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Assignment 1 goes out today! 

https://github.com/CMU-Graphics/Scotty3D/blob/main/assignments/A1.md#assignment-1-rasterizer
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Transforms 
Lines 
Flat triangles 
Depth and blending 
… 
Interpolation 
Mip-mapping 
Supersampling 
… 
Extra credit!

A1.0

A1.5



 CMU 15-462/662

But let’s back up a bit 



discrete GPU card

The first part of this class relates to the graphics pipeline 

Specialized processors for 
executing graphics pipeline 
computations

integrated GPU: part of modern CPU die 

smartphone  GPU (integrated)
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Goal: render very high complexity 3D scenes
- 100’s of thousands to millions to billions of triangles in a scene 
- Complex vertex and fragment shader computations 
- High resolution screen outputs (~10Mpixel + supersampling)  
- 30-120 fps
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GPU: heterogeneous, multi-core processor
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still enormous amount of fixed-
function compute over here

Scheduler / Work Distributor

Modern GPUs offer ~35 TFLOPs of performance for 
generic vertex/fragment programs (“compute”)
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OpenGL/Direct3D graphics pipeline

Vertex Processing

Fragment Generation 
(Rasterization)

Fragment Processing

Screen sample operations 
(depth and color) 

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on 
vertices

Operations on 
primitives 
(triangles, lines, etc.)

Operations on  
fragments

Operations on 
screen samples

Triangles projected to 2D screen

Fragments (one fragment per covered sample)

Shaded fragments

Output: image (pixels)

Vertices in positioned in 3D normalized 
coordinate space 

* Several stages of the modern OpenGL pipeline are omitted

Input: vertices in 3D space
1

2

3
4

Our rasterization pipeline doesn’t look much different from “real” pipelines used in 
modern APIs / graphics hardware



 CMU 15-462/662

Rasterization Pipeline
▪ Modern real time image generation based on rasterization 

- INPUT: 3D “primitives”—essentially all triangles! 
- possibly with additional attributes (e.g., color) 

- OUTPUT: bitmap image (possibly w/ depth, alpha, …) 
▪ Our goal: understand the stages in between*

VERTICES
A: ( 1, 1, 1 )   E: ( 1, 1,-1 )
B: (-1, 1, 1 )   F: (-1, 1,-1 )
C: ( 1,-1, 1 )   G: ( 1,-1,-1 )
D: (-1,-1, 1 )   H: (-1,-1,-1 )

TRIANGLES
EHF, GFH, FGB, CBG,
GHC, DCH, ABD, CDB,
HED, ADE, EFA, BAF

INPUT 
(TRIANGLES)

RASTERIZATION 
PIPELINE

OUTPUT 
(BITMAP IMAGE)

*In practice, usually executed by graphics processing unit (GPU)
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The Rasterization Pipeline
Rough sketch of rasterization pipeline:

▪ Reflects standard “real world”  pipeline (OpenGL/Direct3D) 
– the rest is just details (e.g., API calls) 

z
x

y

Transform/position objects in 
the world

Project objects onto 
the screen

(0, 0)

(w, h)

Sample triangle coverage

Interpolate triangle 
attributes at covered samples

Sample texture maps / 
evaluate shaders

Combine samples into final 
image (depth, alpha, …)
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The Rasterization Pipeline
Rough sketch of rasterization pipeline:

▪ Reflects standard “real world”  pipeline (OpenGL/Direct3D) 
– the rest is just details (e.g., API calls) 

z
x

y

Transform/position objects in 
the world

Project objects onto 
the screen

(0, 0)

(w, h)

Sample triangle coverage

Interpolate triangle 
attributes at covered samples

Sample texture maps / 
evaluate shaders

Combine samples into final 
image (depth, alpha, …)

Today
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Transforms 
Lines 
Flat triangles 
Depth and blending 
… 
Interpolation 
Mip-mapping 
Supersampling 
… 
Extra credit!

A1.0

A1.5

Today
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On to Spatial Transformations! 



 CMU 15-462/662

Spatial Transformation
▪ Basically any function that assigns each point a new location 

▪ Today we’ll focus on common transformations of space 
(rotation, scaling, etc.) encoded by linear maps

f : ℝn → ℝn
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Transformations in Computer Graphics
▪ Where are linear transformations 

used in computer graphics? 

