
Computer Graphics 
CMU 15-462/15-662

Wrapping up Physically-
Based Animation and PDEs



Model Equations
Fundamental behavior of many important PDEs is well-captured 
by three model linear equations:

LAPLACE EQUATION (“ELLIPTIC”)

HEAT EQUATION (“PARABOLIC”)

WAVE EQUATION (“HYPERBOLIC”)

E A S I E R

INTERMEDIATE

ADVANCED

[ NONLINEAR + HYPERBOLIC + HIGH-ORDER ]
EXPERTS ONLY

“what’s the smoothest function 
interpolating the given boundary data”

“how does an initial distribution 
of heat spread out over time?”

“if you throw a rock into a pond, how 
does the wavefront evolve over time?”

“Laplacian” (more later!)
Solve numerically?
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Elliptic PDEs / Laplace Equation
“What’s the smoothest function interpolating the given 
boundary data?”

Conceptually: each value is at the average of its “neighbors” 
Roughly speaking, why is it easier to solve? 
Very robust to errors: just keep averaging with neighbors!

Image from Solomon, Crane, Vouga, “Laplace-Beltrami: The Swiss Army Knife of Geometry Processing”
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Parabolic PDEs / Heat Equation
“How does an initial distribution of heat spread out over time?”

After a long time, solution is same as Laplace equation! 
Models damping / viscosity in many physical systems
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Hyperbolic PDEs / Wave Equation
“If you throw a rock into a pond, how does the wavefront evolve 
over time?”

Errors made at the beginning will persist for a long time! (hard)
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Numerical PDEs—Basic Strategy
Pick PDE formulation 

- Which quantity do we want to solve for? 

- E.g., velocity or vorticity? 
Pick spatial discretization 

- How do we approximate derivatives in space? 
Pick time discretization 

- How do we approximate derivatives in time? 

- When do we evaluate forces? 

- Forward Euler, backward Euler, symplectic Euler, ... 
Finally, we have an update rule 
Repeatedly solve to generate an animation

Richard Courant
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The Laplace Operator
All of our model equations used the Laplace operator 
Different conventions for symbol:

same symbol used for “change”
same symbol used for Hessian!

Unbelievably important object showing up everywhere across physics, 
geometry, signal processing, ... 
Ok, but what does it mean? 
Differential operator: eats a function, spits out its “2nd derivative” 

What does that mean for a function ? 

–divergence of gradient 
–sum of second derivatives 
–deviation from local average 

u : ℝn → ℝ div grad

For more intuition about the Laplacian: https://youtu.be/oEq9ROl9Umk
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Discretizing the First Derivative
To solve any PDE, need to approximate spatial derivatives (e.g., Laplacian) 

Suppose we know a function  only at regular intervals u(x) h

u′ (x) = lim
ε→0

f(x + ε) − f(x)
ε

Can hence get an approximation using known values:

u′ (xi) ≈ ui+1 − ui

h
Approximation gets better for finer grid (smaller )h

Q: How can we approximate the first derivative of ? 
A: Recall definition of a derivative in terms of limits:

u
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Discretizing the Second Derivative
Q: How can we get an approximation of the second derivative? 
A: One idea*: approximate the first derivative of the approximate 
first derivative!

u′ ′ (xi) ≈ u′ i − u′ i−1
h

≈
( ui+1 − ui

h ) − ( ui − ui−1
h )

h
=

ui+1 − 2ui + ui−1
h2

In general, this approach of approximating derivatives with 
differences is the “finite difference” approach to PDEs 

Not the only way! But works well on regular grids.

*Can show this is also a reasonable thing to do, using Taylor series



4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1

h2 = 0
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Numerically Solving the Laplace Equation

Want to solve  Δu = 0

If  is a solution, then each value must be the average of the 
neighboring values (  is a “harmonic function”) 

How do we solve this? 
One idea: keep averaging with neighbors! (“Jacobi method”) 

u
u

⟺ ui,j = 1
4 (ui−1,j + ui+1,j + ui,j−1 + ui,j+1)
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Aside: PDEs and Linear Equations
How can we turn our Laplace equation into a linear solve? 
Have a bunch of equations of the form

   

On a 4x4 grid, assign each cell  a unique index 1, …, 16 

4ui,j − ui−1,j − ui+1,j − ui,j−1 − ui,j+1 = 0
ui,j

*assuming neighbors wrap around left/right and top/bottom

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Compute solution by calling sparse linear solver (SuiteSparse, Eigen, …) 
Q: By the way, what’s wrong with our problem setup here? :-)
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Boundary Conditions for Discrete Laplace
What values do we use to compute averages near the boundary?

