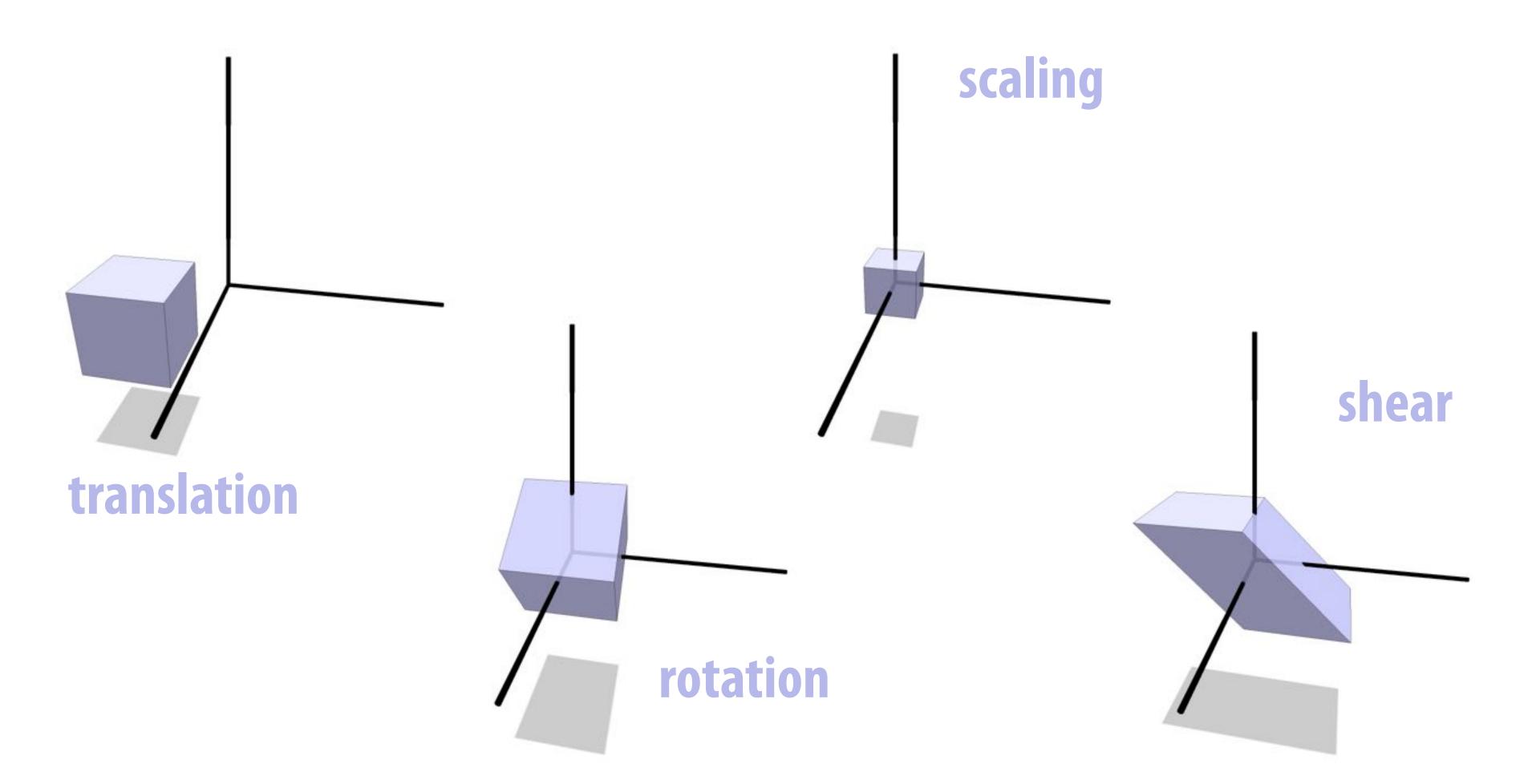
- product of <u>many</u> matrices is a <u>single</u> matrix
- gives uniform representation of transformations
- simplifies graphics algorithms, systems (e.g., GPUs & APIs)



 $\begin{bmatrix} \cos\theta & \sin\theta & 0 \\ -\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} \cdots = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$ composite scale rotation

What kinds of linear transformations can we compose?

Types of Transformations What would you call each of these types of transformations?



Q: How did you know that? (Hint: you did <u>not</u> inspect a formula!)

Invariants of Transformation A transformation is determined by the <u>invariants</u> it preserves

transformation	invariants	algebraic description
linear	straight lines / origin	$f(\mathbf{a}\mathbf{x}+\mathbf{y}) = \mathbf{a}f(\mathbf{x}) + f(\mathbf{y}),$ $f(0) = 0$
translation	differences between pairs of points	$f(\mathbf{x} - \mathbf{y}) = \mathbf{x} - \mathbf{y}$
scaling	lines through the origin / direction of vectors	$f(\mathbf{x})/ f(\mathbf{x}) = \mathbf{x}/ \mathbf{x} $
rotation	origin / distances between points / orientation	$ f(\mathbf{x})-f(\mathbf{y}) = \mathbf{x}-\mathbf{y} ,$ $\det(f) > 0$

(Essentially how your brain "knows" what kind of transformation you're looking at...)

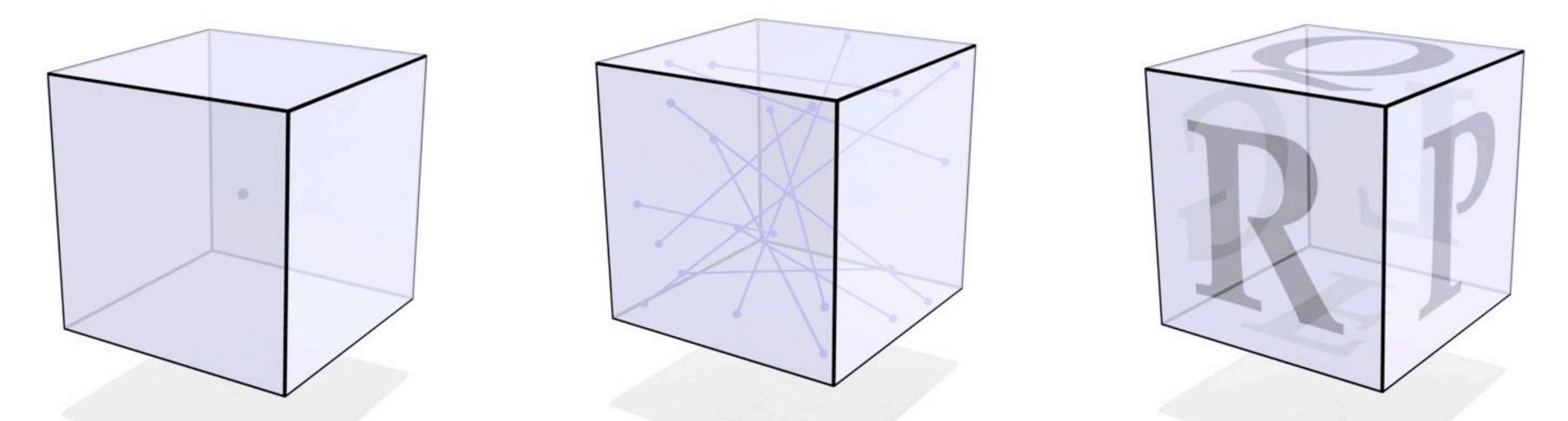
• • •

. . .

• • •

Rotation

Rotations defined by three basic properties:



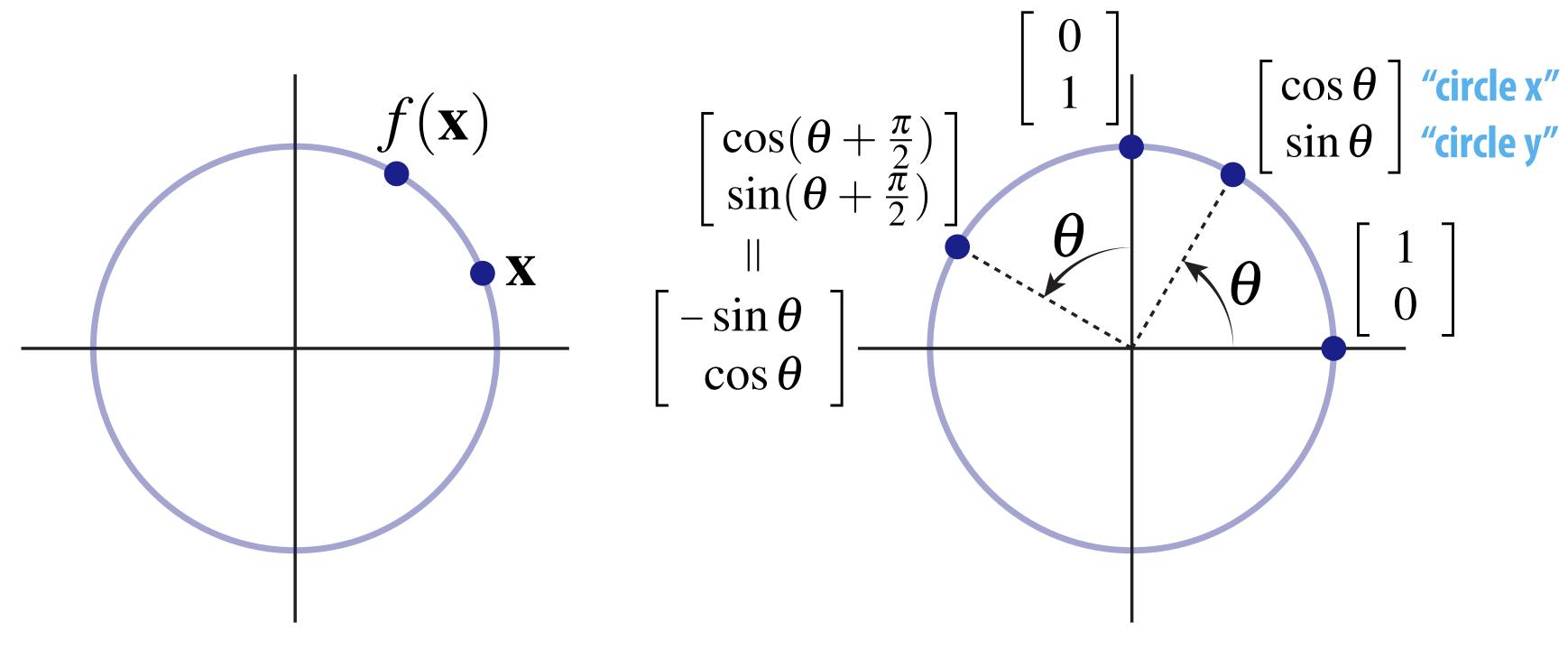
preserves orientation keeps origin fixed preserves distances

First two properties together imply that rotations are <u>linear</u>.

Will have a lot more to say about rotations in a later lecture...

2D Rotations—Matrix Representation

Rotations preserve distances and the origin—hence, a 2D rotation by an angle θ maps each point x to a point $f_{\theta}(\mathbf{x})$ on the circle of radius $|\mathbf{x}|$:

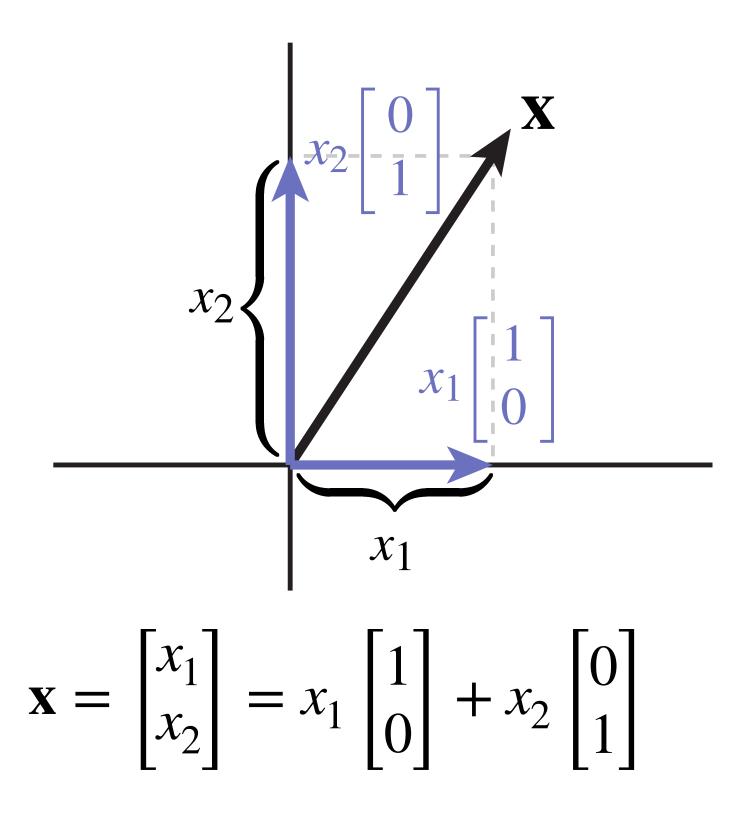


Where does $\mathbf{x} = (1,0)$ go if we rotate by θ (counter-clockwise)?

• How about $\mathbf{x} = (0,1)$?

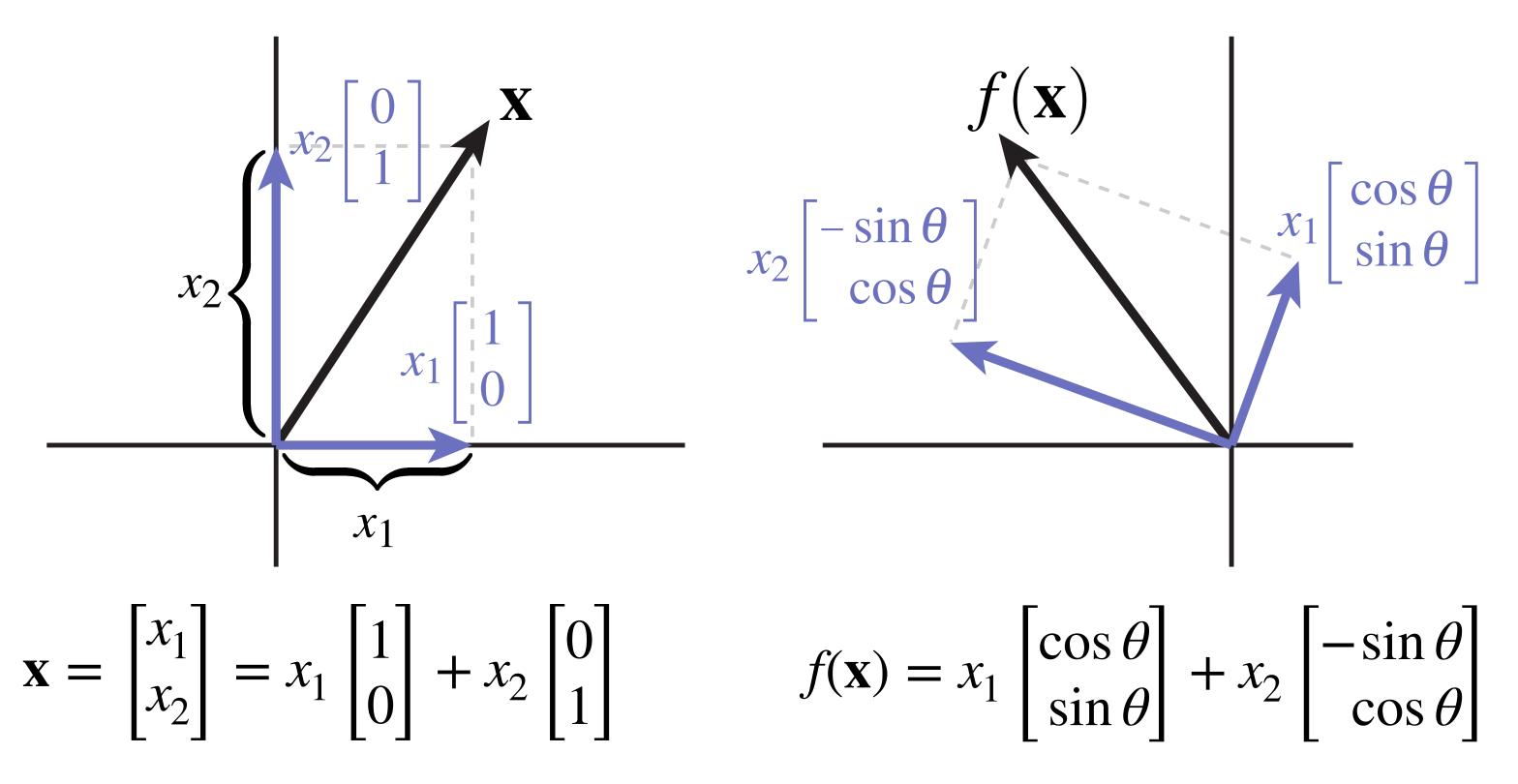
What about a general vector $\mathbf{x} = (x_1, x_2)$?