▪ All over the place! 
- Position/deform objects in space 
- Move the camera 
- Animate objects over time 
- Project 3D objects onto 2D images 
- Map 2D textures onto 3D objects 
- Project shadows of 3D objects onto 

other 3D objects 
- …

 CMU 15-462/662
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Review: Linear Maps
Q: What does it mean for a map    to be linear?f : ℝn → ℝn

Geometrically: it maps lines to lines, and preserves the origin

Algebraically: preserves vector space operations (addition & scaling)
add first

then apply f

apply f first

then add
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Why do we care about linear transformations?
▪ Cheap to apply 

▪ Usually pretty easy to solve for (linear systems) 

▪ Composition of linear transformations is linear 
- product of many matrices is a single matrix 
- gives uniform representation of transformations 
- simplifies graphics algorithms, systems (e.g., GPUs & APIs)

rotation scale rotation composite 
transformation
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What kinds of linear 
transformations can we compose?
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Types of Transformations
What would you call each of these types of transformations?

Q: How did you know that?  (Hint: you did not inspect a formula!)

translation

scaling

rotation

shear
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Invariants of Transformation
A transformation is determined by the invariants it preserves

transformation invariants algebraic description

linear straight lines / origin f(ax+y )  = a f(x )  + f(y ) ,  
f(0)  = 0

translation differences between pairs of points f(x -y )  = x -y

scaling lines through the origin / direction 
of vectors f(x ) / | f(x ) |  =  x / |x |

rotation origin / distances between points / 
orientation

| f(x ) - f(y) |  =  |x -y | ,  
det( f )  > 0

… … …

(Essentially how your brain “knows” what kind of transformation you’re looking at…)
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Rotation
Rotations defined by three basic properties:

keeps origin fixed preserves distances preserves orientation

First two properties together imply that rotations are linear.

Will have a lot more to say about rotations in a later lecture…
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2D Rotations—Matrix Representation
Rotations preserve distances and the origin—hence, a 2D rotation by an 
angle  maps each point  to a point  on the circle of radius :θ x fθ(x) |x |

▪ Where does  go if we rotate by  (counter-clockwise)? 

▪ How about ?

x = (1,0) θ
x = (0,1)

What about a general vector ?x = (x1, x2)

“circle x” 
“circle y”
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2D Rotations—Matrix Representation

So, How do we represent the 2D rotation function  using a matrix?fθ(x)

fθ(x) = [ cos θ −sin(θ)
sin θ cos(θ)] [x1

x2]

x = [x1
x2] = x1 [1

0] + x2 [0
1] f(x) = x1 [cos θ

sin θ] + x2 [−sin θ
cos θ]
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3D Rotations
▪ Q: In 3D, how do we rotate around the -axis? 

▪ A: Just apply the same transformation of , ; keep  fixed
x3

x1 x2 x3
rotate around x1

x1

x2

x3

rotate around x2

x1

x2

x3

rotate around x3

x1

x2

x3
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Rotations—Transpose as Inverse
Rotation will map standard basis to orthonormal basis :e1, e2, e3

(0,1,0)

(0,0,1)

(1,0,0)

e2

e1

e3

Hence, , or equivalently, R$R = I R$ = R−1 .
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Reflections
▪ Q: Does every matrix  describe a rotation? 

▪ Remember that rotations must preserve the origin, preserve 
distances, and preserve orientation 

▪ Consider for instance this matrix:

Q$Q = I

Q: Does this matrix represent a rotation? 
(If not, which invariant does it fail to preserve?)

A: No! It represents a reflection across the y-axis 
(and hence fails to preserve orientation)



 CMU 15-462/662

Orthogonal Transformations
▪ In general, transformations that preserve distances and the 

origin are called orthogonal transformations 

▪ Represented by matrices  

- Rotations additionally preserve orientation:  

- Reflections reverse orientation: 

Q$Q = I
det(Q) > 0

det(Q) < 0

rotation reflection
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ADDITION SCALAR MULTIPLICATION

Scaling
▪ Each vector  gets mapped to a scalar multiple 

-  

▪ Preserves the direction of all vectors* 

-  

▪ Q: Is scaling a linear transformation?

u
f(u) = au, a ∈ ℝ

u
|u |

= au
|au |

f(bu) =

A: Yes!

abu = bau = bf(u)

u+v
 
 
 

f(u + v) =
a(u + v) =
au + av =
f(u) + f(v)

bu
abu

bauau
u

u

*assuming a ≠ 0, u ≠ 0
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Scaling — Matrix Representation

Q: Suppose we want to scale a vector  by  
How would we represent this operation via a matrix?

u = (u1, u2, u3) a .