A: We get to choose—this is the data we want to interpolate!

Two basic boundary conditions: 
1. Dirichlet—boundary data always set to fixed values 
2. Neumann—specify derivative (difference) across boundary 

Also mixed (Robin) boundary conditions (and more, in general)
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1D Laplace w/ Dirichlet BCs

1D Laplace:  

Solutions:  

Q: Can we always satisfy given Dirichlet boundary conditions?

∂2ϕ/∂x2 = 0
ϕ(x) = cx + d

Yes: a line can interpolate any two points.
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2D Laplace w/ Dirichlet BC

The smoothest function interpolating the given boundary data

Each value is still the average of its “neighbors”

Image from Solomon, Crane, Vouga, “Laplace-Beltrami: The Swiss Army Knife of Geometry Processing”
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A variation on Laplace:  The Poisson Equation

Laplace equation:    

Poisson equation:
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A variation on Laplace:  The Poisson Equation

Poisson equation:

SIGGRAPH 2008
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A variation on Laplace:  The Poisson Equation

SIGGRAPH 2008
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Let’s move on to Solving the Heat Equation
Back to our three model equations, want to solve heat eqn.

Just saw how to discretize Laplacian 
Also know how to do time (forward Euler, backward Euler, ...) 
E.g., forward Euler:

Q: On a grid, what’s our overall update now at ui,j?

Not hard to implement!  Loop over grid, add up some neighbors.
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Solving the Wave Equation
Finally, wave equation:

Not much different; now have 2nd derivative in time 
By now we’ve learned two different techniques: 

- Convert to two 1st order (in time) equations: 

- Or, use centered difference (like Laplace) in time:

Plus all our choices about how to discretize Laplacian. 
So many choices! And many, many (many) more we didn’t discuss.
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Wave Equation on a Grid, Triangle Mesh

Fish credit: Alec Jacobson (http://www.alecjacobson.com/weblog/?p=4363)

http://www.alecjacobson.com/weblog/?p=4363
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Solving a PDE in Code
Don’t be intimidated—very simple code can give rise to beautiful behavior!
void simulateWaves2D() {
   const int N = 128; // grid size
   double u[N][N]; // height
   double v[N][N]; // velocity (time derivative of height)
   const double tau = 0.2; // time step size
   const double alpha = 0.985; // damping factor

   for( int frame = 0; true; frame++ ) {  // loop forever
      // drop random "stones"
      if( frame % 100 == 0 ) u[rand()%N][rand()%N] = -1;
      // update velocity
      for( int i = 0; i < N; i++ )
      for( int j = 0; j < N; j++ ) {
         int i0 = (i + N-1) % N; // left
         int i1 = (i + N+1) % N; // right
         int j0 = (j + N-1) % N; // down
         int j1 = (j + N+1) % N; // up
         v[i][j] += tau * (u[i0][j] + u[i1][j] + u[i][j0] + u[i][j1] - 4*u[i][j])
         v[i][j] *= alpha; // damping
      }
      // update height
      for( int i = 0; i < N; i++ )
      for( int j = 0; j < N; j++ ) {
         u[i][j] += tau * v[i][j];
      }
      display( u );
   }
}



Fun with wave-like equations…

Technique: low-res thin shell simulation (via “position-based dynamics”) + Loop subdivision

author: David Lihttps://www.adultswim.com/etcetera/elastic-man/
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Wait, what about all that other cool stuff? 
(Fluids, hair, cloth, …)
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Want to Know More?
There are some good books: 
And papers:

http://www.physicsbasedanimation.com/

Also, what did the folks who wrote these books & papers read?

http://www.physicsbasedanimation.com/


Final Exam Review
15-462 / 15-662 Computer Graphics
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Lecture 1:  Introduction

For any given setup where we place a camera in the 
environment, pointing down any of the main coordinate axes (x, 
y, or z), compute a projection of points in the world onto an 
image plane. 