2D Rotations—Matrix Representation



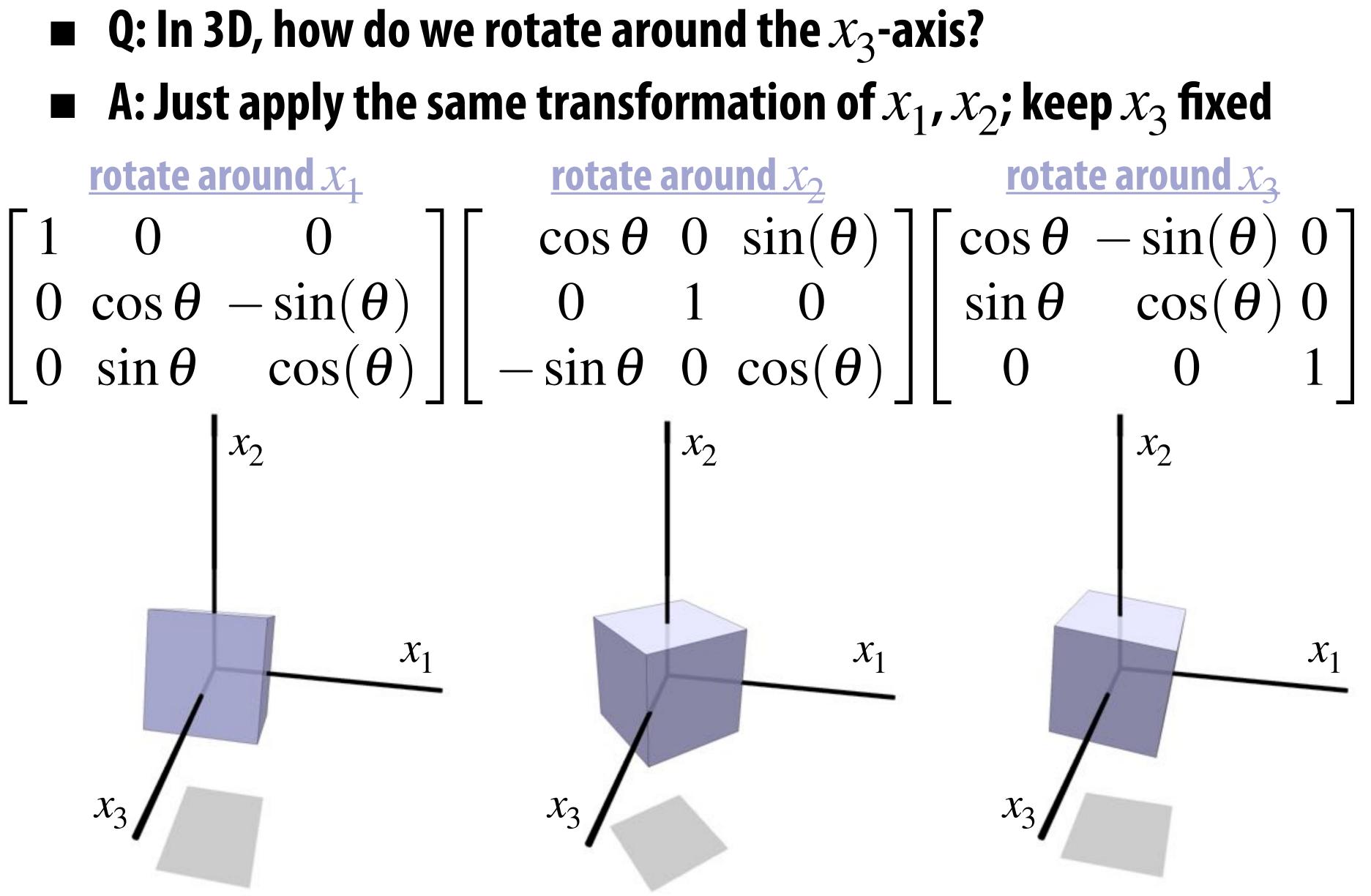
So, How do we represent the 2D rotation function $f_{\theta}(\mathbf{x})$ using a matrix?

$$f_{\theta}(\mathbf{x}) = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$$



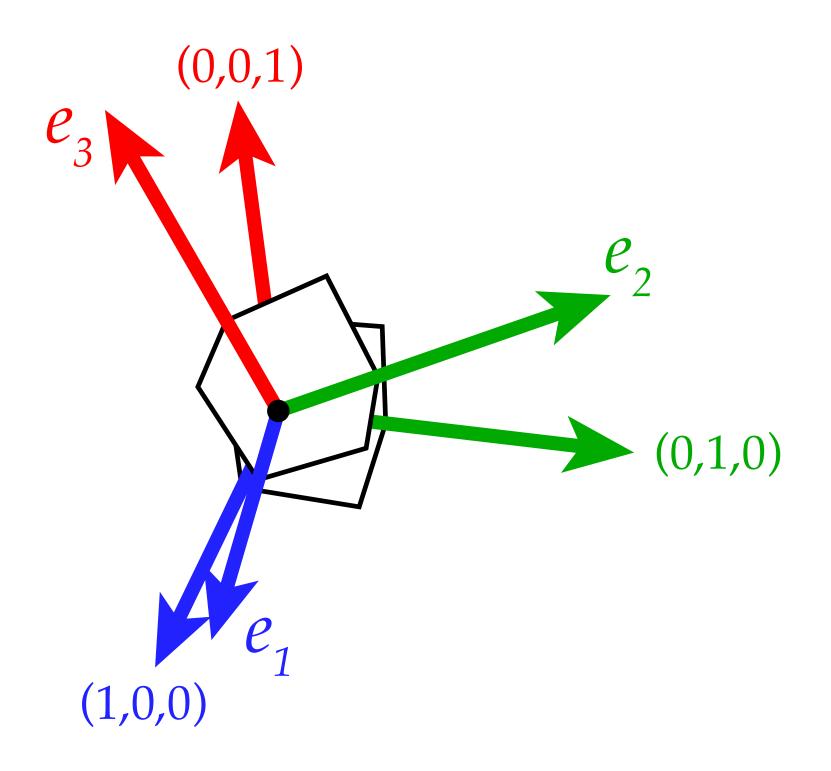
 $\begin{array}{c} \theta & -\sin(\theta) \\ \theta & \cos(\theta) \end{array} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

3D Rotations

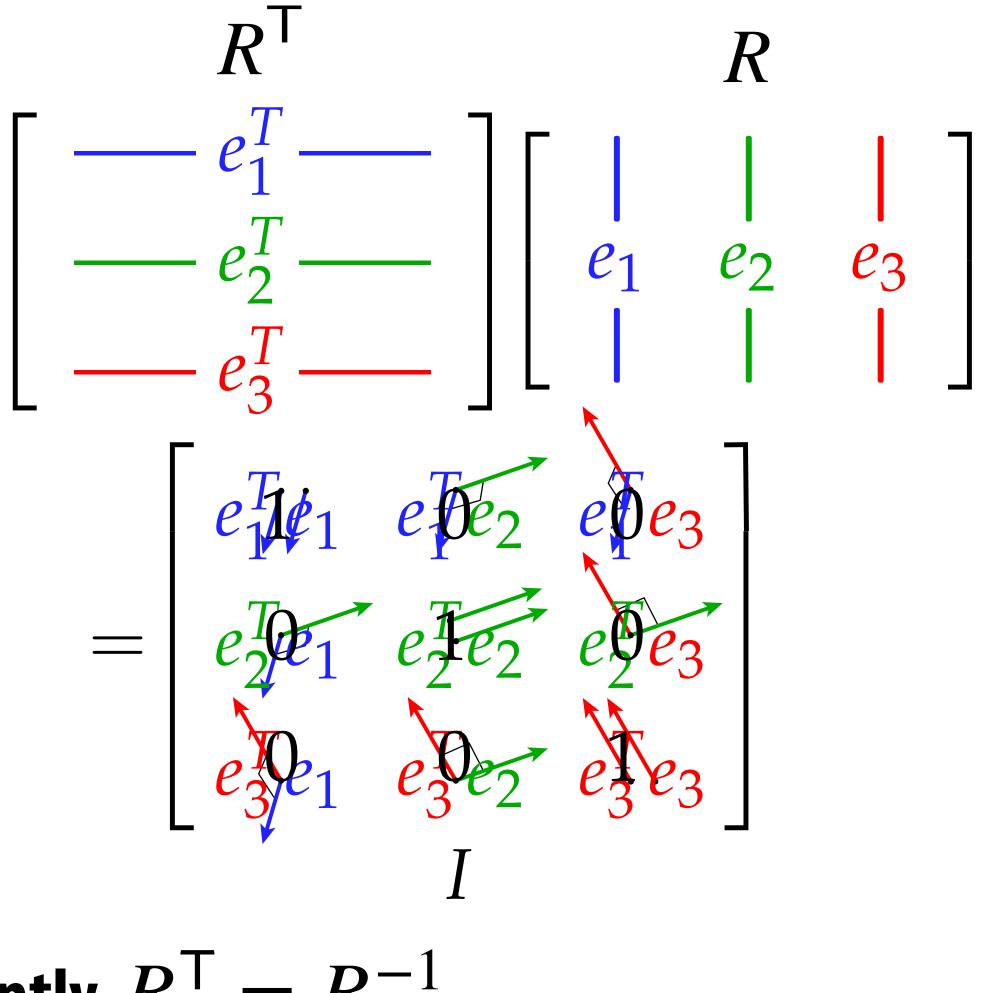


Rotations—Transpose as Inverse

Rotation will map standard basis to orthonormal basis e_1, e_2, e_3 :



Hence, $R^{T}R = I$, or equivalently, $R^{T} = R^{-1}$.



Reflections

- Q: Does <u>every</u> matrix $Q^{\top}Q = I$ describe a rotation?
- distances, and preserve <u>orientation</u>
- Consider for instance this matrix:

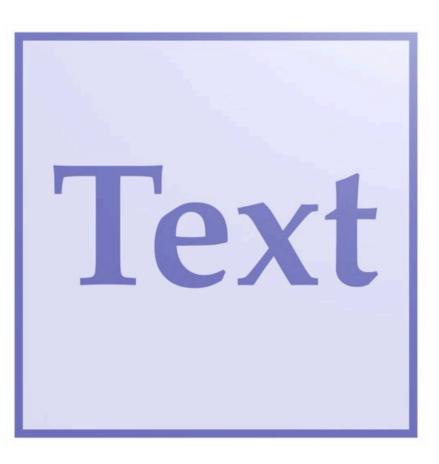
$$Q = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Q: Does this matrix represent a rotation? (If not, which invariant does it fail to preserve?)

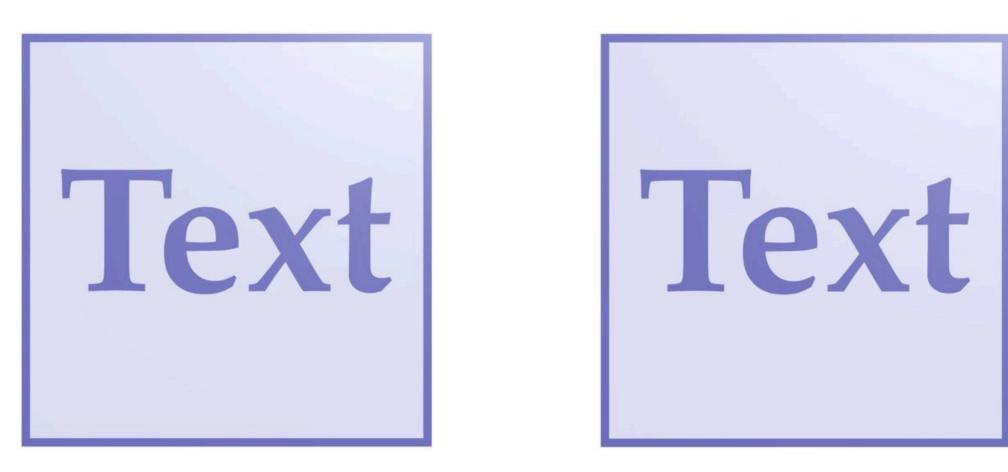
A: No! It represents a reflection across the y-axis (and hence fails to preserve <u>orientation</u>)

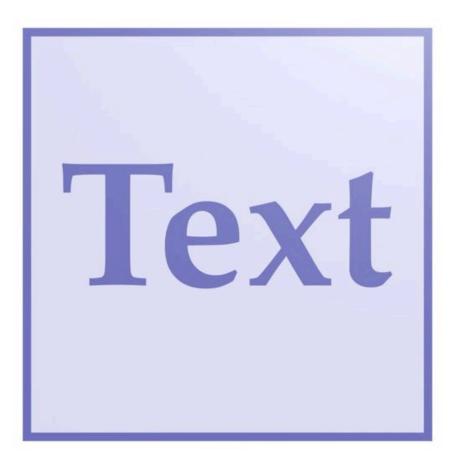
Remember that rotations must preserve the <u>origin</u>, preserve

$$Q^{\mathsf{T}}Q = \begin{bmatrix} (-1)^2 & 0\\ 0 & 1 \end{bmatrix} = I$$



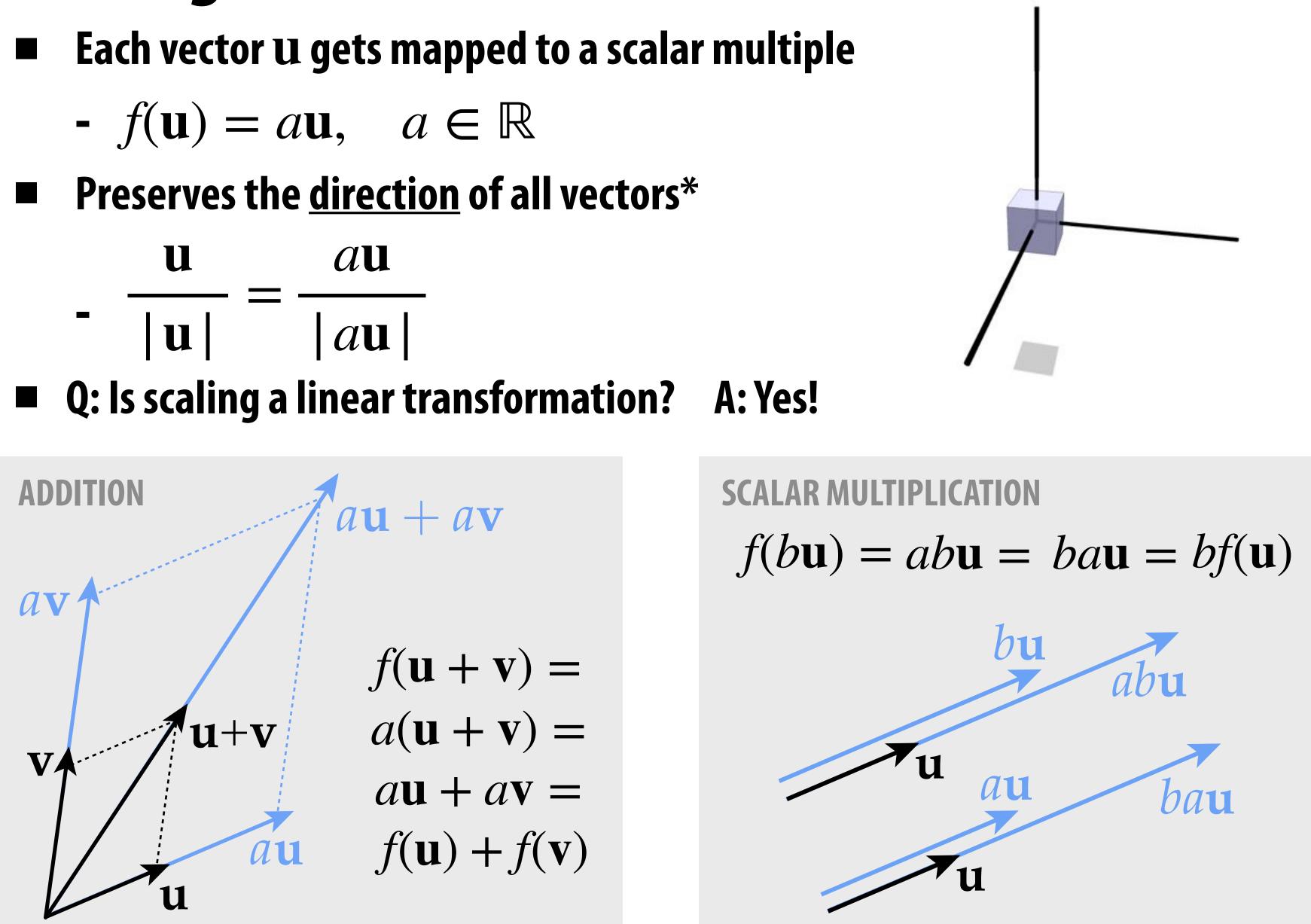
- **Orthogonal Transformations**
- In general, transformations that preserve <u>distances</u> and the origin are called orthogonal transformations
- **Represented by matrices** $Q^{\mathsf{T}}Q = I$
 - Rotations additionally preserve orientation: det(Q) > 0
 - Reflections reverse orientation: det(Q) < 0





reflection

Scaling

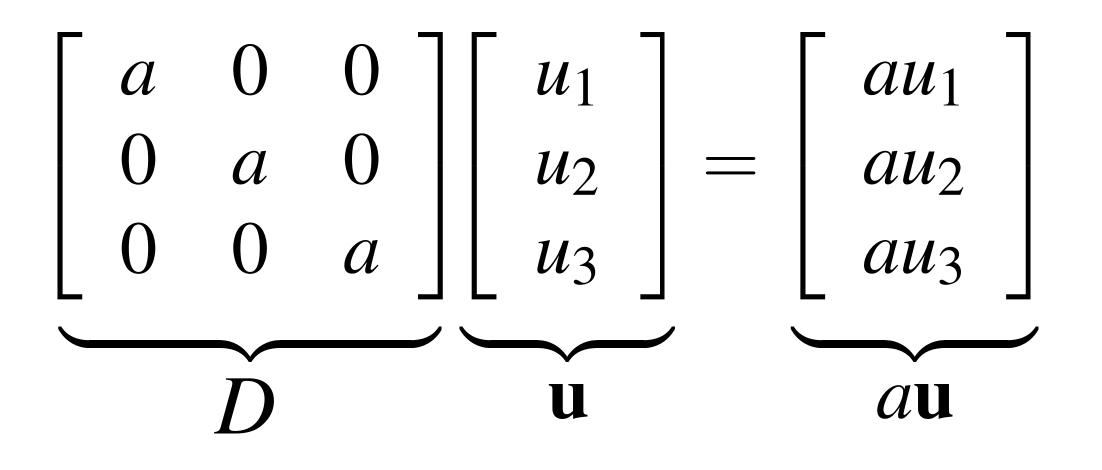


*assuming $a \neq 0$, $\mathbf{u} \neq 0$

Scaling — Matrix Representation

How would we represent this operation via a <u>matrix</u>?

A: Just build a diagonal matrix D, with a along the diagonal:



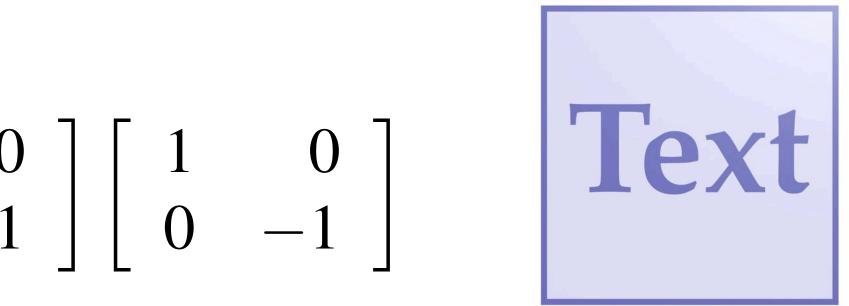
Q: What happens if *a* is <u>negative</u>?

Q: Suppose we want to scale a vector $\mathbf{u} = (u_1, u_2, u_3)$ by a.

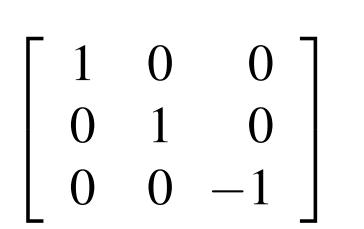
Negative Scaling For a = -1, can think of scaling by a as sequence of reflections. **E.g.**, in 2D: $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ **Text**

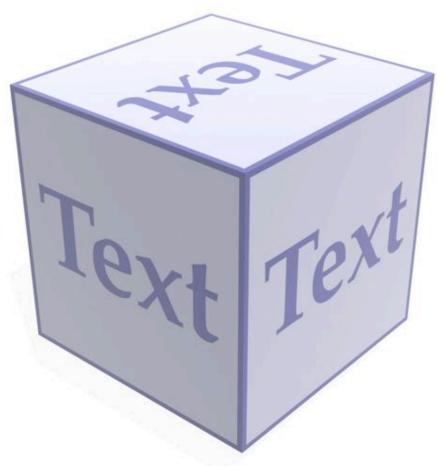
What about 3D?

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$



Since each reflection reverses orientation, orientation is preserved.