A: Just build a diagonal matrix , with  along the diagonal:D a

Q: What happens if  is negative?a

D
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Negative Scaling
For , can think of scaling by  as sequence of reflections.a = − 1 a
E.g., in 2D:

Since each reflection reverses orientation, orientation is preserved.
What about 3D?

Now we have three reflections, and so orientation is reversed!
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Nonuniform Scaling (Axis-Aligned)
▪ We can also scale each axis by a different amount 

-  

▪ Q: What’s the matrix representation? 

▪ A: Just put  on the diagonal:

f(u1, u2, u3) = (au1, bu2, cu3), a, b, c ∈ ℝ

a, b, c

u1

u2

u3

Ok, but what if we want to scale along some other axes?
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Nonuniform Scaling
▪ Idea. We could: 

- rotate to the new axes ( ) 
- apply a diagonal scaling ( ) 

- rotate back* to the original axes ( )

R
D

R$

f(x) = R$DRx
▪ Notice that the overall transformation is 

represented by a symmetric matrix 
A := R$DR

*Recall that for a rotation, the inverse equals the transpose:  R−1 = R$

Q: Do all symmetric matrices represent 
nonuniform scaling (for some choice of axes)?
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Spectral Theorem
▪ A: Yes!  Spectral theorem says a symmetric matrix  has 

- orthonormal eigenvectors  

- real eigenvalues  

▪ Can also write this relationship as , where

A = A$

e1, …, en ∈ ℝn

λ1, …, λn ∈ ℝ
AR = RD

Aei = λiei

▪ Equivalently,  

▪ Hence, every symmetric matrix performs a non-uniform scaling 
along some set of orthogonal axes. 

▪ If  is positive definite ( ), this scaling is positive.

A = RDR$

A λi > 0
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Shear
▪ A shear displaces each point  in a direction  according to its 

distance along a fixed vector :
x u
v

fu,v(x) = x + ⟨v, x⟩u
▪ Q: Is this transformation linear?
▪ A: Yes—for instance, can represent it via a matrix

Au,v = I + uv$

Example.

u = (cos(t),0,0)
v = (0,1,0)
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Composite Transformations
From these basic transformations (rotation, reflection, scaling, shear…) 
we can now build up composite transformations via matrix multiplication:

Rx(t) Ry(t) S(t)

A(t) = Rx(t)Ry(t)S(t)
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How do we decompose a linear 
transformation into pieces? 

(rotations, reflections, scaling, …)
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Decomposition of Linear Transformations
▪ In general, no unique way to write a given linear transformation 

as a composition of basic transformations! 
▪ However, there are many useful decompositions: 

- singular value decomposition (good for signal processing) 
- LU factorization (good for solving linear systems) 
- polar decomposition (good for spatial transformations) 
- … 

▪ Consider for instance this linear transformation:

A
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Polar & Singular Value Decomposition
For example, polar decomposition decomposes any matrix  into 
orthogonal matrix  and symmetric positive-semidefinite matrix :

A
Q P

Q: What do each of the parts mean geometrically?

rotation/reflection nonnegative, 
nonuniform scaling

Since  is symmetric, can take this further via the spectral 
decomposition  (  orthogonal,  diagonal):

P
P = VDV$ V D

rotation rotation
axis-aligned 

scaling

Q

D

P

Result  is called the singular value decompositionUDV$
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Interpolating Transformations
▪ How are these decompositions useful for graphics? 

▪ Consider interpolating between two linear transformations 
 of some initial modelA0, A1

A0

A1

Goal: animate transition with 
some nice continuous motion
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Interpolating Transformations—Linear
One idea: just take a linear combination of the two matrices, 
weighted by the current time t ∈ [0,1]

A(t) = (1 − t)A0 + tA1

Hits the right start/endpoints… but looks awful in between!
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Interpolating Transformations—Polar
Better idea: separately interpolate components of polar decomposition.