Write an algorithm for drawing lines that handles all edge cases 
(i.e., including edges that are exactly horizontal or vertical).
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Lecture 2:  Math Review 1 (part 1 of 2):
How can we measure vectors? 

What is a Vector Space? 

Draw a geometric representation of each rule that vectors seem to obey. 

Can a function be a vector? Explain 

Add and scale vectors. 

Add and scale functions 

What is the norm of a vector? 

Associate each property of a norm with a geometric interpretation. 

Compute the Euclidean norm in Cartesian coordinates. 

Compute the L2 norm of a function. 

Associate each property of the inner product with a geometric interpretation. 

Compute the inner product in Cartesian coordinates.



 CMU 15-462/662

Lecture 2:  Math Review 1 (part 2 of 2):
Use the inner product for operations such as projection. 

Compute the inner product of functions. 

Give properties and an example of a linear map. 

Define span and basis.. 

Compute an orthonormal basis from a set of vectors. 

Be able to use Gram-Schmidt orthonormalization. 

Know that orthonormalization of functions can be done by decomposing 
them into sinusoids. 

Be able to solve a simple system of linear equations, depict it geometrically, 
and represent it in matrix form. 

Be able to represent a linear map in matrix form.
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Lecture 3:  Math Review 2 (Part 1 of 2):
Euclidean norm is any notion of length preserved by rotations/translations/
reflections of space.    Be able to calculate it for a vector of any dimension. 

Compute the inner product of two n-dimensional vectors. What is the 
geometric meaning if an orthonormal basis is used? 

Compute the cross product of two three-dimensional vectors. What is the 
geometric meaning of this cross product? What is the geometric meaning of 
its magnitude? 

Use the cross product to do a quarter rotation of a vector within a plane. 

Represent the dot product using matrix notation. 

Represent the cross product using matrix notation. 

Understand what the determinant measures. What does the determinant of 
a linear map tell us? Give an example. 

What is a directional derivative? 

Bonus:  Compute the gradient of a function.
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Lecture 3:  Math Review 2 (Part 2 of 2):
Understand gradient as the best linear approximation and the direction of 
steepest ascent. 

When is the gradient not defined? 

Bonus:  Be able to express gradients of simple matrix expressions 

What is a vector field? Give an example. 

Be able to compute divergence, curl, and the Laplacian of a vector field.    Also 
be able to express the meaning of these terms geometrically, for example by 
drawing a diagram. 

What is the Hessian? Be able to compute the Hessian of a function.
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Lecture 4:  Drawing a Triangle 
1. How should we choose the correct color for a pixel?    There is not an exact right answer.   

However, you should be able to discuss some of the issues involved. 
2. What is aliasing, and what artifacts does it produce in our images and our animations? 
3. One form of aliasing is where high frequencies masquerade as low frequencies.   Give an 

example of this phenomenon. 
4. Suppose we have a single red triangle displayed against a blue background.   Does this scene 

contain high frequencies?  
5. What does the Nyqvist-Shannon theorem tell us about how image frequencies relate to 

required sampling rate? 
6. One practical solution on your graphics card for reducing aliasing (i.e., for antialiasing) is to take 

multiple samples per pixel and average to get pixel color.    Try to use what we learned about 
sampling theory to explain as precisely as you can why taking multiple samples per pixel can 
reduce aliasing artifacts. 

7. Bonus:  Be able to write an implicit representation of an edge given two points. 
8. Bonus: Be able to use the implicit edge representation to determine if a point is inside a 

triangle.
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Lecture 5:  Transforms (Part 1 of 2)
1. Which of the following operations are linear transforms:   scale, rotation, 

shear, translation, reflection, rotation about a point that is not the origin? 
2. Express scale as a linear transform 
3. Express rotation as a linear transform 
4. Express shear as a linear transform 
5. Express reflection as a linear transform 
6. Express translation as an affine transform 
7. Know what makes a transform linear vs. affine 
8. Know how to build transformation matrices from start and end 

configurations of your object
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Lecture 5:  Transforms (Part 2 of 2)
▪ Create 2D and 3D transformation matrices to perform specific 