Now we have three reflections, and so orientation is <u>reversed!</u>

Nonuniform Scaling (Axis-Aligned)

We can also scale each axis by a different amount

- Q: What's the matrix representation? ■ A: Just put *a*, *b*, *c* on the diagonal:

$$\begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} =$$

- $f(u_1, u_2, u_3) = (au_1, bu_2, cu_3), a, b, c \in \mathbb{R}$ u_2 $\begin{vmatrix} au_1 \\ bu_2 \end{vmatrix}$ \mathcal{U}_1

Ok, but what if we want to scale along some other axes?

Nonuniform Scaling

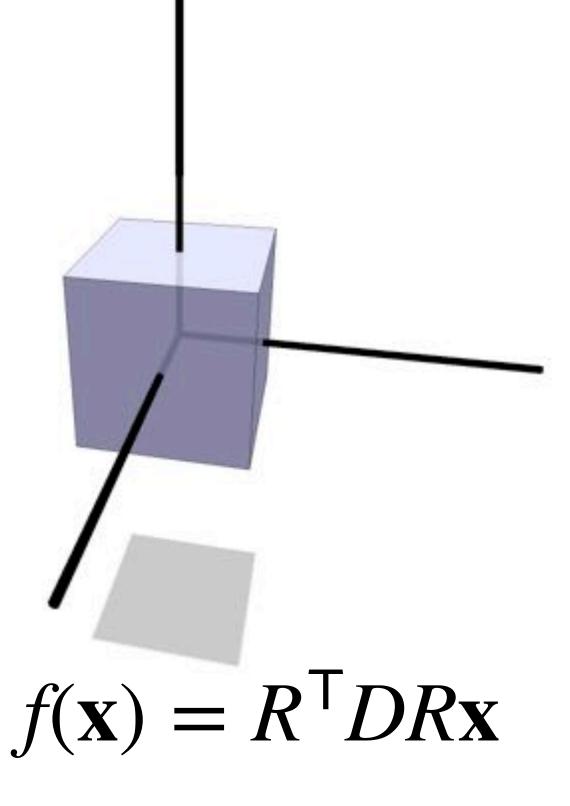
Idea. We could:

- rotate to the new axes (R)
- apply a diagonal scaling (D)
- rotate back* to the original axes (R^{+})

Notice that the overall transformation is represented by a <u>symmetric</u> matrix $A := R^{\mathsf{T}} D R$

Q: Do <u>all</u> symmetric matrices represent **nonuniform scaling (for some choice of axes)?**

*Recall that for a rotation, the inverse equals the transpose: $R^{-1} = R^{\top}$



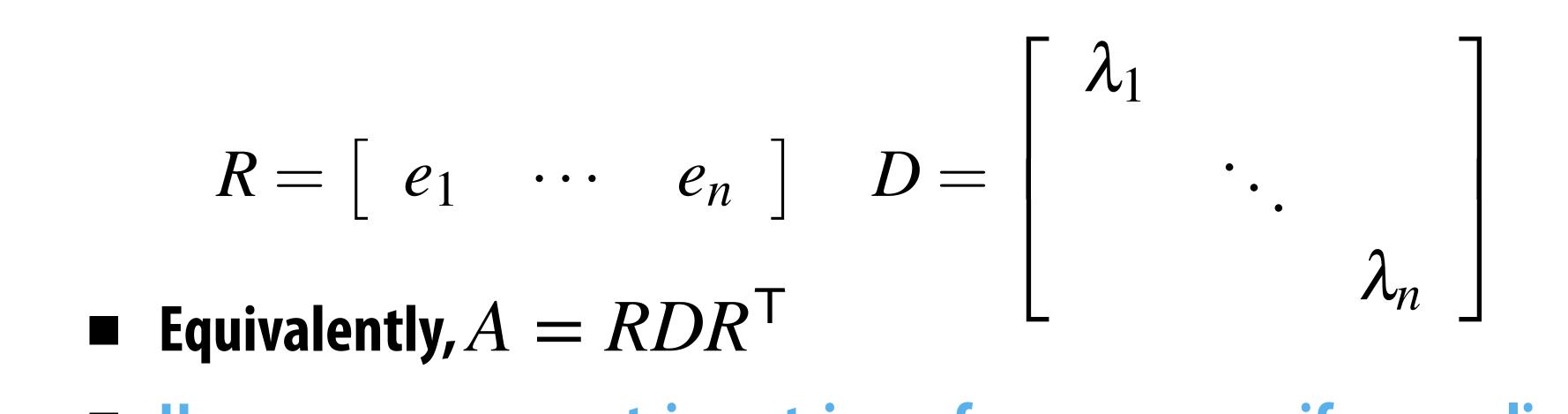
Spectral Theorem

- - orthonormal eigenvectors e₁, ..., e_n ∈ ℝⁿ
 real eigenvalues λ₁, ..., λ_n ∈ ℝ
- Can also write this relationship as AR = RD, where

$$R = \begin{bmatrix} e_1 & \cdots & e_n \end{bmatrix}$$

- Hence, every symmetric matrix performs a non-uniform scaling along some set of orthogonal axes.

• A: Yes! Spectral theorem says a symmetric matrix $A = A^{\top}$ has



• If A is positive definite ($\lambda_i > 0$), this scaling is positive.

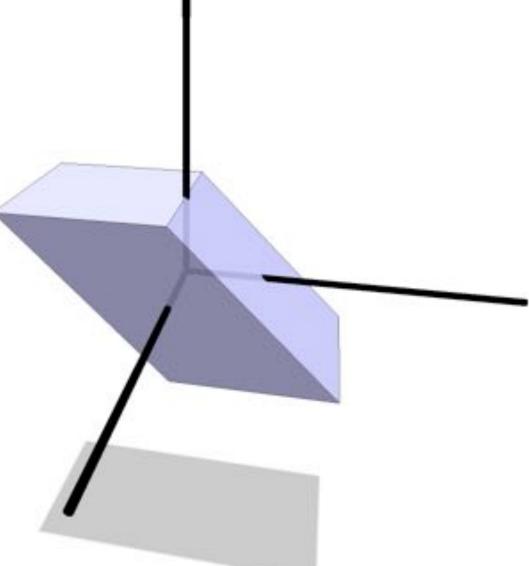
Shear

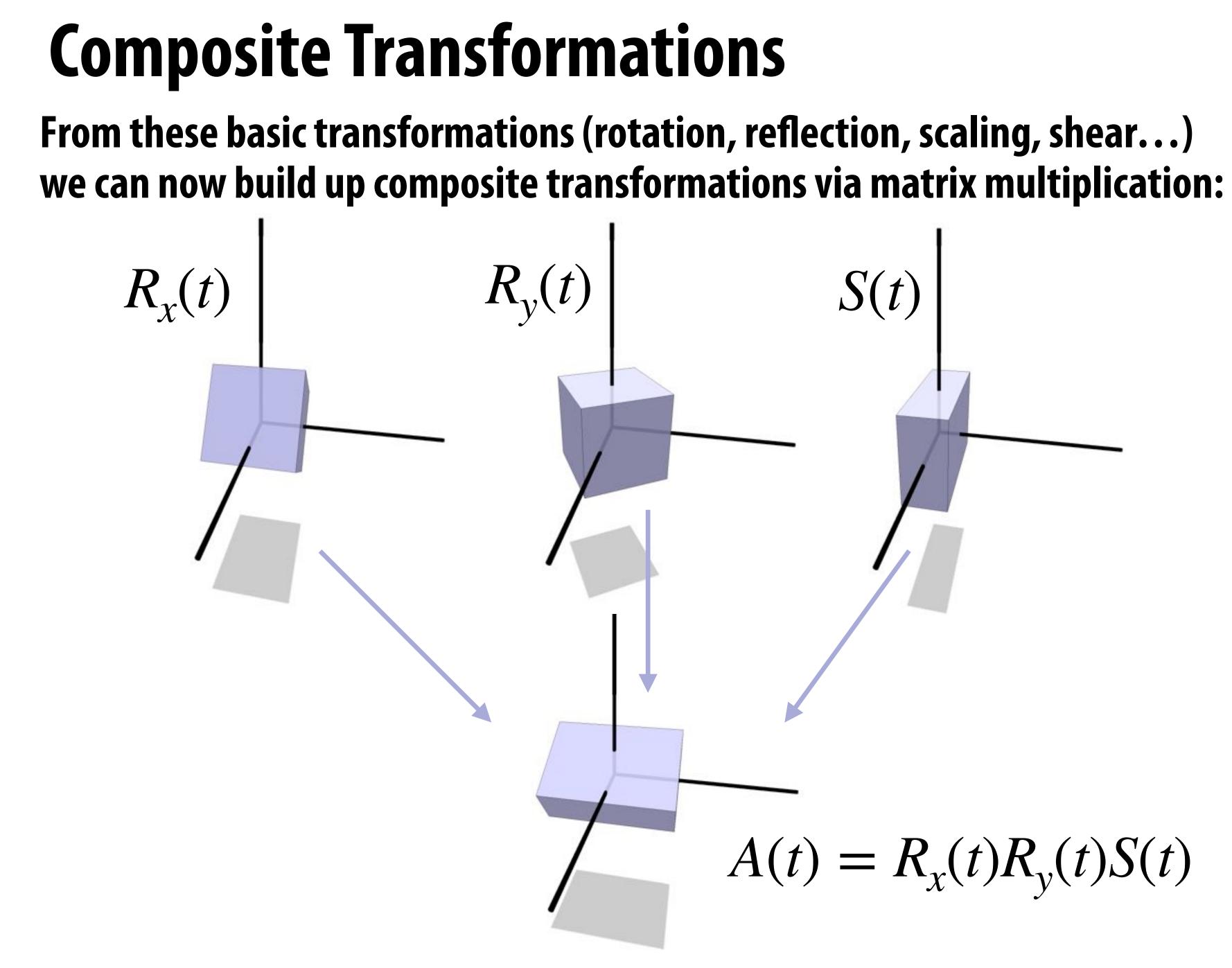
- distance along a fixed vector V:
 - $f_{\mathbf{u},\mathbf{v}}(\mathbf{x}) = \mathbf{x} + \langle \mathbf{v}, \mathbf{x} \rangle \mathbf{u}$
- Q: Is this transformation linear? A: Yes—for instance, can represent it via a matrix
 - Example. $\mathbf{u} = (\cos(t), 0, 0)$ $\mathbf{v} = (0, 1, 0) \quad A_{\mathbf{u}}$ $A_{\mathbf{u},\mathbf{v}} =$

A shear displaces each point x in a direction u according to its

 $A_{\mathbf{u},\mathbf{v}} = I + \mathbf{u}\mathbf{v}^{\mathsf{T}}$

 $\left|\begin{array}{ccc} 1 & \cos(t) & 0 \\ \hline \end{array}\right|$





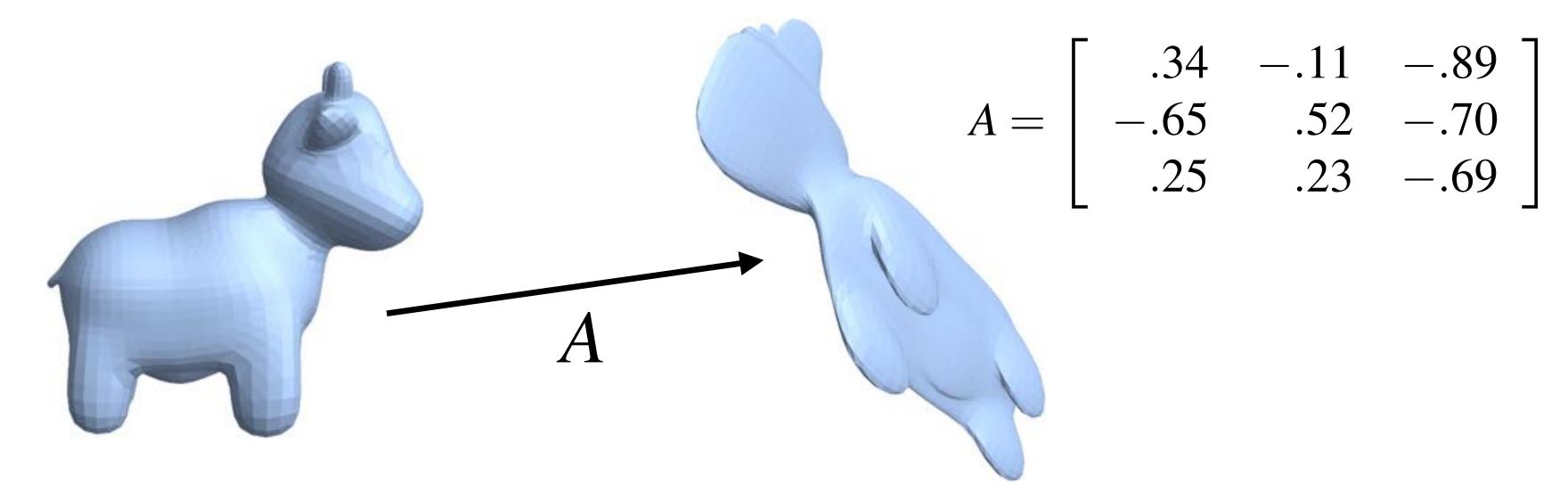
How do we <u>decompose</u> a linear transformation into pieces? (rotations, reflections, scaling, ...)

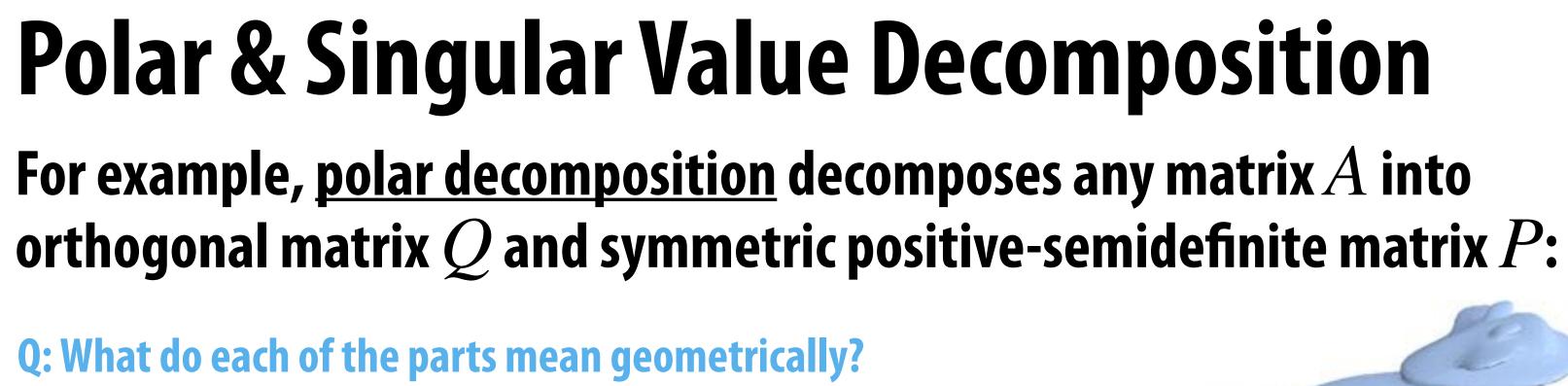
Decomposition of Linear Transformations

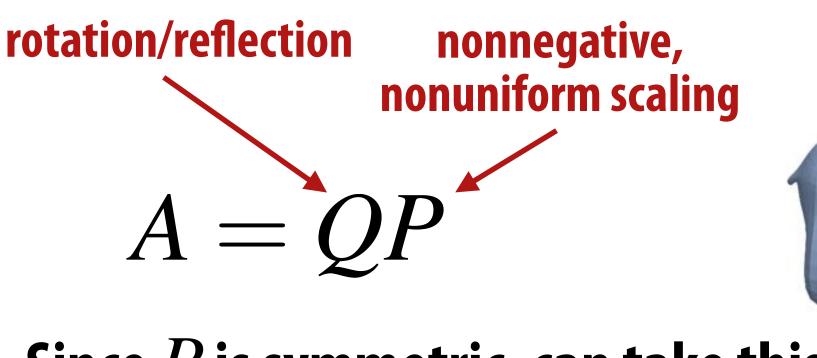
- In general, no unique way to write a given linear transformation as a composition of basic transformations!
- However, there are many useful decompositions:

 - singular value decomposition (good for signal processing) - LU factorization (good for solving linear systems)
 - polar decomposition (good for spatial transformations)

Consider for instance this linear transformation:







Since *P* is symmetric, can take this further via the spectral decomposition $P = VDV^{\mathsf{T}}$ (Vorthogonal, D diagonal):

$$A = \underbrace{QVDV}_{U}^{\mathsf{T}} = \underbrace{UDV}_{\mathsf{rotation}}^{\mathsf{T}}$$

Result UDV^{T} is called the <u>singular value decomposition</u>

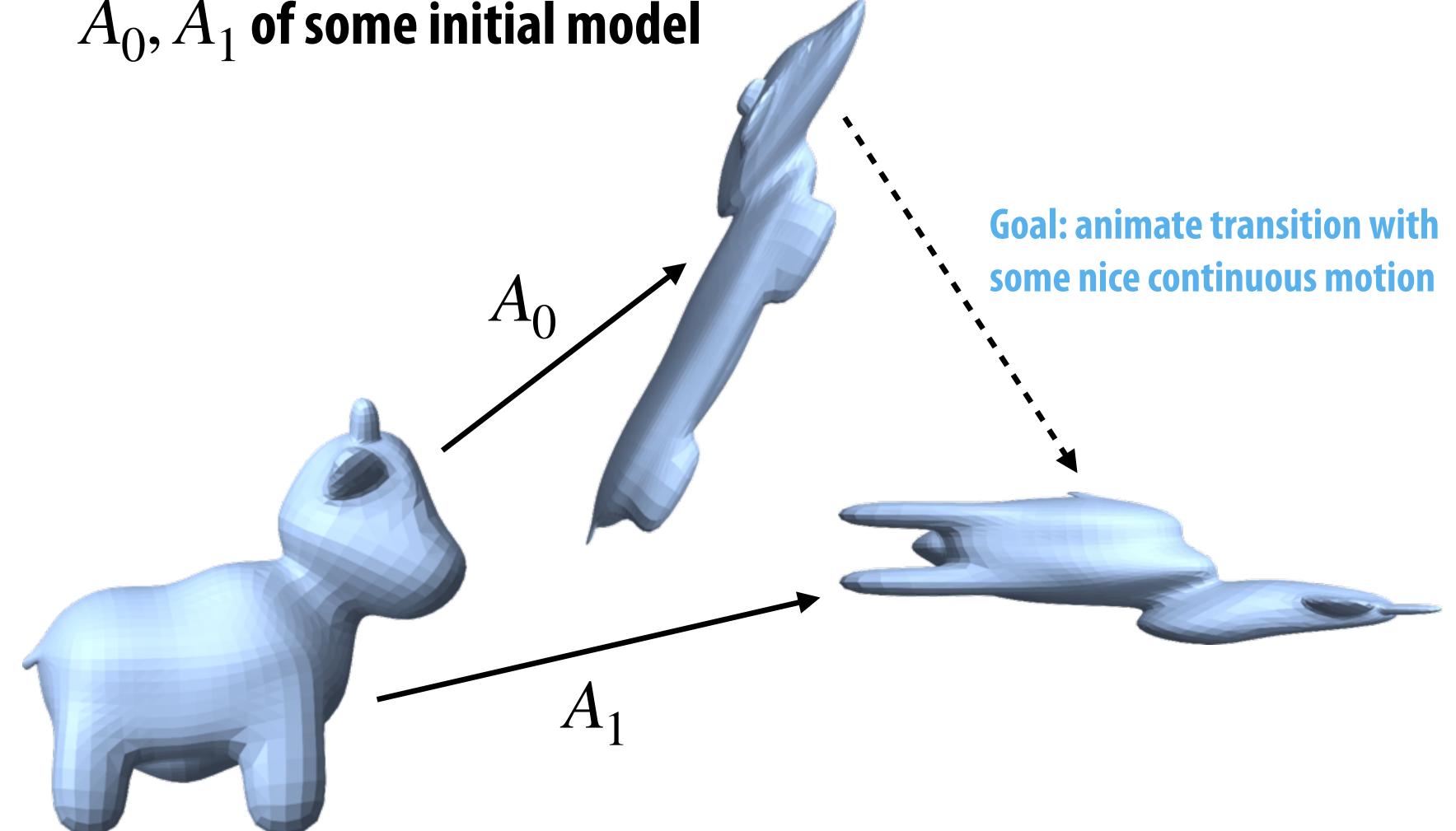
Q

D



Interpolating Transformations

How are these decompositions useful for graphics? A_0, A_1 of some initial model



Consider interpolating between two linear transformations

Interpolating Transformations—Linear One idea: just take a linear combination of the two matrices, weighted by the current time $t \in [0,1]$

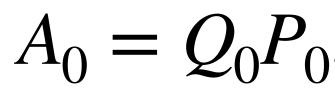
$A(t) = (1 - t)A_0 + tA_1$

Hits the right start/endpoints... but looks awful in between!