P(t) = (1 − t)P0 + tP1 A(t) = Q(t)P(t)Q̃ (t) = (1 − t)Q0 + tQ1
Q̃ (t) = Q(t)X(t)

A0 = Q0P0, A1 = Q1P1

scaling rotation final interpolation

See: Shoemake & Duff, “Matrix Animation and Polar Decomposition”

…looks better!
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Example: Linear Blend Skinning
▪ Naïve linear interpolation also causes artifacts when blending between 

transformations on a character (“candy wrapper effect”) 

▪ Lots of research on alternative ways to blend transformations…

Rumman & Fratarcangeli (2015) 
“Position-based Skinning for Soft Articulated Characters”

Jacobson, Deng, Kavan, & Lewis (2014) 
“Skinning: Real-time Shape Deformation”
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Translations
▪ So far we’ve ignored a basic transformation—translations 

▪ A translation simply adds an offset  to the given point :u x
fu(x) = x + u

Q: Is this transformation linear? 
(Certainly seems to move us along a line…)

Let’s carefully check the definition…

fu(x + y) = x + y + u
fu(x) + fu(y) = x + y + 2u

fu(ax) = ax + u
additivity homogeneity

afu(x) = ax + au

A: No! Translation is affine, not linear!
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Composition of Transformations

▪ It’s easy enough to compose translations—just add vectors:

▪ What if we want to intermingle translations and linear 
transformations (rotation, scale, shear, etc.)?

▪ Recall we can compose linear transformations via matrix multiplication:

▪ Now we have to keep track of a matrix and a vector 

▪ Moreover, we’ll see (later) that this encoding won’t work for other 
important cases, such as perspective transformations

But there is a better way…
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Strange idea: 
Maybe translations turn into linear 

transformations if we go into the 
4th dimension…!
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▪ Came from efforts to study perspective 
▪ Introduced by Möbius as a natural way of 

assigning coordinates to lines 
▪ Show up naturally in a surprising large 

number of places in computer graphics: 
- 3D transformations 
- perspective projection 
- quadric error simplification 
- premultiplied alpha 
- shadow mapping 
- projective texture mapping 
- discrete conformal geometry 
- hyperbolic geometry 
- clipping 
- directional lights 
- …

Homogeneous Coordinates
Filippo Brunelleschi, 1428

Probably worth understanding!
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Homogeneous Coordinates—Basic Idea
▪ Consider any 2D plane that does not pass through the origin  in 3D 
▪ Every line through the origin in 3D corresponds to a point in the 2D plane 

- Just find the point  where the line  pierces the plane

o

p L

Hence, any point  on the line  can be used to represent the point .̂p L p

p

L

o
p

̂p
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Homogeneous Coordinates (2D)
More explicitly, consider a point , 
and the plane  in 3D 

Any three numbers  such that 
 are homogeneous 

coordinates for  

- E.g.,  

- In general:  for  

Hence, two points  describe 

the same point in 2D (and line in 3D) if  
for some 

p = (x, y)
z = 1

̂p = (a, b, c)
(a/c, b/c) = (x, y)

p
(x, y,1)

(cx, cy, c) c ≠ 0
̂p , ̂q ∈ ℝ3∖{O}

̂p = λ ̂q
λ ≠ 0

p

̂p
L

o

Great… but how does this help us with transformations?
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homogeneous coordinates

Translation in Homogeneous Coordinates
Let’s think about what happens to our homogeneous coordinates  
if we apply a translation to our 2D coordinates 

̂p
p

2D coordinates

shear

Q: What kind of transformation does this look like?
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Translation in Homogeneous Coordinates
But wait a minute—shear is a linear transformation! 

Can this be right?  Let’s check in coordinates… 

Suppose we translate a point  by a vector 
 to get  

The homogeneous coordinates  then 
become  

Notice that we’re shifting  by an amount  that’s 
proportional to the distance  along the third axis—a shear

p = (p1, p2)
u = (u1, u2) p′ = (p1 + u1, p2 + u2)

̂p = (cp1, cp2, c)
̂p′ = (cp1 + cu1, cp2 + cu2, c)

̂p cu
c

Using homogeneous coordinates, we can represent an affine 
transformation in 2D as a linear transformation in 3D
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Homogeneous Translation—Matrix Representation

To write as a matrix, recall that a shear in the direction 
 according to the distance along a direction  isu = (u1, u2) v

fu,v(x) = x + ⟨v, x⟩u

In matrix form:

fu,v(x) = (I + uv$) x

In our case,  and so we get a matrixv = (0,0,1)
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(Q: what happens to 2D shape if you 
scale , , and  uniformly?)x1 x2 x3