scale, shear, rotation, reflection, and translation operations 

▪ Compose transformations to achieve compound effects 

▪ Rotate an object about a fixed point 

▪ Rotate an object about a given axis 

▪ Create an orthonormal basis given a single vector 

▪ Understand the equivalence of [x y 1] and [wx wy w] vectors 

▪ Explain/illustrate how translations in 2D (x, y) are a shear 
operation in the homogeneous coordinate space (x, y, w)
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Lecture 6:  3D Rotations
What is the problem of gimbal lock?    Give an example where this 
problem occurs. 
How does using quaternions solve this problem? 
Know that every rotation can be expressed as rotation by some 
angle about some axis. 
Know how to go between quaternions and axis-angle format for 
rotations. 
Know that quaternions are expressed as higher dimensional 
complex numbers. 
Be able to work out quaternion multiplication from the complex 
number representation of a quaternion.
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Lecture 7:  Projection
▪ Review: 

▪ Form an orthonormal basis 

▪ Create a rotation matrix to rotate any coordinate frame to xyz  

▪ Create the rotation matrix to rotate the xyz coordinate frame to any other frame 

▪ Know basic facts about rotation matrices / how to recognize a rotation matrix 
▪ Rows (also columns) are unit vectors 

▪ Rows (also columns) are orthogonal to one another 

▪ If our rows (or columns) are u, v, and w, then uXv=w 

▪ The inverse of a rotation matrix is its transpose 

▪ Create a projection matrix that projects all points onto an image plane at z=1 

▪ Propose a projection matrix that maintains some depth information 

▪ Understand the motivation behind the projection matrix that projects the view frustum 
to a unit cube 

▪ Be able to draw / discuss the details of the view frustum 

▪ Prove that a standard projection matrix preserves some information about depth
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Lecture 7:  Barycentric Coordinates

▪ Interpolate colors using barycentric coordinates 

▪ Bonus: Compute barycentric coordinates of a point using implicit edge functions 

▪ Compute barycentric coordinates of a point using triangle areas 

▪ Estimate the location of a point inside a triangle given its barycentric coordinates 

▪ Estimate the location of a point outside a triangle given its barycentric 
coordinates 

▪ Estimate barycentric coordinates of a point from a drawing. 

▪ Show that interpolation in 3D space followed by projection can give a different 
result from projection followed by interpolation in screen space.   In other words, 
explain why interpolation using barycentric coordinates in screen space may give 
a result that is incorrect. 

▪ How, then, can we obtain a correct result using interpolation in screen space?
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Lecture 8:  Textures

▪ Textures are used for many things, beyond pasting images onto object surfaces. 
- Normal maps (create appearance of bumpy object on smooth surface by giving false normal to the 

lighting equations) 
- Displacement maps (encode offsets in the geometry of a surface, which is difficult to handle in a 

standard graphics pipeline) 
- Environment maps (store light information in all directions in a scene) 
- Ambient occlusion map (store exposure of geometry to ambient light for better representation of 

surface appearance with simple lighting models) 
- Can you think of / discover others? 

▪ Know how to interpolate texture coordinates 
▪ Know how to index into a texture and compute a correct color using bilinear interpolation 
▪ Be able to create a mipmap and store it in memory 
▪ Be able to compute color from multiple levels of mipmaps using trilinear interpolation 
▪ What is the logic behind selecting an appropriate level in a mipmap? 
▪ What can happen if we select a level that is too high resolution?   too low resolution?
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Lecture 8:  Depth and Transparency
▪ What is the depth buffer (Z-buffer) and how is it used for hidden surface removal? 

▪ Where does the depth for each sample / fragment come from?   Where is it computed in the graphics 
pipeline? 

▪ Is the depth represented in the depth buffer the actual distance from the camera?   If not, what is it? 

▪ What is the meaning of the alpha parameter in the [R G B a] color representation? 

▪ Be able to use alpha to do compositing with the “Over” operator. 

▪ Is “Over” commutative?   If not, create a counterexample. 

▪ What is premultiplied alpha, and how does it work? 

▪ Be able to use premultiplied alpha for “Over” composition. 

▪ Why is premultiplied alpha better? 