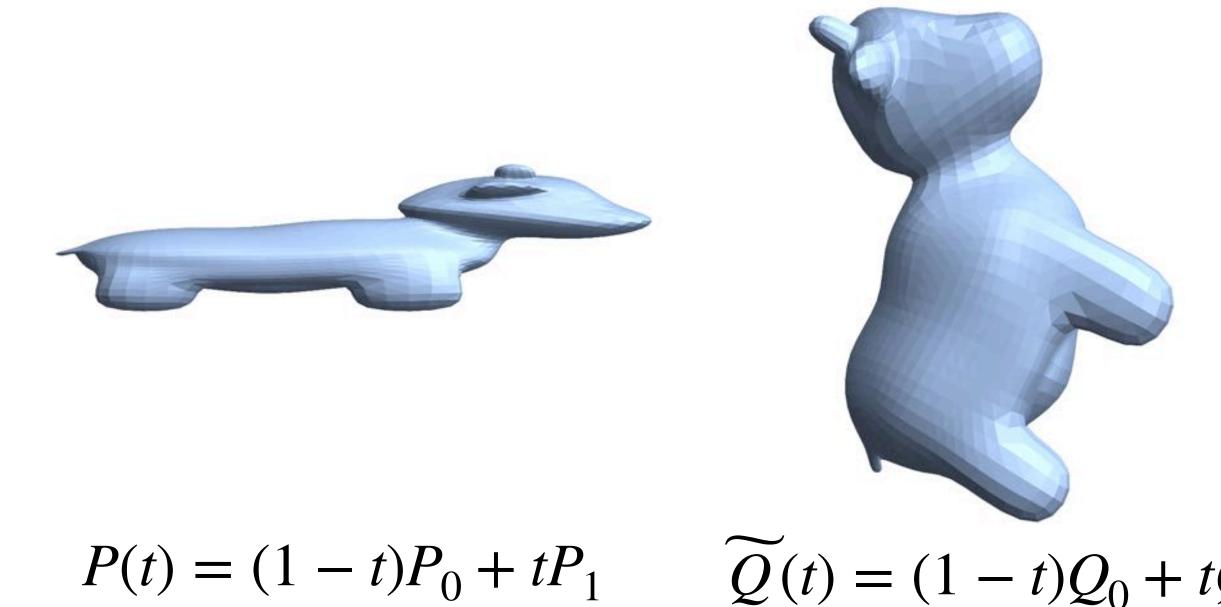
Interpolating Transformations—Polar

Better idea: separately interpolate components of polar decomposition.

rotation



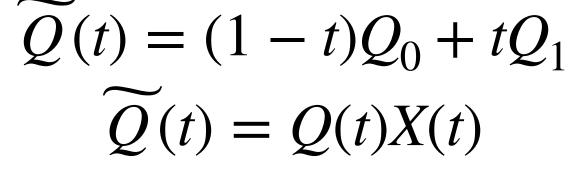
<u>scaling</u>



See: Shoemake & Duff, "Matrix Animation and Polar Decomposition"

$$A_1 = Q_1 P_1$$

final interpolation



A(t) = Q(t)P(t)

... looks better!

Example: Linear Blend Skinning

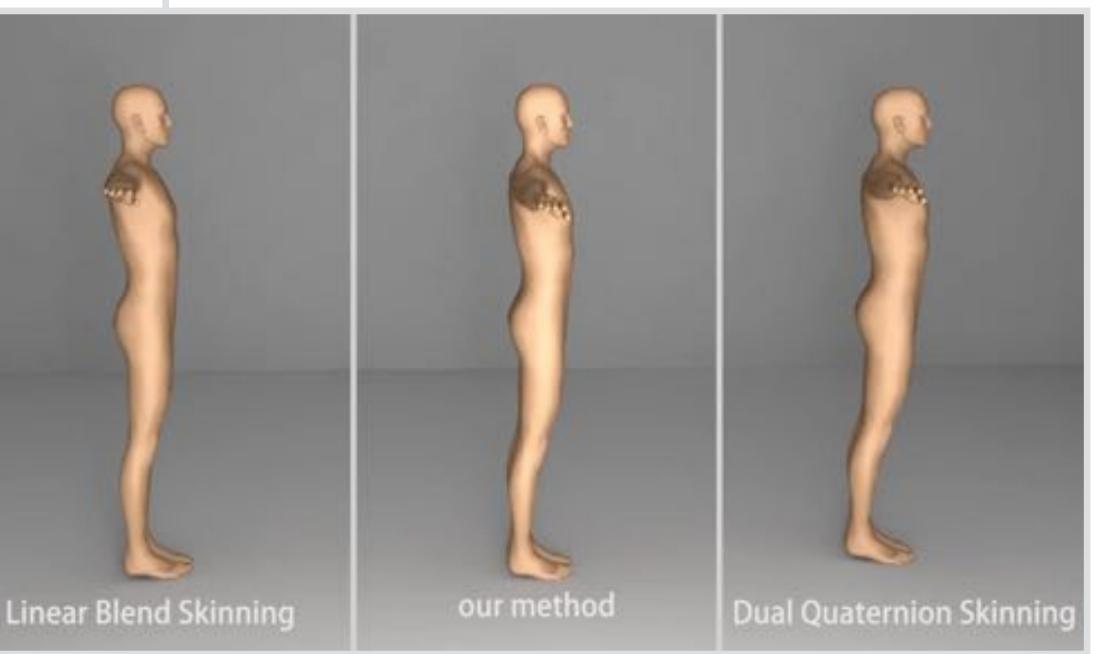
- Naïve linear interpolation also causes artifacts when blending between transformations on a character ("candy wrapper effect")
- Lots of research on alternative ways to blend transformations...

LBS: candy-wrapper artifact



Jacobson, Deng, Kavan, & Lewis (2014) "Skinning: Real-time Shape Deformation"

Rumman & Fratarcangeli (2015) "Position-based Skinning for Soft Articulated Characters"



Translations

Q: Is this transformation linear? (Certainly seems to move us along a line...)

Let's carefully check the definition...

additivity

 $f_{\mathbf{u}}(\mathbf{x} + \mathbf{y}) = \mathbf{x} + \mathbf{y} + \mathbf{u}$

 $f_{\mathbf{u}}(\mathbf{x}) + f_{\mathbf{u}}(\mathbf{y}) = \mathbf{x} + \mathbf{y} + 2\mathbf{u}$

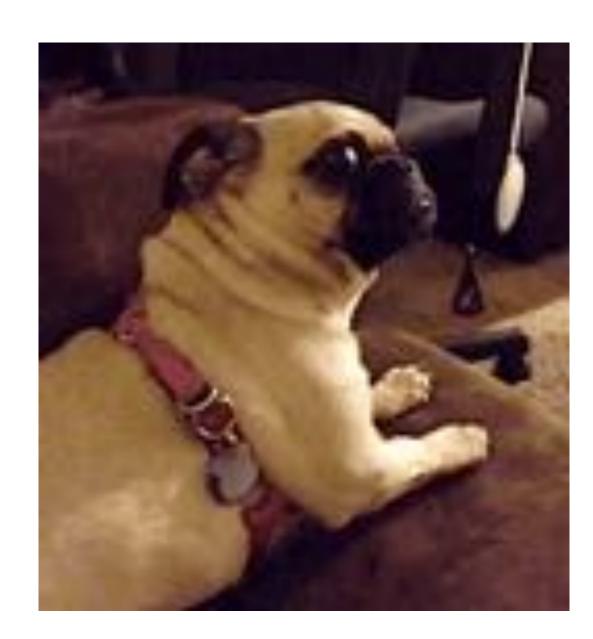
So far we've ignored a basic transformation—translations A translation simply adds an offset u to the given point x:

- $f_{\mathbf{u}}(\mathbf{x}) = \mathbf{x} + \mathbf{u}$ **homogeneity**
 - $f_{\mathbf{u}}(a\mathbf{x}) = a\mathbf{x} + \mathbf{u}$
 - $af_{\mathbf{u}}(\mathbf{x}) = a\mathbf{x} + a\mathbf{u}$
- A: No! Translation is <u>affine</u>, not linear!

- **Composition of Transformations Recall we can compose linear transformations via matrix multiplication:** $A_3(A_2(A_1\mathbf{x}))) = (A_3A_2A_1)\mathbf{x}$
- It's easy enough to compose translations—just add vectors: $f_{\mathbf{u}_{3}}(f_{\mathbf{u}_{2}}(f_{\mathbf{u}_{1}}(\mathbf{x}))) = f_{\mathbf{u}_{1}+\mathbf{u}_{2}+\mathbf{u}_{3}}(\mathbf{x})$
- What if we want to intermingle translations and linear transformations (rotation, scale, shear, etc.)? $A_2(A_1\mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2 = (A_2A_1)\mathbf{x} + (A_2\mathbf{b}_1 + \mathbf{b}_2)$
- Now we have to keep track of a matrix and a vector Moreover, we'll see (later) that this encoding won't work for other important cases, such as perspective transformations

But there is a better way...

Strange idea: Maybe translations turn into <u>linear</u> transformations if we go into the 4th dimension...!

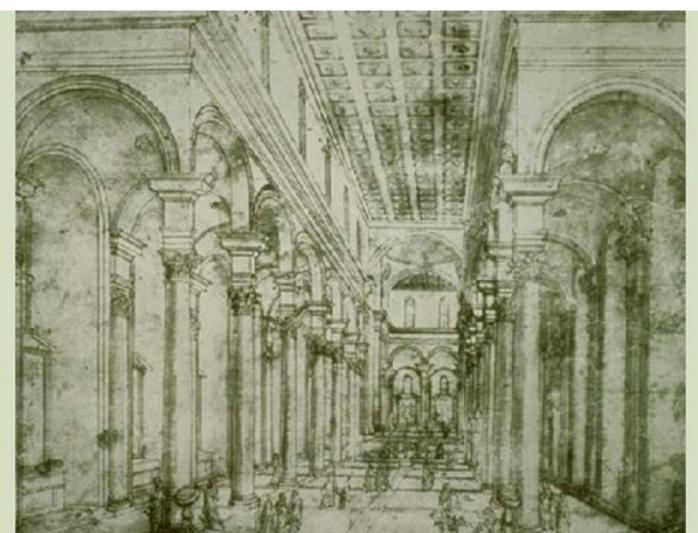


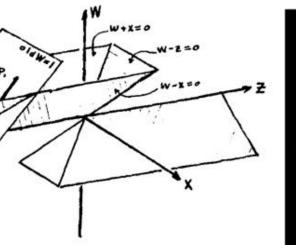
Homogeneous Coordinates

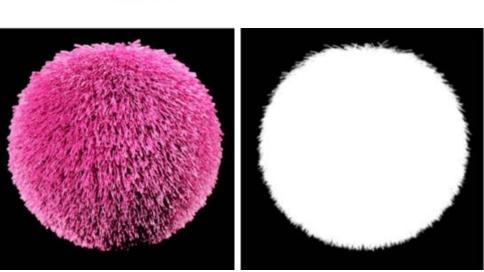
- Came from efforts to study <u>perspective</u>
- Introduced by Möbius as a natural way of assigning coordinates to <u>lines</u>
- Show up naturally in a surprising large number of places in computer graphics:
 - **3D transformations**
 - perspective projection
 - quadric error simplification
 - premultiplied alpha
 - shadow mapping
 - projective texture mapping
 - discrete conformal geometry
 - hyperbolic geometry
 - clipping
 - directional lights

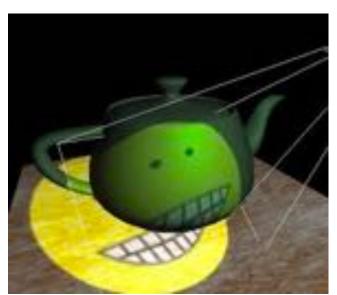
Probably worth understanding!

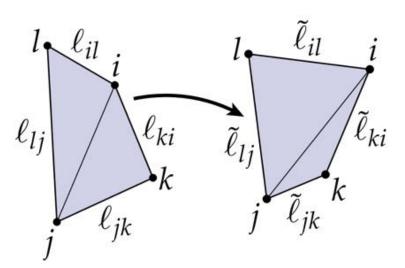
Filippo Brunelleschi, 1428









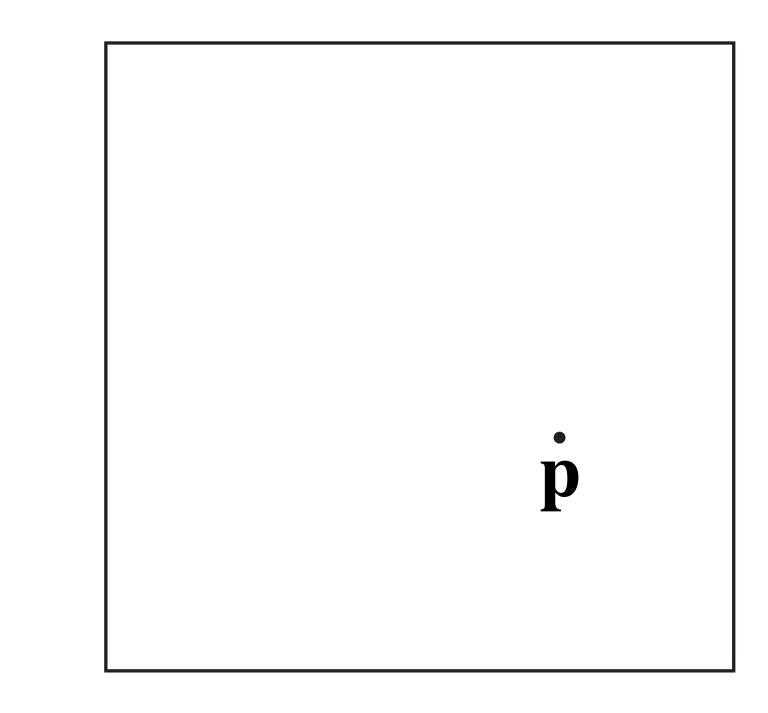


Homogeneous Coordinates—Basic Idea

- **Consider any 2D plane that does not pass through the origin O in 3D**
- **Every** <u>line</u> through the origin in 3D corresponds to a <u>point</u> in the 2D plane
 - Just find the point ${\bf p}$ where the line L pierces the plane

p

p



Hence, any point $\widehat{\mathbf{p}}$ on the line L can be used to represent the point \mathbf{p} .

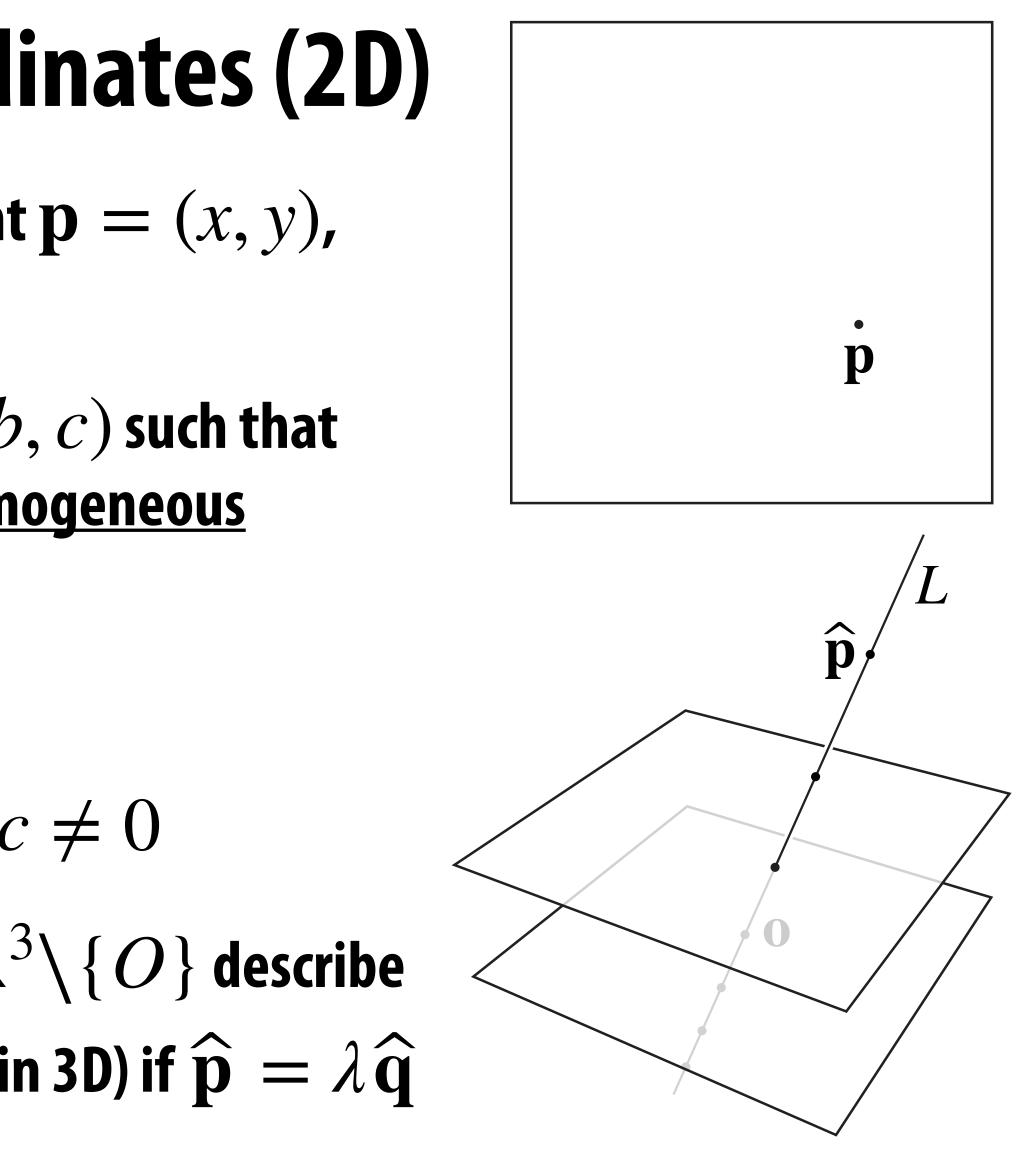
Homogeneous Coordinates (2D)