2D scale ⬌ scale  and ; preserve x1 x2 x3

x1

x2
x3

2D translate ⬌ shear

x1

x2
x3

Other 2D Transformations in Homogeneous Coordinates

Now easy to compose all these transformations

Original shape in 2D can be viewed as 
many copies, uniformly scaled by x3

x1

x2
x3

2D rotation ⬌ rotate around x3

x1

x2

x3



 CMU 15-462/662

3D Transformations in Homogeneous Coordinates
Not much changes in three (or more) dimensions: just append one 
“homogeneous coordinate” to the first three 

Matrix representations of 3D linear transformations just get an 
additional identity row/column; translation is again a shear

rotate  around  by (x, y, z) y θ

scale  
by 

x, y, z
a, b, c

shear  by  
in  direction

(x, y) z
(s, t)

translate  
by 

(x, y, z)
(u, v, w)

point in 3D
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Points vs. Vectors
Homogeneous coordinates have another useful 
feature: distinguish between points and vectors 

Consider for instance a triangle with: 
- vertices  

- normal vector  

Suppose we transform the triangle by appending 
“1” to  and multiplying by this matrix:

a, b, c ∈ ℝ3

n ∈ ℝ3

a, b, c, n

a b

c n

Normal is not orthogonal to triangle!  (What went wrong?)
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rotate normal around  by y θ

Points vs. Vectors (continued)
Let’s think about what happens when we multiply 
the normal vector  by our matrix:n

translate normal by 
(u, v, w)

*Recall that vectors just have direction and magnitude—they don’t have a “basepoint”!

But when we rotate/translate a 
triangle, its normal should just 
rotate!* 

Solution?  Just set homogeneous 
coordinate to zero! 

Translation now gets ignored; 
normal is orthogonal to triangle
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Points vs. Vectors in Homogeneous Coordinates
In general: 

- A point has a nonzero homogeneous coordinate (c = 1) 

- A vector has a zero homogeneous coordinate  (c = 0) 

But wait… what division by c mean when it’s equal to zero? 
Well consider what happens as …c → 0

Can think of vectors as “points at infinity” (sometimes called “ideal points”)
(In practice: still need to check for divide by zero!)

(x, y)/1 (x, y)/0.5 (x, y)/0.25 (x, y)/0.001
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Scene Graph
For complex scenes (e.g., more than just a cube!) 
scene graph can help organize transformations 

Motivation: suppose we want to build a “cube 
creature” by transforming copies of the unit cube 

Difficult to specify each transformation directly 

Instead, build up transformations of “lower” 
parts from transformations of “upper” parts 

– E.g., first position the body 

– Then transform upper arm relative to the body 

– Then transform lower arm relative to upper arm 

– …



 CMU 15-462/662

Scene Graph (continued)
Scene graph stores relative transformations in directed graph 
Each edge (+root) stores a linear transformation (e.g., a 4x4 matrix) 
Composition of transformations gets applied to nodes

bodyleft arm right arm

left
upper leg

left
lower leg

right
upper leg

right
lower leg

head
body

head

left arm

right arm right
upper leg

left
upper leg

right
lower leg

left
lower leg

E.g.,  gets applied to left upper leg;  to left lower leg 

Keep transformations on a stack to reduce redundant multiplication

A1A0 A2A1A0

A1

A2

A0
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Scene Graph—Example
Often used to build up complex “rig”:

In general, scene graph also includes other models, lights, cameras, …
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Instancing
What if we want many copies of 
the same object in a scene? 

Rather than have many copies 
of the geometry, scene graph, 
etc., can just put a “pointer” 
node in our scene graph 

Like any other node, can specify 
a different transformation on 
each incoming edge

dandelion

root

dandelion

dandelion

A1

A2

Deussen et al, “Realistic modeling and rendering of plant ecosystems”
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Instancing—Example
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Order matters when composing transformations!
scale by 1/2, then translate by (3,1)

3

1

translate by (3,1), then scale by 1/2

1.5

0.5
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How would you perform these transformations?