▪ How do we properly render a scene with mixed opaque and semi-transparent triangles?   What is the 
rendering order we should use?   When is the depth buffer updated? 

▪ Draw a rough sketch of the graphics pipeline.   Think about transforming triangles into camera space, 
doing perspective projection, clipping, transforming to screen coordinates, computing colors for 
samples, computing colors for pixels, the depth test, updating color and depth buffers.

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
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p1x p1y
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⇥
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⇤T
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C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A



Lecture 9:  Introduction to Geometry
List some types of implicit surface representations 

What types of operations are easy with implicit surface representations? 

List some types of explicit surface representations 

What types of operations are easy with explicit surface representations? 

What is CSG (constructive solid geometry)?   Give some examples of CSG operations. 

What type of representation is best for CSG operations? 

Describe how to do union, intersection, and subtraction of geometry using simple 
operators on a surface representation. 

What is a level set representation?   When is it useful? 

What types of splines are common in computer graphics? 

Why are they popular?   What properties make them most useful? 

BONUS:  Derive the equation on the slide labeled “Bézier Curves — tangent continuity” 
from the definitions given on the previous slides.   Draw a diagram to illustrate any terms 
you use.

39
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Lecture 10:  Meshes and Manifolds
What is a manifold surface? 

Distinguish manifold from non-manifold surfaces 

Can a manifold surface have a boundary?   Give an example. 

Describe how to store mesh information in vertex and face tables.   Give an 
example.   What are good and bad points of this data structure? 

How would you store a mesh using incidence matrices?   What are good and 
bad points of this data structure? 

What do you need to store in a halfedge data structure?   What are good and 
bad points of this data structure? 

How can you find all vertices in a face with this data structure? 

How can you find all faces that contain a vertex with this data structure? 

BONUS:   Think of an algorithm to traverse every face in a manifold using this 
data structure.

40
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Lecture 11:  Geometry Processing Part 1
List practical applications that you can relate to for good geometry 
processing algorithms. 

Give criteria for what makes a good quality mesh.   Be sure to state your 
assumptions (e.g., good quality for what purpose?) 

Give pseudocode for one iteration of Catmull-Clark subdivision 

Give pseudocode for one iteration of Loop subdivision 

Explain the important properties of various subdivision algorithms 
(interpolation, continuity, behavior at the boundaries) 

Be prepared to calculate vertex updates in a simple example of Loop or 
other subdivision.   (The vertex weighting masks will be given to you.) 

Understand how the K matrix of the Quadric Error error metric encodes 
squared distance to a plane.   How can it encode the sum of squared 
distances to many planes?    How is this idea used in generating a good 
error metric for mesh decimation using edge collapse?

41
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Lecture 11:  Geometry Processing Part 2
Express distance from a plane, given a point on the plane and a normal 
vector 
Show how the K matrix (the quadric error matrix) represents squared 
distance from a plane 
Given K matrices encoding triangles in a mesh, how do we get the K 
matrix for each vertex? 
If we collapse an edge, what is the K matrix for the new vertex that is 
added in the edge collapse? 
Given a K matrix and a proposed point, what is the cost (the quadric 
error)? 
How does this cost represent distance to the original surface? 
Describe some techniques for improving the quality of a mesh to make 
it more uniform and regular. 

42
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Lecture 12:  Geometric Queries
Find the closest point to a point, line, or line segment. 
Compute ray-triangle intersection, including checking whether the 
ray passed through the inside of the triangle. 
Be prepared to compute ray-primitive intersection for other 
primitives (e.g., a sphere) and primitive-primitive intersections 
(e.g., triangle-triangle or line-line) 
In all (most?) of these queries, what is the basic strategy that you 
use to find the closest point or perform the intersection?

43
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Lecture 13:  Spatial Data Structures
▪ Compute ray - bounding box intersection 

▪ Construct a bounding box hierarchy for a given collection of objects. 

▪ Calculate traversal order of a bounding box hierarchy for a given ray. 

▪ What is the Surface Area Heuristic (SAH) and what goals is it trying to 
achieve? 