- More explicitly, consider a point $\mathbf{p} = (x, y)$, and the plane z = 1 in 3D
- Any three numbers $\hat{\mathbf{p}} = (a, b, c)$ such that (a/c, b/c) = (x, y) are <u>homogeneous</u> <u>coordinates</u> for p

- **E.g.**,
$$(x, y, 1)$$

- In general: (cx, cy, c) for $c \neq 0$
- Hence, two points $\hat{\mathbf{p}}, \hat{\mathbf{q}} \in \mathbb{R}^3 \setminus \{O\}$ describe the same point in 2D (and line in 3D) if $\hat{\mathbf{p}} = \lambda \hat{\mathbf{q}}$ for some $\lambda \neq 0$

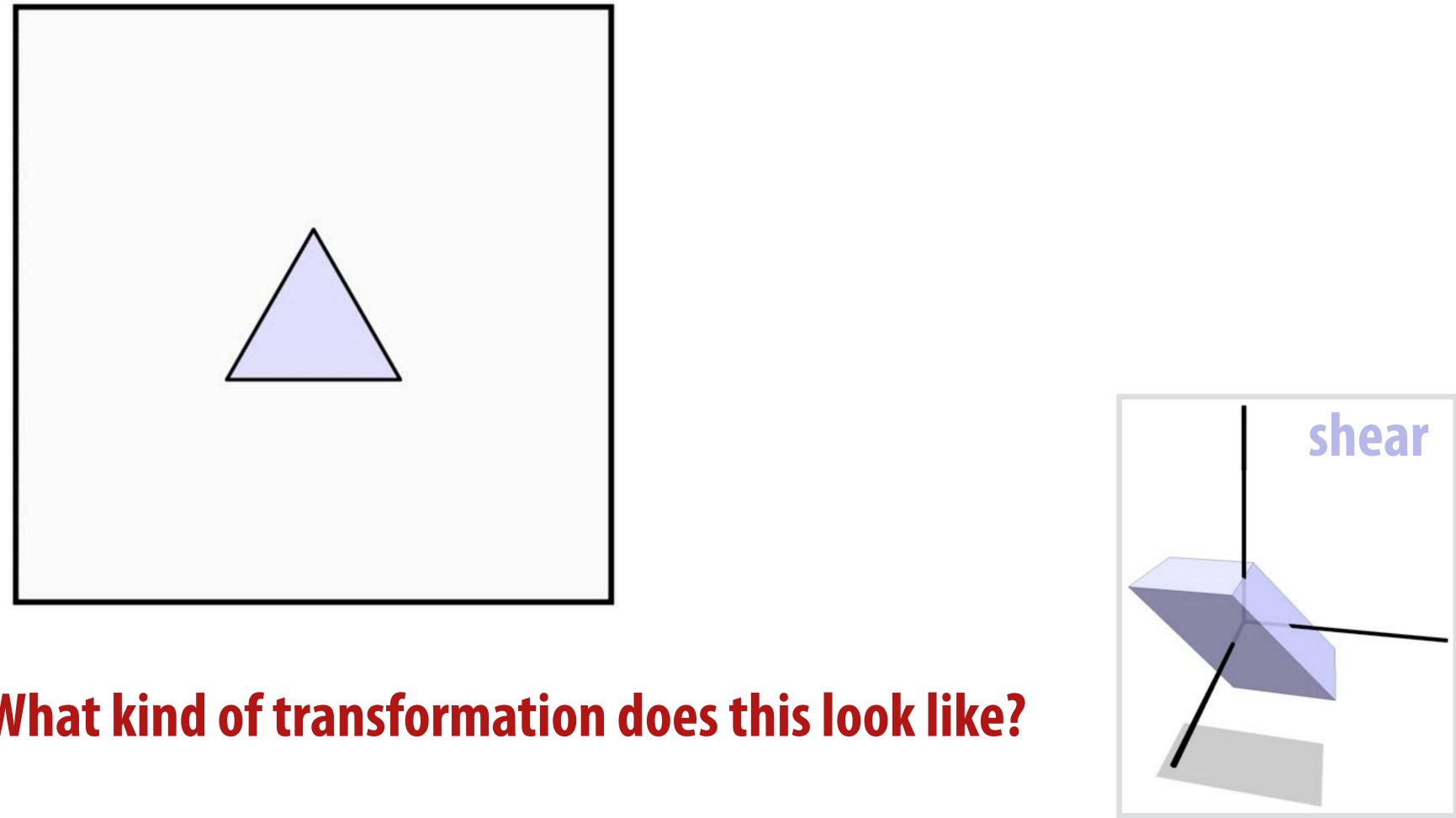
Great... but how does this help us with transformations?



Translation in Homogeneous Coordinates

Let's think about what happens to our homogeneous coordinates $\widehat{\mathbf{p}}$ if we apply a translation to our 2D coordinates p

2D coordinates



Q: What kind of transformation does this look like?

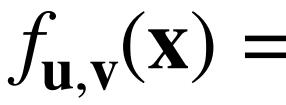
Translation in Homogeneous Coordinates

- But wait a minute—shear is a linear transformation!
- Can this be right? Let's check in coordinates...
- Suppose we translate a point $\mathbf{p} = (p_1, p_2)$ by a vector $\mathbf{u} = (u_1, u_2)$ to get $\mathbf{p}' = (p_1 + u_1, p_2 + u_2)$
- The homogeneous coordinates $\hat{\mathbf{p}} = (cp_1, cp_2, c)$ then become $\hat{\mathbf{p}}' = (cp_1 + cu_1, cp_2 + cu_2, c)$
 - Notice that we're shifting \widehat{p} by an amount $c\mathbf{u}$ that's proportional to the distance *c* along the third axis—a shear

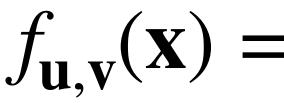
Using homogeneous coordinates, we can represent an <u>affine</u> transformation in 2D as a linear transformation in 3D

Homogeneous Translation—Matrix Representation

To write as a matrix, recall that a shear in the direction



In matrix form:



In our case, $\mathbf{v} = (0,0,1)$ and so we get a matrix

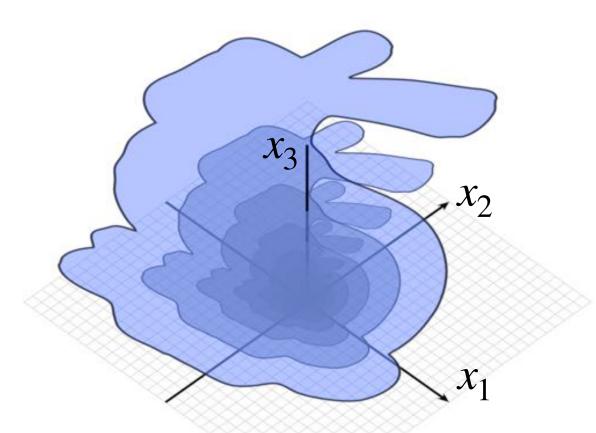
$$\begin{bmatrix} 1 & 0 & u_1 \\ 0 & 1 & u_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} cp_1 \\ cp_2 \\ c \end{bmatrix} =$$

- $\mathbf{u} = (u_1, u_2)$ according to the distance along a direction \mathbf{v} is
 - $f_{\mathbf{u},\mathbf{v}}(\mathbf{x}) = \mathbf{x} + \langle \mathbf{v}, \mathbf{x} \rangle \mathbf{u}$

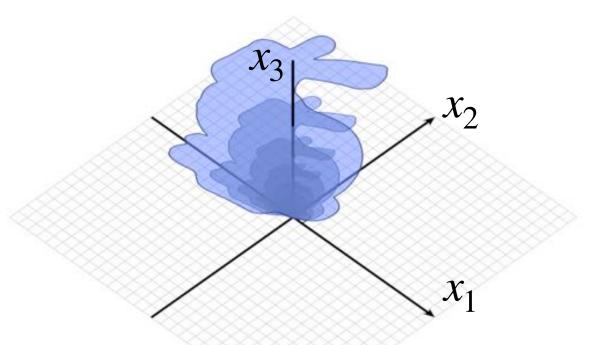
- $f_{\mathbf{u},\mathbf{v}}(\mathbf{x}) = (I + \mathbf{u}\mathbf{v}^{\mathsf{T}})\mathbf{x}$

$$\begin{bmatrix} c(p_1+u_1) \\ c(p_2+u_2) \\ c \end{bmatrix} \xrightarrow{1/c} \begin{bmatrix} p_1+u_1 \\ p_2+u_2 \end{bmatrix}$$

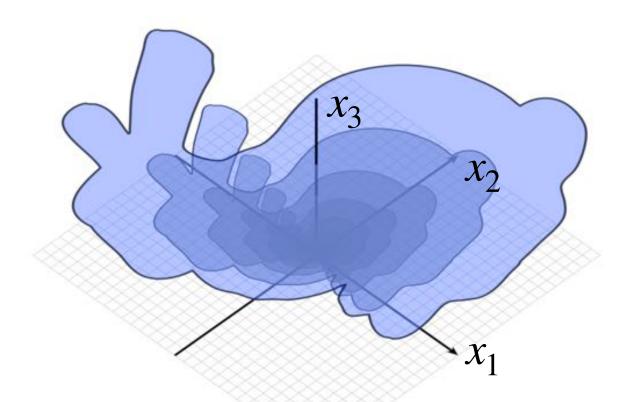
Other 2D Transformations in Homogeneous Coordinates



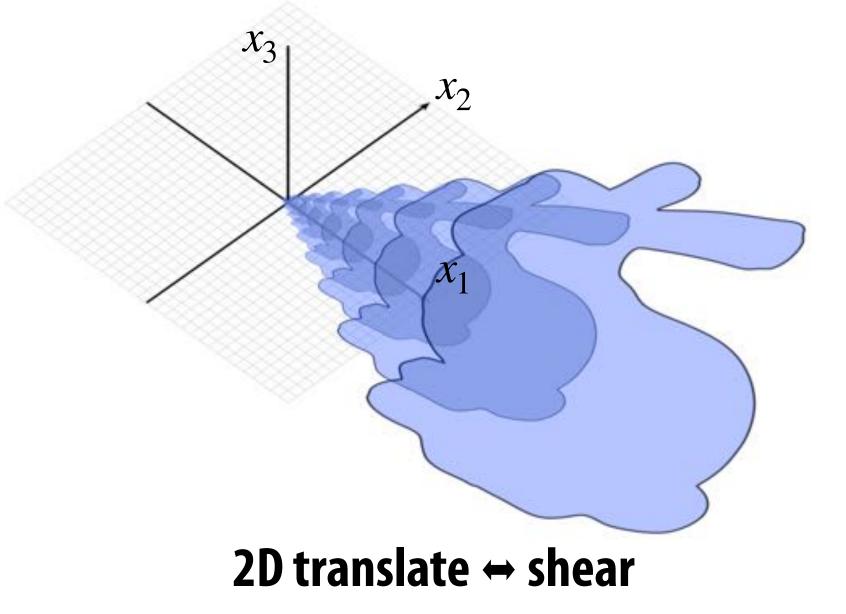
Original shape in 2D can be viewed as many copies, uniformly scaled by x_3



2D scale \leftrightarrow scale x_1 and x_2 ; preserve x_3 (Q: what happens to 2D shape if you scale $x_1, x_2, \underline{and} x_3$ uniformly?)



2D rotation \leftrightarrow rotate around x_3



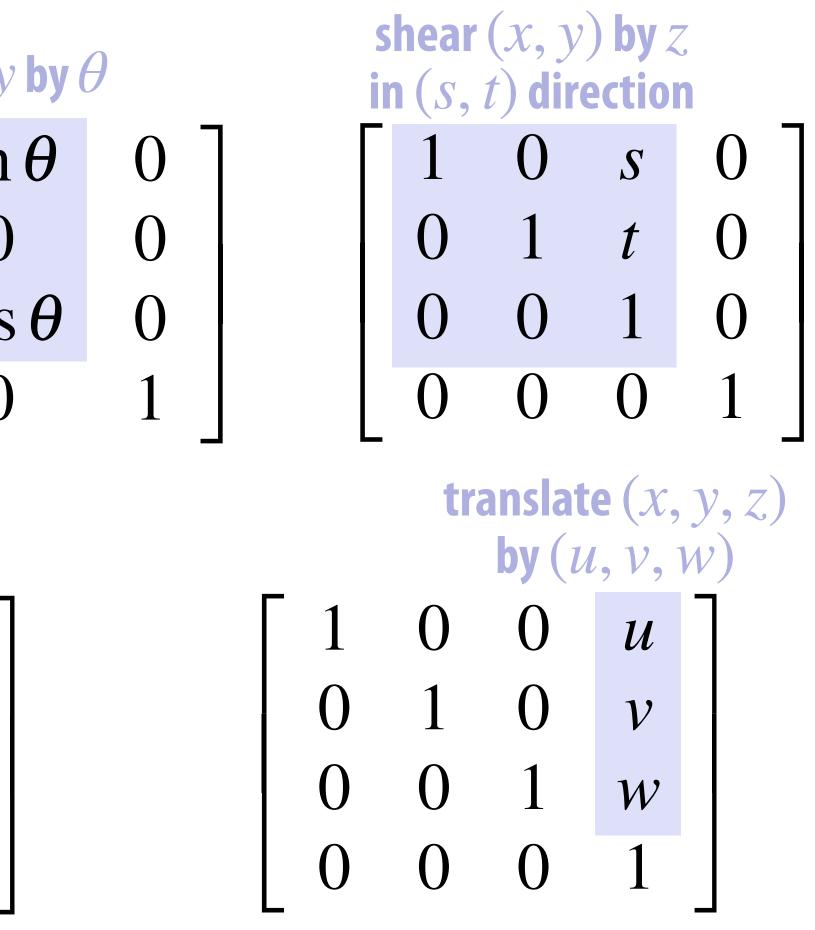
Now easy to compose <u>all</u> these transformations

3D Transformations in Homogeneous Coordinates

- Matrix representations of 3D linear transformations just get an additional identity row/column; translation is again a shear

	r	otate (<i>x</i> , <i>y</i> ,	z) are	ound y
	Γ	COS	$\boldsymbol{\theta}$	0	sin
naint in 2D		0		1	0
point in 3D		-si	$n \theta$	0	COS
x y		0		0	0
		sca by			
		$\begin{bmatrix} a \end{bmatrix}$	0	0	$\begin{bmatrix} 0 \end{bmatrix}$
		0	b	0	0
		0	0	С	0
		0	0	0	1
		_			_

Not much changes in three (or more) dimensions: just append one "homogeneous coordinate" to the first three

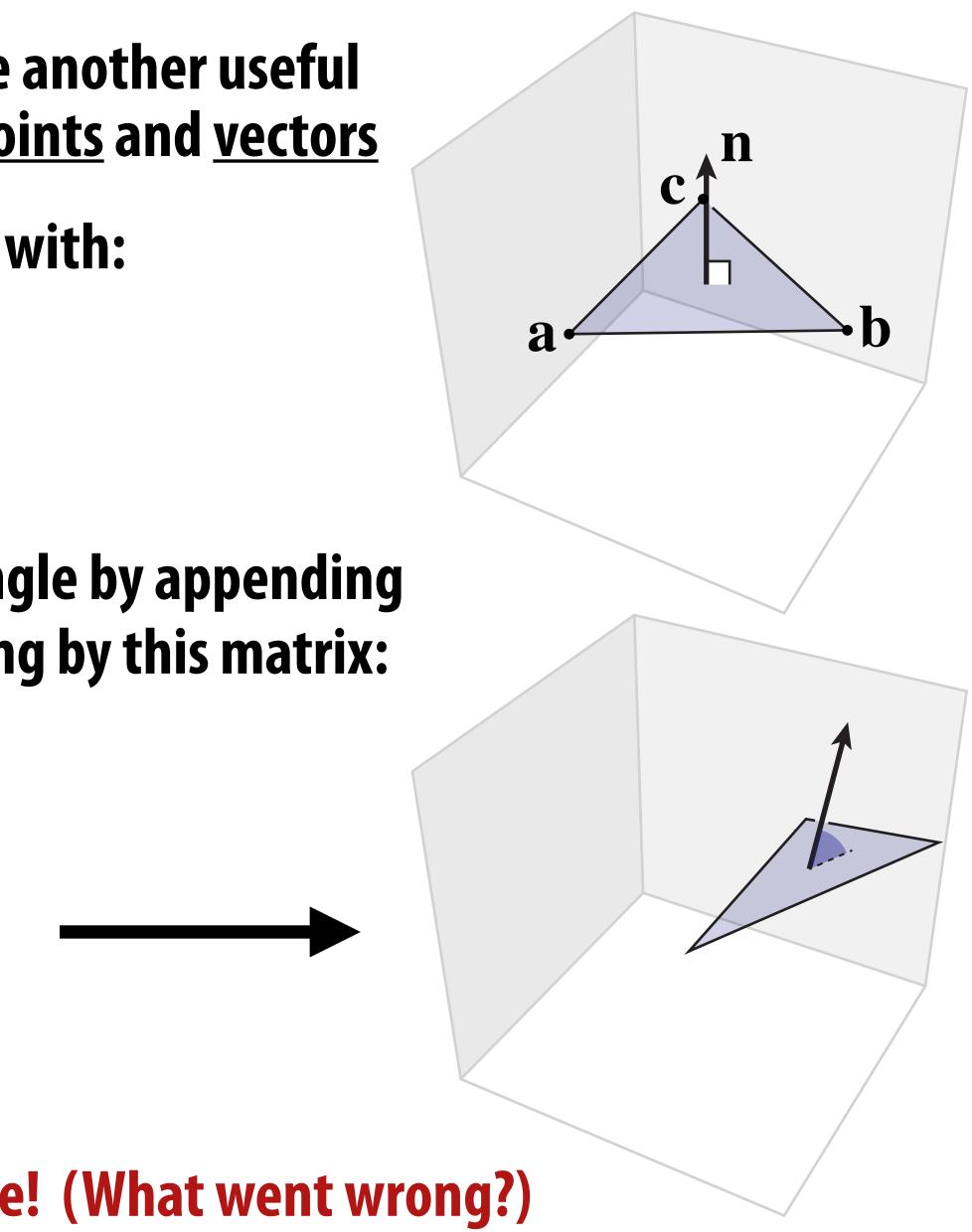


Points vs. Vectors

- Homogeneous coordinates have another useful feature: distinguish between points and vectors
- Consider for instance a triangle with:
 - vertices $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3$
 - normal vector $\mathbf{n} \in \mathbb{R}^3$
- Suppose we transform the triangle by appending "1" to a, b, c, n and multiplying by this matrix:

$\cos \theta$	0	$\sin \theta$	U
0	1	0	V
$-\sin\theta$	0	$\cos \theta$	W
0	0	0	1

Normal is not orthogonal to triangle! (What went wrong?)