Lecture 3 Math

x0 � x1 � x2 � x3

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

Lecture 3 Math

x0 � x1 � x2 � x3

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

Lecture 3 Math

x0 � x1 � x2 � x3

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

Lecture 3 Math

x0 � x1 � x2 � x3

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

2

3

4
2

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

Reflection:
Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:
Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Misc:
f(x0)� f(x1)� f(x2)� f(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

Reflection:
Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:
Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Misc:
f(x0)� f(x1)� f(x2)� f(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

Reflection:
Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:
Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Misc:
f(x0)� f(x1)� f(x2)� f(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

Reflection:
Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:
Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Misc:
f(x0)� f(x1)� f(x2)� f(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

Reflection:
Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:
Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Misc:
f(x0)� f(x1)� f(x2)� f(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

Reflection:
Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:
Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Misc:
f(x0)� f(x1)� f(x2)� f(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

Reflection:
Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:
Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Misc:
f(x0)� f(x1)� f(x2)� f(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

Reflection:
Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:
Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Misc:
f(x0)� f(x1)� f(x2)� f(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

Reflection:
Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:
Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Misc:
f(x0)� f(x1)� f(x2)� f(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

Reflection:
Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:
Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Misc:
f(x0)� f(x1)� f(x2)� f(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

Reflection:
Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:
Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Misc:
f(x0)� f(x1)� f(x2)� f(x3)

Lecture 3 Math

x0 � x1 � x2 � x3 � y

x+ y � ✓

f(x)

f(x+ y) = f(x) + f(y)

f(ax) = af(x)

f(x) = af(x)

Scale:
Sa(x) = ax

S2(x)� S2(x1)� S2(x2)� S2(x3 � S2(ax)� aS2(x)� S2(x)� S2(y)� S2(x+ y)

S2(x) = 2x

aS2(x) = 2ax

S2(ax) = 2ax

S2(ax) = aS2(x)

S2(x+ y) = 2(x+ y)

S2(x) + S2(y) = 2x+ 2y

S2(x+ y) = S2(x) + S2(y)

Rotations:

R✓(x)�R✓(x0)�R✓(x1)�R✓(x2)�R✓(x3)�R✓(ax)� aR✓(x)�R✓(y)�R✓(x+ y)

Translation:

Ta,b(x0)� Ta,b(x1)� Ta,b(x2)� Ta,b(x3)� Ta,b(x)� Ta,b(y)� Ta,b(x+ y)� Ta,b(x) + Ta,b(y)

Reflection:
Rey(x0)�Rey(x1)�Rey(x2)�Rey(x3)

Rex(x0)�Rex(x1)�Rex(x2)�Rex(x3)

Shear:
Hx(x0)�Hx(x1)�Hx(x2)�Hx(x3)

Misc:
f(x0)� f(x1)� f(x2)� f(x3)

Remember: always more than one way to do it!
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Common task: rotate about a point x
Lecture 3 Math

x

f(x)

Lecture 3 Math

x

f(x)Step 1: translate by  −x

Lecture 3 Math

x

f(x)Step 2: rotate

Lecture 3 Math

x

f(x)Step 4: translate by  x

Q: What happens if we just rotate without translating first?
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Screen Transformation (OpenGL)
One last transformation is needed in the rasterization pipeline: transform from 
viewing plane to pixel coordinates 

E.g., suppose we want to draw all points that fall inside the square [-1,1] x [-1,1] on 
the z = 1 plane, into a W x H pixel image

Lecture 3 Math

x

f(x)(0,0)

(1,1)

“normalized device coordinates”

(-1,-1)

Lecture 3 Math

x

f(x)

W

H (W,H)

(0,0)

image space

Q: What transformation(s) would you apply?
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Screen Transformation (Vulkan, Direct3D)

Lecture 3 Math

x

f(x)(0,0)

(1,1)

“normalized device coordinates”

(-1,-1)

Lecture 3 Math

x

f(x)

W

H (W,H)

(0,0)
image space

Q: What transformation(s) would you apply? (Careful:  is now down!)y

One last transformation is needed in the rasterization pipeline: transform from 
viewing plane to pixel coordinates 

E.g., suppose we want to draw all points that fall inside the square [-1,1] x [-1,1] on 
the z = 1 plane, into a W x H pixel image with upper-left origin.
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Spatial Transformations—Summary

basic linear transformations
scaling 

rotation 
reflection 

shear

composite transformations
• compose basic transformations to get more interesting ones 
• always reduces to a single 4x4 matrix (in homogeneous coordinates) 