▪ Explain how to choose a bounding box partition using the SAH 

▪ Be able to distinguish between object-centric (primitive partitioning) 
acceleration structures and space-centric (space-partitioning) acceleration 
structures 

▪ Know the difference between these acceleration structures, how to build 
them, how to traverse them, and when to use each type: 

- bounding box and bounding sphere hierarchies 
- KD-trees 
- octrees 
- grids

44
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Lecture 14:  Color and Radiometry Part 1
▪ How would you describe the emission spectrum of a light source? 

▪ What are the rods and cones?   Which are present in greater number in the human eye?   
What can you say about how they are distributed in the retina? 

▪ Since color is best described by a spectrum of emissions, why is it that we can get away 
with just three values for color (e.g., R-G-B)? 

▪ What are additive and subtractive models for color and when are they used? 

▪ Describe some of the different color spaces that are used to express color. 

▪ An alternative to RGB color space is the CIE color space, with X, Y, and Z primaries.    What 
is Y in this color space?   What problem with RGB color space does the CIE color space 
solve? 

▪ BONUS:  Given a color space expressed by some three-dimensional basis it be converted 
into any other basis through a linear operation  (True or False) 

▪ BONUS: What is gamma correction?   Give an example where gamma correction is useful. 
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Lecture 14:  Color and Radiometry Part 2
▪ Visible light consists of a small range of wavelengths along the spectrum from gamma 

rays to radio waves. 

▪ Energy of a photon depends on wavelength (and speed of light, and Planck’s constant) 

▪ What is radiant energy?  ..flux?  .. irradiance? 

▪ Why (how) does irradiance depend on the angle between the light source and a patch of 
surface area? 

▪ How does irradiance fall off with distance from the light source? 

▪ What is a solid angle? 

▪ What is radiance, and how many dimensions do you need to capture the radiance in a 
scene (i.e., to capture a light field)? 

▪ What effect is an ambient occlusion map trying to capture? 

▪ What is radiant intensity? 

▪ (Bonus) Characterize the spectral signatures of different familiar light sources. 

▪ (Bonus) Figure out how to read a Goniometric diagram
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Lecture 15:  The Rendering Equation (Part 1 of 2)
▪ Ray tracing algorithms make use of radiance estimates to build up an image 

of a scene.   What is radiance?     Why is radiance the fundamental quantity of 
interest?    How are radiance estimates used to compute the color that would 
be observe by a camera at a point on a material surface? 

▪ What is the difference between radiance and irradiance?    Between incident 
and exitant radiance? 

▪ Explain and illustrate with a sketch all of the terms in the Rendering 
Equation. 

▪ Draw diagrams to illustrate reflection for (1) a perfectly specular (mirror) 
surface, (2) a glossy surface, (3) a diffuse surface, (4) a retroreflective surface 

▪ What is a BRDF?    What are the inputs and outputs of a BRDF function? 

▪ How would you measure a BRDF?   If you were to mount a camera and light 
source on two robot arms, how many degrees of freedom (joints) would you 
need to do these measurements?
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Lecture 15:  The Rendering Equation (Part 2 of 2)

▪ Given a ray and a surface normal, calculate the direction of perfect 
reflection 

▪ Given a ray, a surface normal, and indices of refraction, calculate the 
direction of perfect transmission using Snell’s Law. 

▪ What is total internal reflection?   Give a detailed example of how / 
when it can occur. 

▪ What is Fresnel reflection?  Sketch curves to illustrate the effect as 
we have seen in class.    Label your axes.   Informally, what does this 
effect show? 

▪ What is subsurface scattering? 

▪ How can we extend the idea of BRDF to subsurface scattering?   What 
additional parameters must be sampled?
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Lecture 16 was an overview of A3

▪ No material from lecture 16 is required for the final exam
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Lecture 17:  Numerical Integration
▪ In rendering (global illumination), what are we integrating, i.e., what integral 

do we want to evaluate? 

▪ How do we use the trapezoid rule to integrate a function? 

▪ How does work increase with dimensionality of our function?    
- This is why we typically use Monte Carlo integration in graphics! 

▪ Give a high level overview of the process of Monte Carlo integration 

▪ What is a probability density function (PDF)?    

▪ What is a Cumulative Distribution Function (CDF)? 