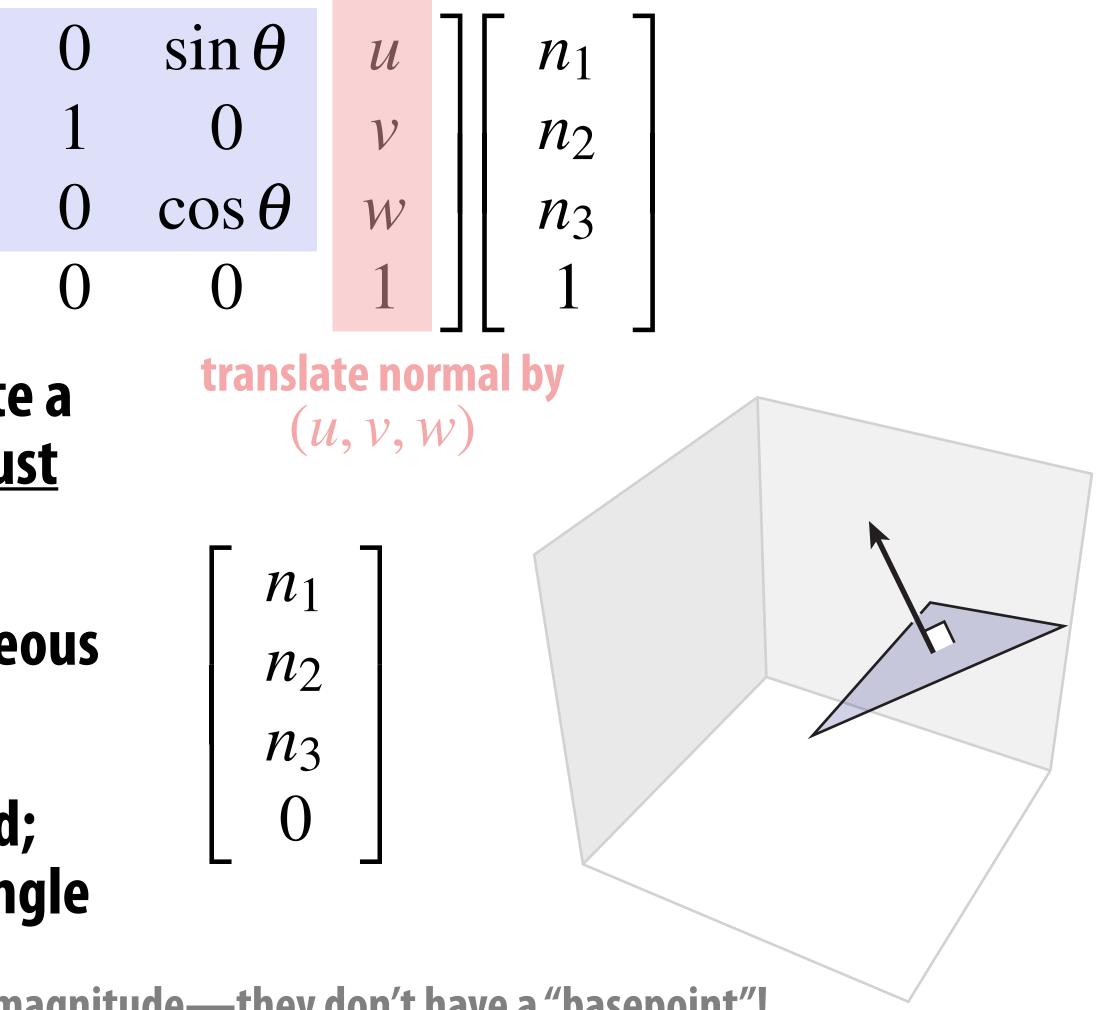
Points vs. Vectors (continued) Let's think about what happens when we multiply the normal vector **n** by our matrix:

rotate normal around y by θ

 $\cos\theta$ 0 $\sin\theta$ 0 $-\sin\theta$ 0 $\cos\theta$ 0 0

- But when we rotate/translate a triangle, its normal should just rotate!*
- **Solution?** Just set homogeneous coordinate to zero!
- **Translation now gets ignored;** normal is orthogonal to triangle

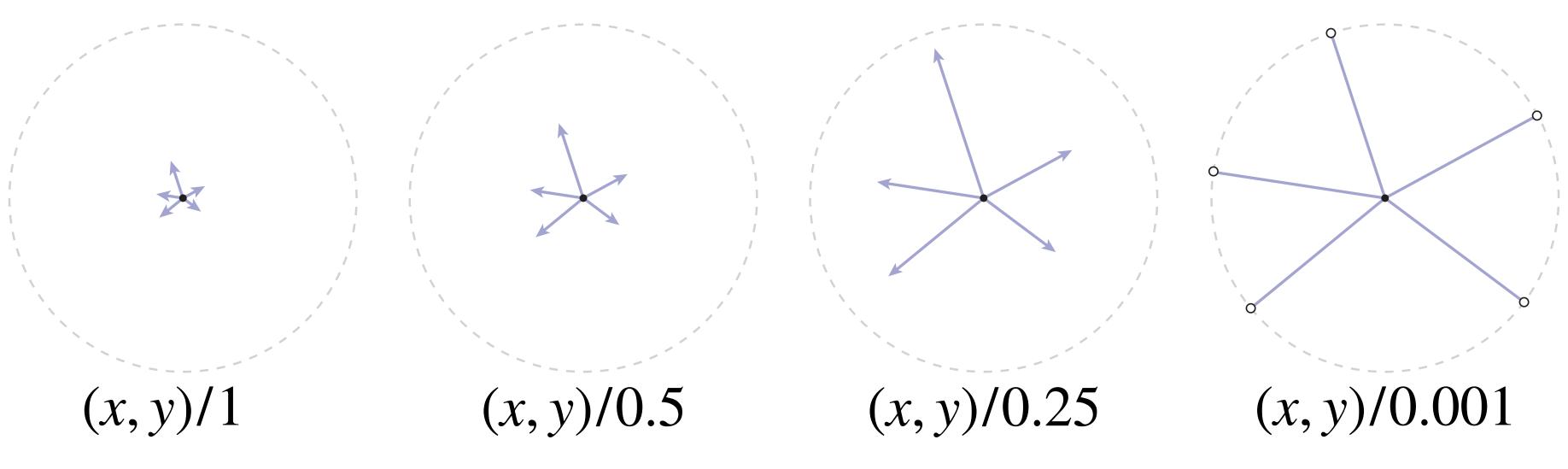
*Recall that <u>vectors</u> just have direction and magnitude—they don't have a "basepoint"!



Points vs. Vectors in Homogeneous Coordinates

■ In general:

- A point has a <u>nonzero</u> homogeneous coordinate (c = 1) - A vector has a <u>zero</u> homogeneous coordinate (c = 0)
- But wait... what division by *c* mean when it's equal to zero?



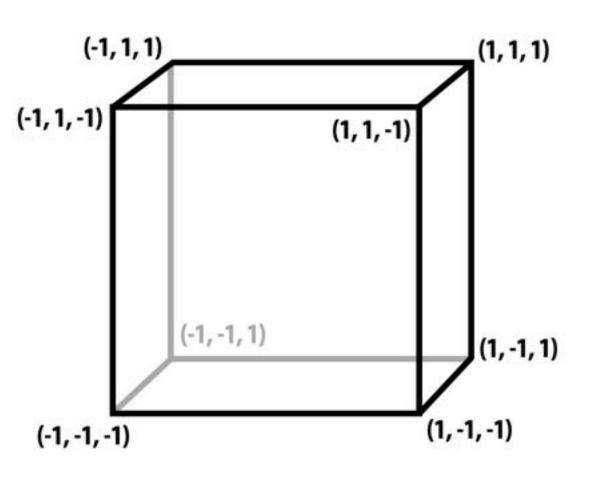
Can think of vectors as "points at infinity" (sometimes called "ideal points") (In practice: still need to check for divide by zero!)

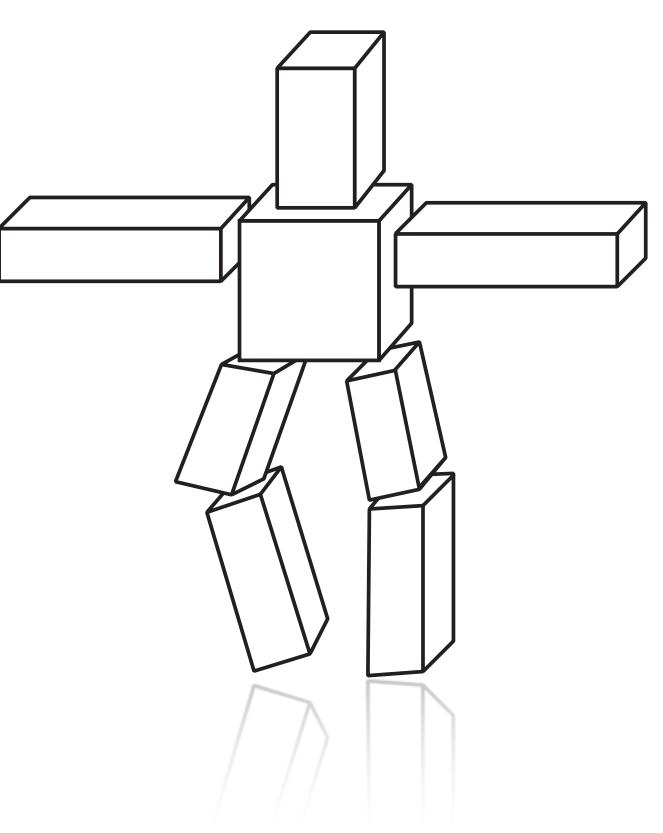
Scene Graph

- For complex scenes (e.g., more than just a cube!) <u>scene graph</u> can help organize transformations
- Motivation: suppose we want to build a "cube creature" by transforming copies of the unit cube
- Difficult to specify each transformation directly
- Instead, build up transformations of "lower" parts from transformations of "upper" parts
 - E.g., first position the body

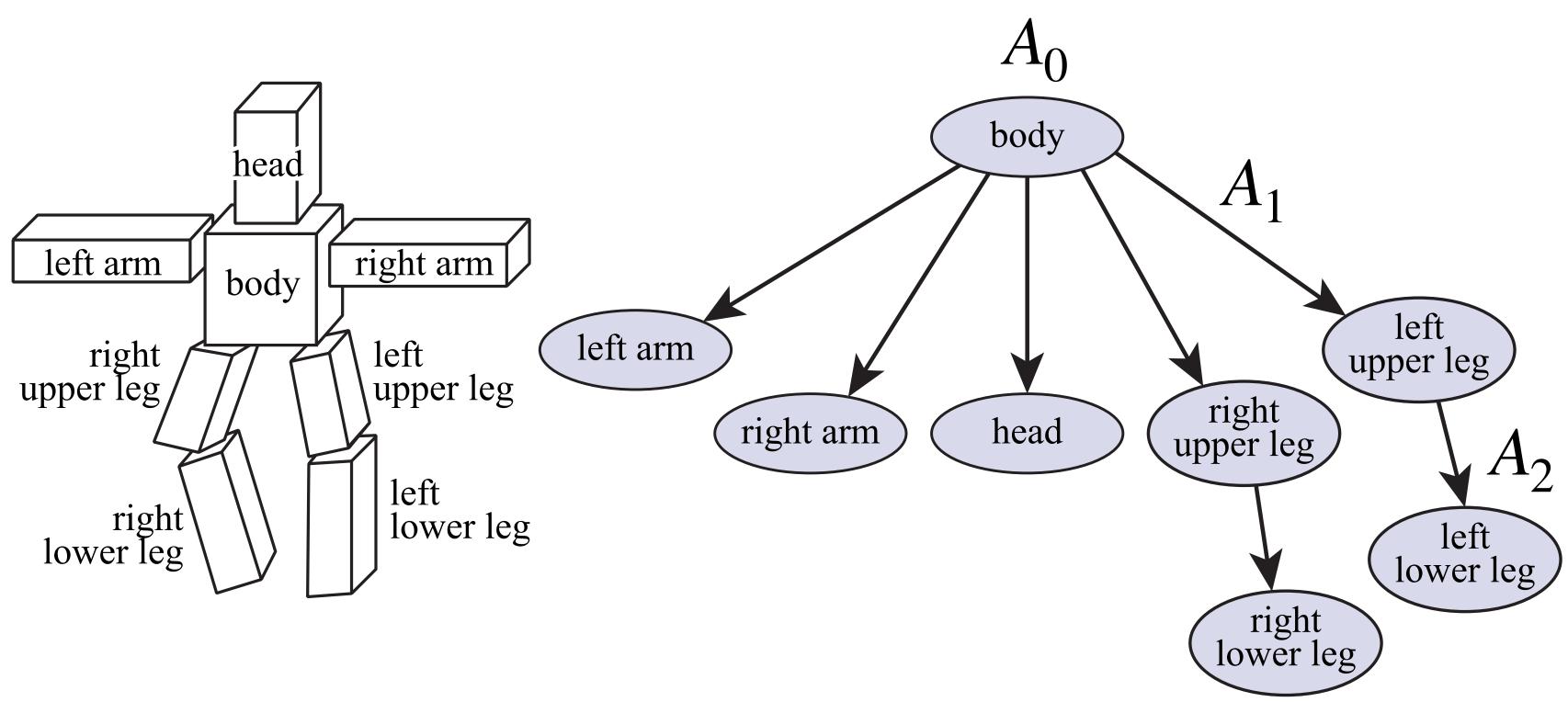
- • • •

- Then transform upper arm <u>relative to</u> the body
- Then transform lower arm relative to upper arm





Scene Graph (continued) Scene graph stores relative transformations in directed graph Each edge (+root) stores a linear transformation (e.g., a 4x4 matrix) **Composition of transformations gets applied to nodes**



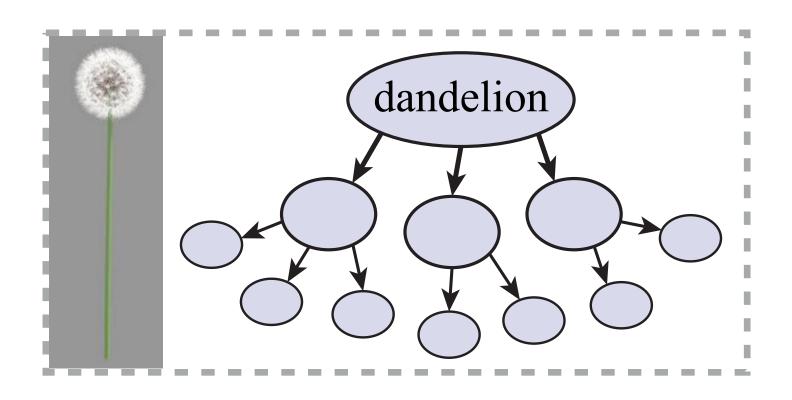
- E.g., A_1A_0 gets applied to left upper leg; $A_2A_1A_0$ to left lower leg
 - Keep transformations on a stack to reduce redundant multiplication

Scene Graph—Example Often used to build up complex "rig":

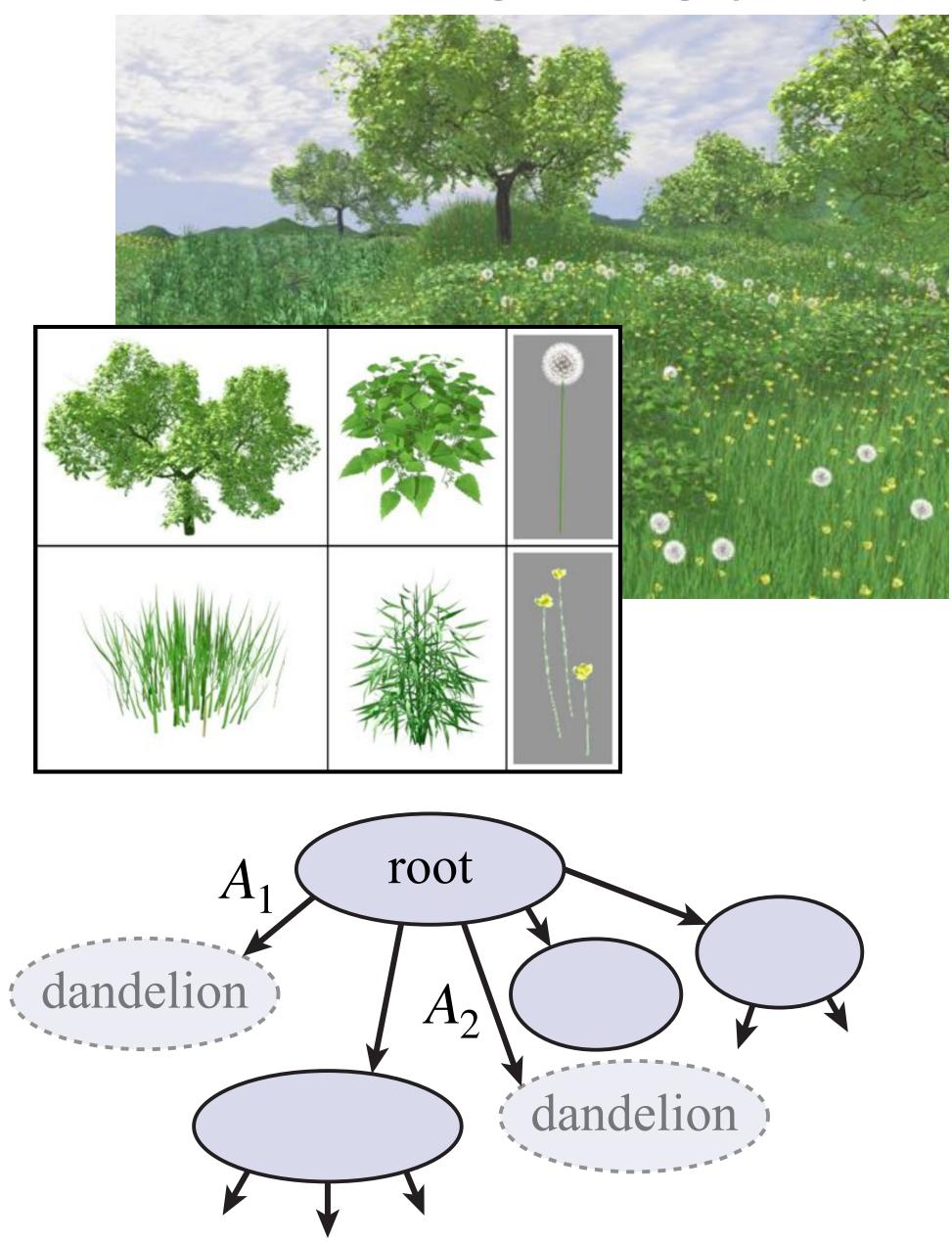
In general, scene graph also includes other models, lights, cameras, ...