–simple, unified representation, efficient implementation  
• order of composition matters! 
• many ways to decompose a given transformation (polar, SVD, …) 
• use scene graph to organize transformations 

• use instancing to eliminate redundancy

linear when represented via homogeneous coords 

basic nonlinear transformations

translation
perspective projection (next class!)

transformation defined by its invariants

homogeneous coords also distinguish points & vectors
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Drawing a Cube Creature
Let’s put this all together: starting 
with our 3D cube, we want to make 
a 2D, perspective-correct image of 
a “cube creature” 

First we use our scene graph to 
apply 3D transformations to 
several copies of our cube 

Then we apply a 3D transformation 
to position our camera 

Then a perspective projection 

Finally we convert to image 
coordinates (and rasterize) 

…Easy, right? :-)
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Drawing a Cube Creature
Let’s put this all together: starting 
with our 3D cube, we want to make 
a 2D, perspective-correct image of 
a “cube creature” 

First we use our scene graph to 
apply 3D transformations to 
several copies of our cube 

Then we apply a 3D transformation 
to position our camera 

Then a perspective projection 

Finally we convert to image 
coordinates (and rasterize) 

…Easy, right? :-)

Next class!



 CMU 15-462/662

Next time!
▪ Perspective Projection and Rasterization

Lecture 3 Math

x0
� x1

� x2
� x3

� y

x+ y � ✓

f(x
)

f(x
+ y) =

f(x
) +

f(y
)

f(a
x) =

af(
x)

f(x
) =

af(
x)

Scale:

Sa(x
) =

ax

S2(x
)� S2(x1)

� S2(x2)
� S2(x3

� S2(a
x)�

aS2(x
)� S2(x

)� S2(y
)� S2(x

+ y)

S2(x
) =

2x

aS2(x
) =

2ax

S2(a
x) =

2ax

S2(a
x) =

aS2(x
)

S2(x
+ y) =

2(x
+ y)

S2(x
) +

S2(y
) =

2x+ 2y

S2(x
+ y) =

S2(x
) +

S2(y
)

Rotati
ons:

R✓(x
)�R✓(x

0)
�R✓(x

1)
�R✓(x

2)
�R✓(x

3)
�R✓(a

x)�
aR✓(x

)�R✓(y
)�R✓(x

+ y)

Translati
on:

Ta,b
(x0)

� Ta,b
(x1)

� Ta,b
(x2)

� Ta,b
(x3)

x2D
=
⇥
xx/�

xz
xy/�

xz

⇤T

tan(
✓/2

)

asp
ect

⇥ tan(
✓/2

)

x1�
x2�

x3�
x4�

x5�
x6�

x7�
x8

tan(
✓/2

)

asp
ect

2

x2D
=
⇥
xx/�

xz
xy/�

xz

⇤T

tan(
✓/2

)

asp
ect

⇥ tan(
✓/2

)

x1�
x2�

x3�
x4�

x5�
x6�

x7�
x8

tan(
✓/2

)

asp
ect

2

x2D
=
⇥
xx/�

xz
xy/�

xz

⇤T

tan(
✓/2

)

asp
ect

⇥ tan(
✓/2

)

x1�
x2�

x3�
x4�

x5�
x6�

x7�
x8

tan(
✓/2

)

asp
ect

2

x2D
=
⇥
xx/�

xz
xy/�

xz

⇤T

tan(
✓/2

)

asp
ect

⇥ tan(
✓/2

)

x1�
x2�

x3�
x4�

x5�
x6�

x7�
x8

tan(
✓/2

)

asp
ect

2

x2D
=
⇥
xx/�

xz
xy/�

xz

⇤T

tan(
✓/2

)

asp
ect

⇥ tan(
✓/2

)

x1�
x2�

x3�
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x5�
x6�

x7�
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tan(
✓/2

)

asp
ect

2

x2D
=
⇥
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xz

⇤T

tan(
✓/2

)
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ect

⇥ tan(
✓/2

)

x1�
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tan(
✓/2

)
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ect

2

x2D
=
⇥
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⇤T

tan(
✓/2

)
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ect

⇥ tan(
✓/2

)

x1�
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x4�
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x7�
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tan(
✓/2

)
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2

x2D
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⇥
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tan(
✓/2

)
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✓/2

)

x1�
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x4�
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x6�
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x8

tan(
✓/2

)
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ect

2

Input: 

Output: 