▪ The Inversion Method can be used to correctly draw a sample from a PDF.     
- Sketch the overall step by step process for using the Inversion Method 

▪ What is rejection sampling?   Show how to use rejection sampling to sample 
area of a circle, volume of a sphere, directions on a sphere, and solid angles 
from a hemisphere.



Lecture 18:  Monte Carlo Rendering
▪ What is Expected Value?  .. Variance?   .. Bias? 

▪ What is Importance Sampling?     How is it used in cosine-weighted sampling of 
the hemisphere? 

▪ What is the Monte Carlo method (in general)? 

▪ Explain how a Monte Carlo method can be used to solve the Rendering 
Equation. 

▪ What is Russian Roulette and why do we need it? 

▪ How can we use Russian Roulette and still have an unbiased estimator?
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Be familiar with the following expression for Monte Carlo integration.   What is the role of each 
term? 

Give an example of how we can reduce variance in our rendered results in a path tracing 
algorithm without increasing the number of samples. 

What does it mean for an estimator to be consistent? 

What does it mean for an estimator to be unbiased? 

Give a concrete example of how a renderer could give a biased estimate of an image.     Is the 
renderer in your example consistent?   Explain your answer. 

Give five examples of how you can reweight samples in a pathtracing algorithm in order to do 
importance sampling. 

What are the main ideas behind bidirectional path tracing? 

How would you enumerate all possible paths in a scene? 

How does Metropolis-Hastings sampling work? 

Assume you have code to generate random paths and code to mutate existing paths.   Write 
pseudocode for Metropolis-Hastings path tracing.

Lecture 19:  Variance Reduction
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What is Stratified Sampling? 

Why is it preferred to random sampling? 

Hammersley and Halton points are pseudo random sampling techniques to generate points 
with low discrepancy.    What is discrepancy?    Why do we want to generate low discrepancy 
samples? 

Give a concise one sentence description of each of the following rendering algorithms that 
makes it clear the differences between them.    Use a diagram to illustrate your description: 

Rasterization 
Ray casting 
Ray tracing 
Path tracing 
Bidirectional path tracing 
Metropolis Light Transport 
Photon Mapping 
Radiosity 

Which of these algorithms are best for capturing reflective surfaces?    caustics?     color 
bleeding?    subsurface scattering?   refraction? …

Lecture 20:  More Variance Reduction



What	you	should	know	(Part	1	of	2):	
  How	were	the	first	anima<ons	created?					How	were	the	first	films	

created?				Give	some	examples.	

  Describe	some	of	the	first	computer	generated	anima<ons,	giving	the	
developer	/	ar<st	and	<meframe.	

  Anima<ons	are	created	from	keyframes.				How	do	we	interpolate	
between	those	keyframes?	

  Why	do	we	avoid	splines	of	degree	higher	than	three	in	computer	
graphics?	

  Write	a	cubic	polynomial	P(t)	in	parameter	t,	which	may	describe	a	
cubic	spline.	

  What	are	the	constraints	for	P(t)	to	interpolate	endpoints	p1	at	<me	
t=0	and	p2	at	<me	t=1?	

  What	are	the	constraints	for	P(t)	to	have	tangent	vector	r1	at	<me	t=0	
and	r2	at	<me	t=1?	

Lecture 21:  Intro to Animation (Part 1 of 3)



What	you	should	know	(Part	2	of	2):	
  This	pair	of	constraints	describes	a	Hermite	spline.				Derive	the	

polynomial	coefficients	for	the	Hermite	spline	and	write	the	cubic	
polynomial	in	terms	of	p1,	p2,	r1,	and	r2.	

  Put	your	result	in	matrix	form.	

  Give	properFes	of	the	Hermite	spline	in	terms	of	conFnuity	(C1,	C2,	
etc..),	interpolaFon,	and	local	control.	

  What	type	of	spline	has	C2	conFnuity	and	interpolaFon,	but	not	local	
control?	

  What	type	of	spline	has	C2	conFnuity	and	local	control,	but	does	not	
interpolate	its	key	points?	

  What	are	Catmull-Rom	splines?				How	are	tangents	computed	for	
Catmull-Rom	splines?	

  What	are	blend	shapes	and	where	are	they	used?				What	exactly	is	
interpolated	when	using	blend	shapes	for	animaFon?	