Instancing

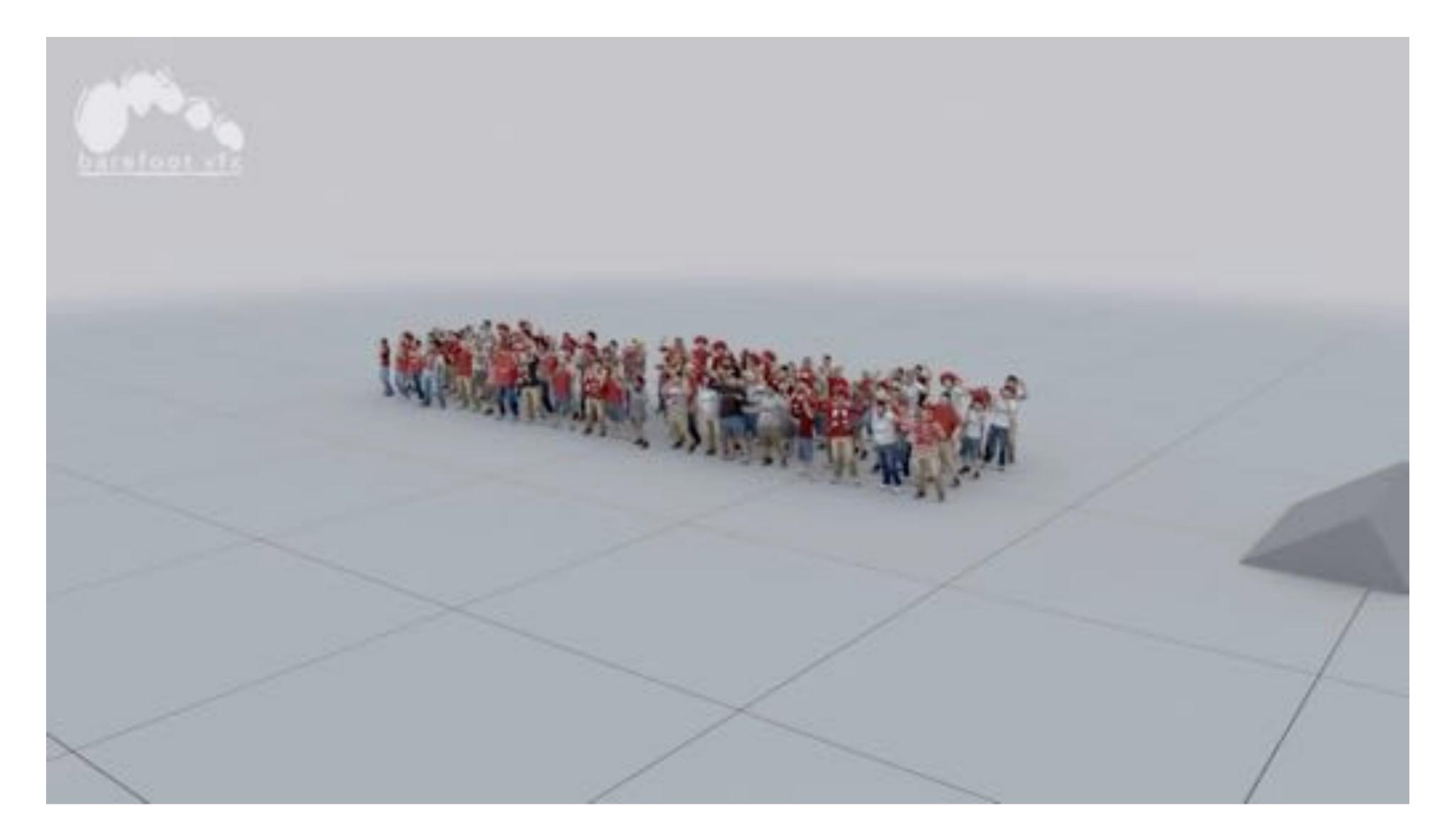
- What if we want many copies of the same object in a scene?
- Rather than have many copies of the geometry, scene graph, etc., can just put a "pointer" node in our scene graph
- Like any other node, can specify a different transformation on each incoming edge



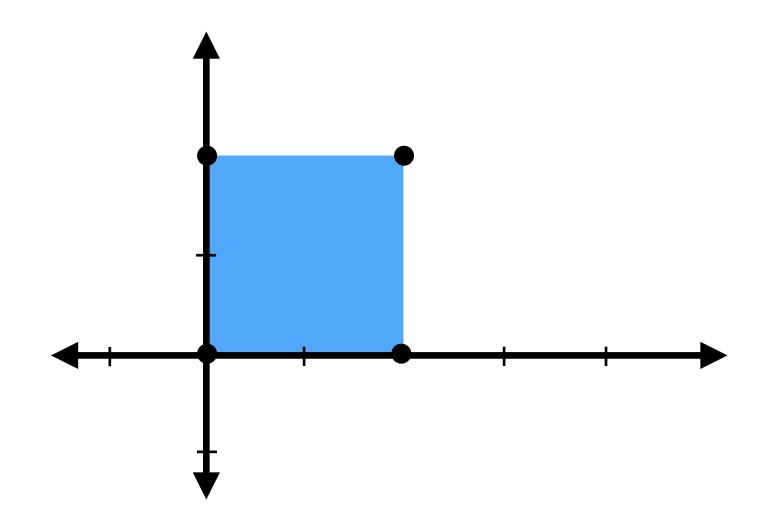
Deussen et al, "Realistic modeling and rendering of plant ecosystems"



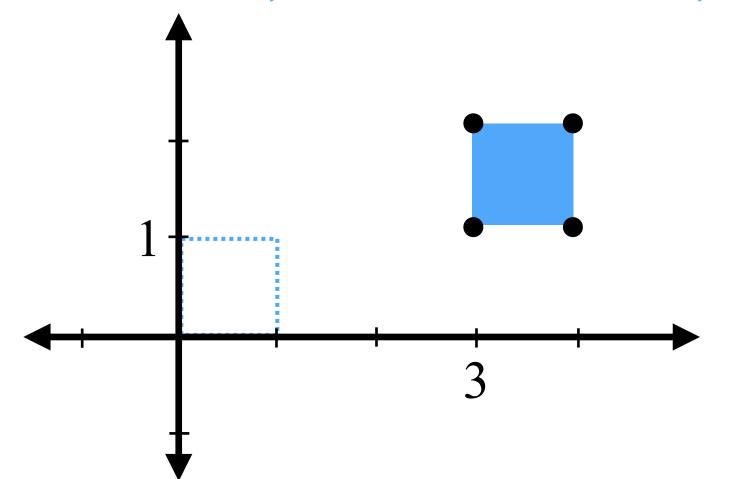
Instancing—Example

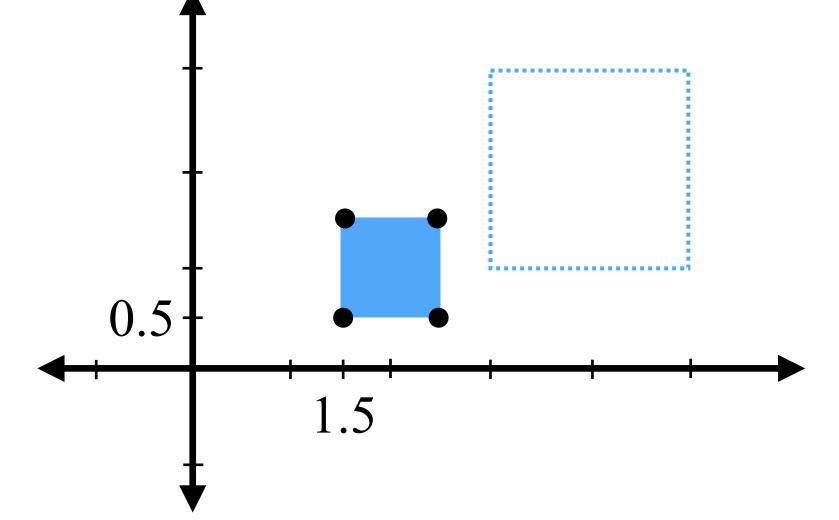


Order matters when composing transformations!

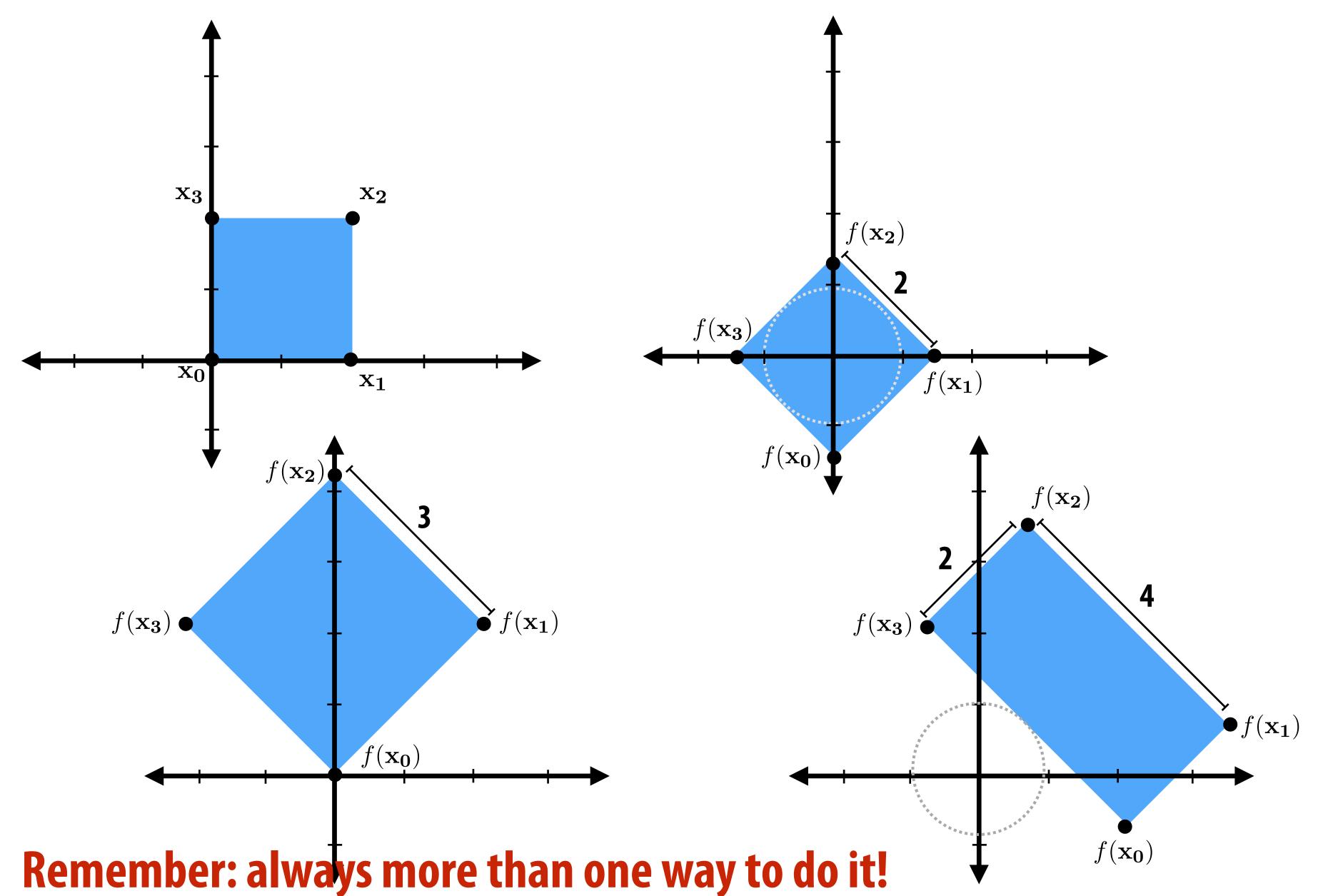


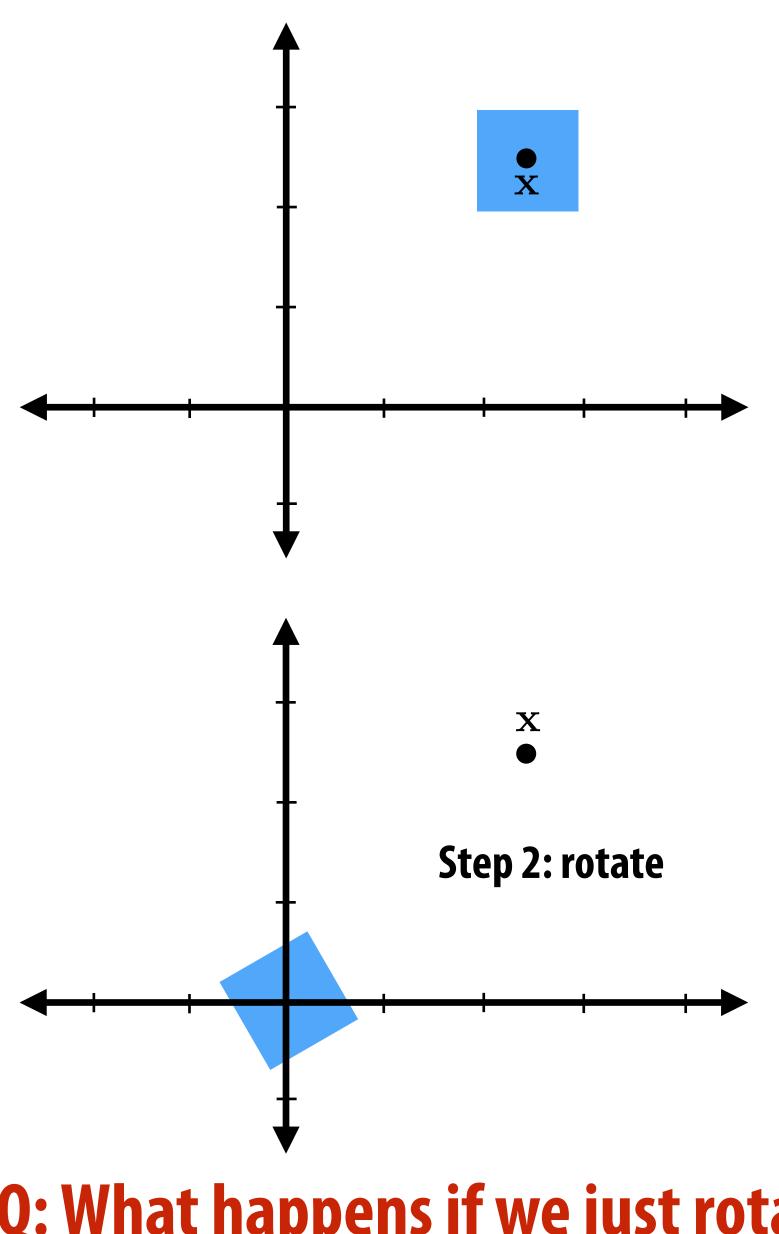
scale by 1/2, then translate by (3,1)

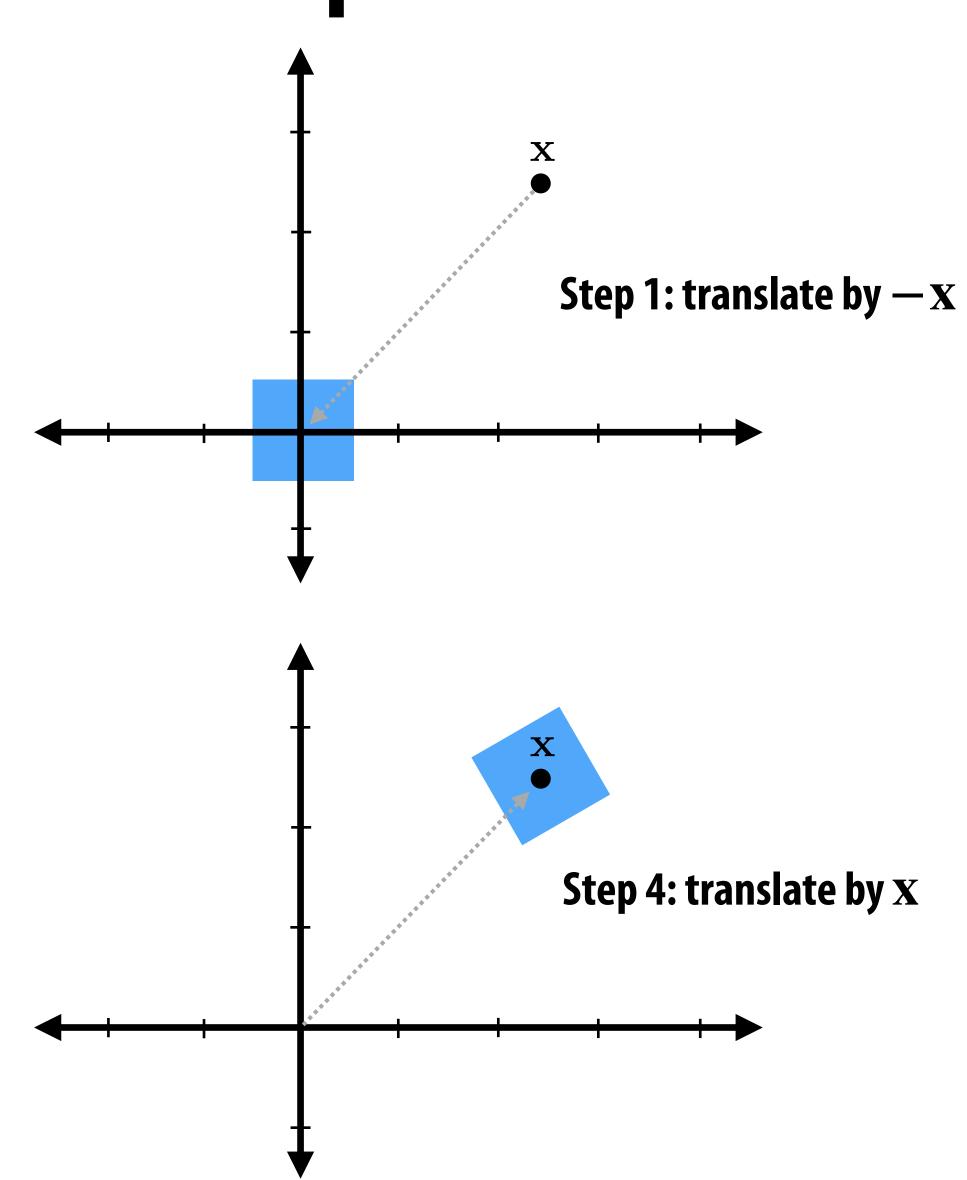




How would you perform these transformations?



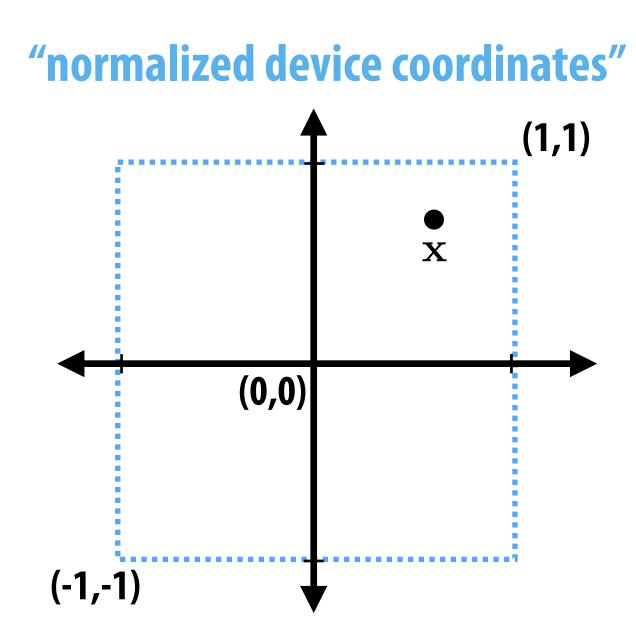




Q: What happens if we just rotate without translating first?