Lecture 21:  Intro to Animation (Part 2 of 3)



Lecture 21:  Intro to Animation (Part 3 of 3)
Bezier, Hermite, and Catmull-Rom splines are really all the same 
thing.   Any one representation can be converted to any of the 
others.   Explain the differences between them. 
Be able to express a Hermite spline in different ways — as a cubic 
polynomial, in matrix form, or derive it from its control 
parameters. 
How do we ensure continuity between cubic spline segments?   C0 
continuity?   .. C1 continuity?   .. is C2 continuity possible in 
general?



What	you	should	know:	
  What	is	the	“anima4on	equa4on”?	
  What	is	the	difference	between	an	ODE	and	a	PDE?			Give	some	

examples	of	systems	we	can	simulate	by	integra4ng	an	ODE.	
  Sketch	an	overall	system	for	simula4ng	an	ODE	using	a	block	

diagram.			Be	clear	about	what	is	the	state,	how	you	advance	the	
state	forward	in	4me,	and	what	integrator	you	are	choosing.	

  When	is	the	Euler-Lagrange	equa4on	useful?	
  Be	able	to	work	through	a	simple	example	of	obtaining	dynamic	

equa4ons	of	mo4on	using	Lagrangian	mechanics.	
  Describe	how	to	put	together	a	mass-spring	system	to	simulate	

cloth.	
  What	are	the	forces	on	each	cloth	“par4cle”?	
  What	is	Forward	Euler	integra4on	and	what	is	its	disadvantage?			

Can	you	show	a	simple	example	where	it	fails?	
  What	is	Backward	Euler	integra4on	and	what	are	its	pros	and	

cons?	
  What	is	Symplec4c	Euler	integra4on?	

Lecture 22:  Dynamics and Time Integration 



Lecture 23:  Optimization 

Describe some problems in Computer Graphics where optimization is 
important. 

Be able to describe an optimization problem in standard form and give a 
couple of simple examples. 

How do you know you have a minimum of an objective function in an 
optimization problem without constraints?   What properties must be true? 

What is meant by convexity of the domain in an optimization problem?   
convexity of the objective?   Give examples of each.   Why do we care about 
convexity in optimization? 

What is the difference between forward and inverse kinematics? 

Write an expression for the forward kinematics of a simple character or 
robot. 

What is the Jacobian?   Compute the Jacobian for a simple character or robot. 

What is the Jacobian Transpose technique for inverse kinematics?   Is it 
guaranteed to converge?    What does that mean in practice?     Does it give a 
locally optimal solution or a globally optimal one?   Why?



What	you	should	know:		
  What	is	the	difference	between	a	PDE	and	an	ODE?			Give	

examples	of	when	you	might	use	each	one	and	why.	
  Interpret	this	sentence	using	an	equa+on	and	a	diagram:		Solving	

a	PDE	looks	like	“use	neighbor	informa'on	to	get	velocity	(...and	
then	add	a	li9le	velocity	each	'me)”	

  Burger’s	equa+on	is	first	order	in	+me	and	second	order	in	space.			
What	does	that	mean?			What	are	the	orders	of	the	Laplace	
equa+on?			The	heat	equa+on?		The	wave	equa+on?			Be	able	to	
figure	out	the	order	of	an	equa+on	from	an	expression	of	the	
equa+on	itself.	

  What	are	examples	of	ques+ons	we	can	answer	using	the	Laplace	
equa+on,	the	heat	equa+on,	and	the	wave	equa+on	
respec+vely?	

  Outline	the	basic	strategy	for	solving	a	PDE.	
  What	is	the	Laplace	operator?			Write	it	out	as	a	sum	of	par+al	

deriva+ves.	
  Copy	down	the	heat	equa+on	from	the	slides.			Write	out	the	

process	of	solving	this	equa+on	using	Forward	Euler	integra+on.	
  Copy	down	the	wave	equa+on	from	the	slides.			Write	out	the	

process	of	solving	this	equa+on	using	Forward	Euler	integra+on.	

Lecture 24:  Physically Based Animation and PDEs



Lecture 24:  Physically Based Animation and PDEs
Be able to use the grid version of the Laplacian to do smoothing on a grid.