Screen Transformation (OpenGL)

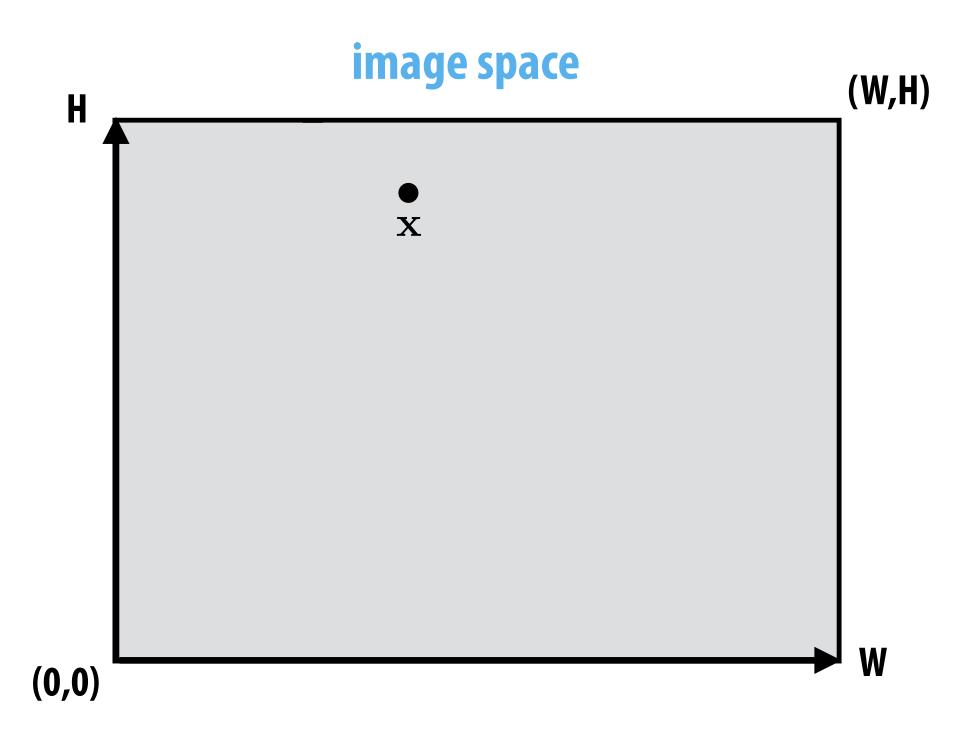
- viewing plane to pixel coordinates
- the z = 1 plane, into a W x H pixel image



Q: What transformation(s) would you apply?

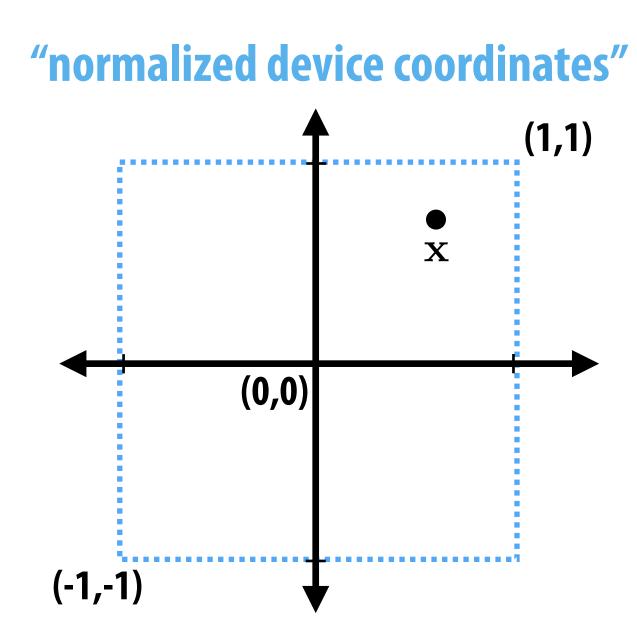
One last transformation is needed in the rasterization pipeline: transform from

E.g., suppose we want to draw all points that fall inside the square [-1,1] x [-1,1] on



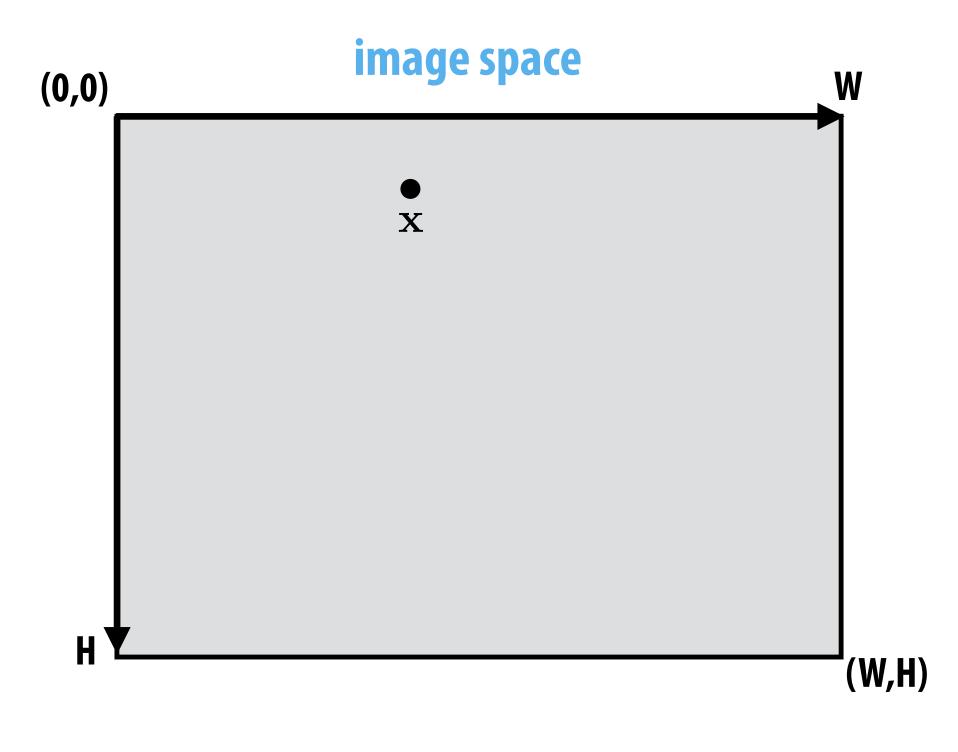
Screen Transformation (Vulkan, Direct3D)

- viewing plane to pixel coordinates
- the z = 1 plane, into a W x H pixel image with upper-left origin.



One last transformation is needed in the rasterization pipeline: transform from

E.g., suppose we want to draw all points that fall inside the square [-1,1] x [-1,1] on



Q: What transformation(s) would you apply? (Careful: y is now down!)

Spatial Transformations—Summary

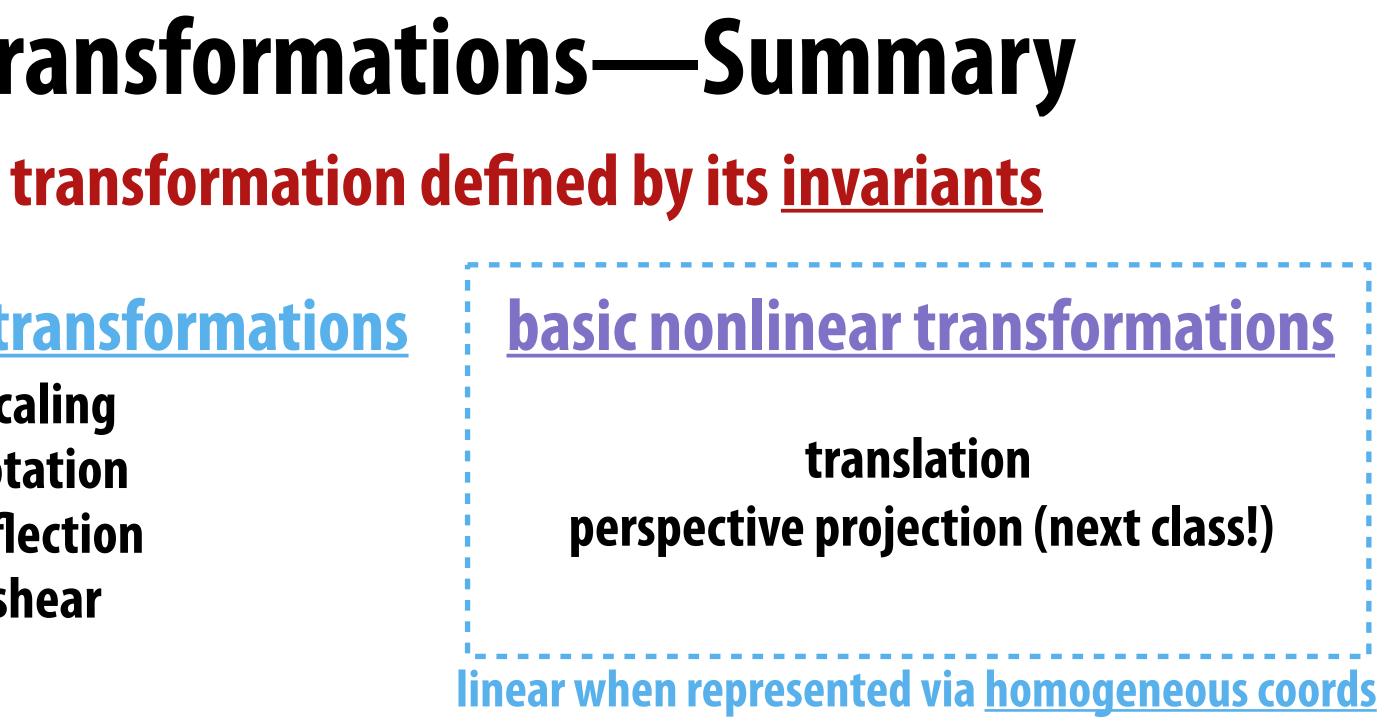
basic linear transformations

scaling rotation reflection shear

composite transformations

- compose basic transformations to get more interesting ones
- always reduces to a single 4x4 matrix (in homogeneous coordinates)
- order of composition matters!

- use scene graph to organize transformations
 - use instancing to eliminate redundancy



homogeneous coords also distinguish points & vectors

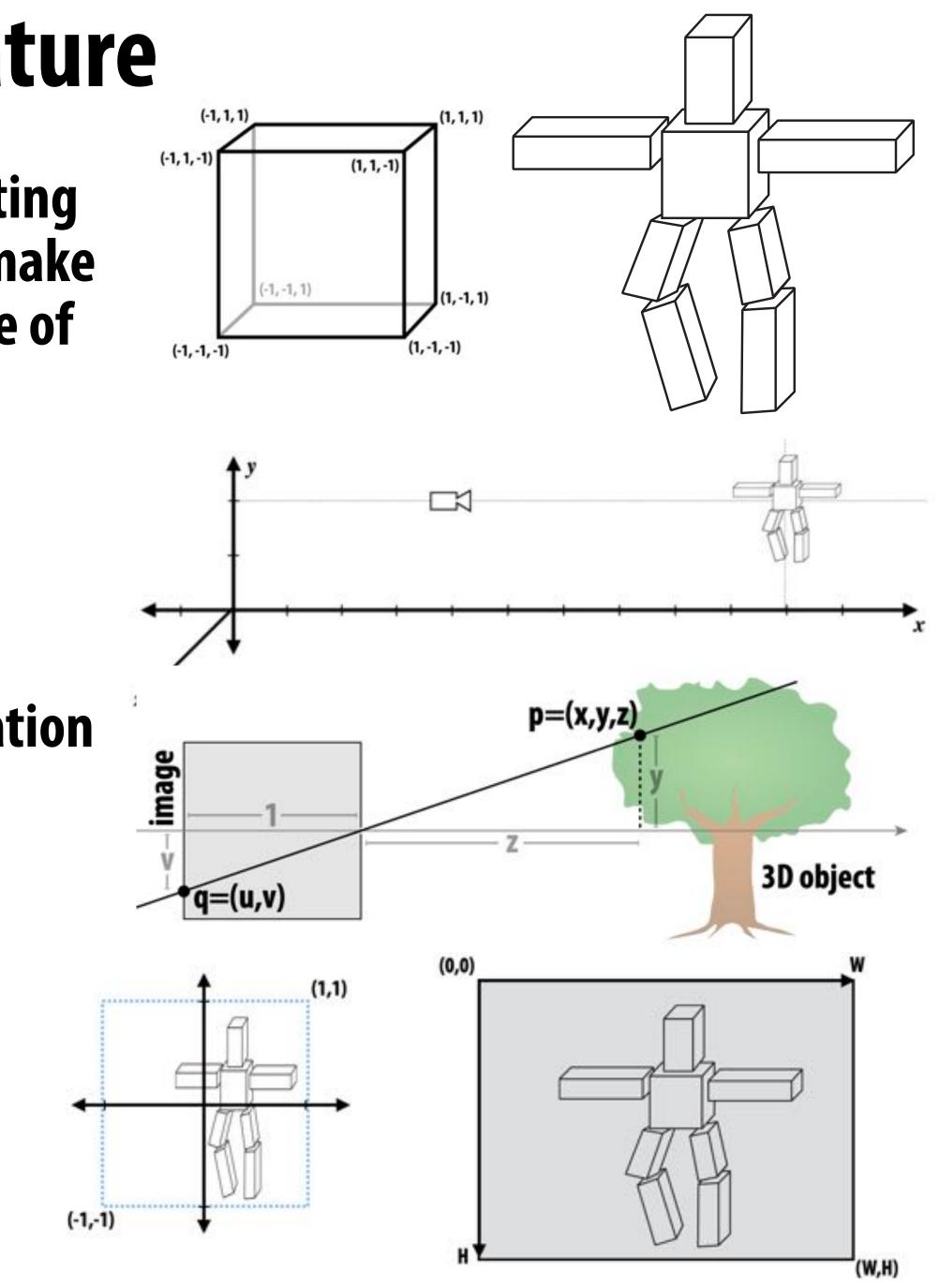
-simple, unified representation, efficient implementation

• <u>many</u> ways to decompose a given transformation (polar, SVD, ...)

Drawing a Cube Creature

- Let's put this all together: starting with our 3D cube, we want to make a 2D, perspective-correct image of a "cube creature"
- First we use our scene graph to apply 3D transformations to several copies of our cube
- Then we apply a 3D transformation to position our camera
- Then a perspective projection
- Finally we convert to image coordinates (and rasterize)

• ... Easy, right? :-)

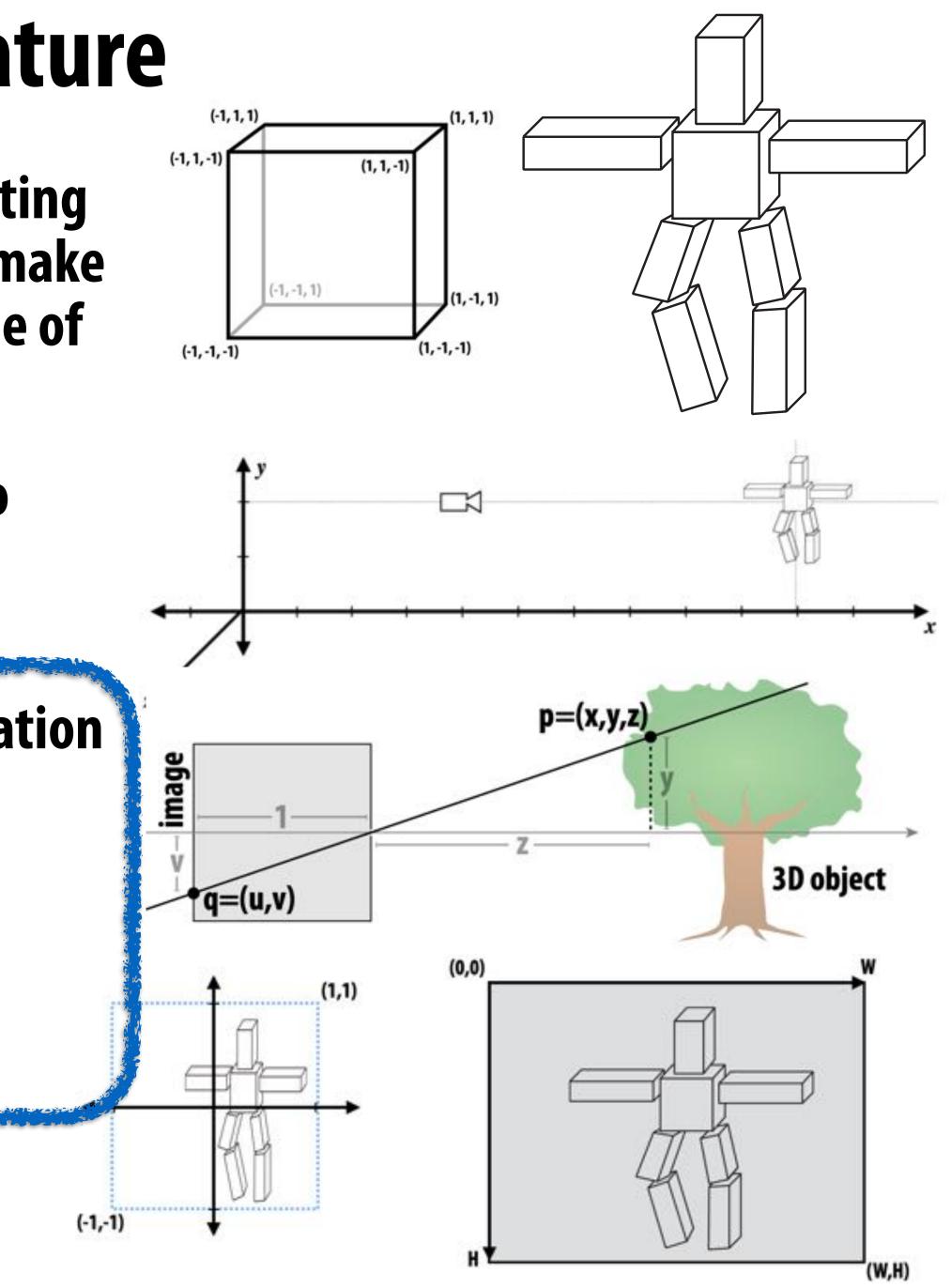


Drawing a Cube Creature

- Let's put this all together: starting with our 3D cube, we want to make a 2D, perspective-correct image of a "cube creature"
- First we use our scene graph to apply 3D transformations to several copies of our cube
 - Then we apply a 3D transformation to position our camera
 - Then a perspective projection
- Finally we convert to image coordinates (and rasterize)

...Easy, right? :-)

Next class



Next time!

Perspective Projection and Rasterization

