
Midterm Review and

Local Operations on Meshes

Computer Graphics 15-462 / 15-662

Two goals today:
• Guidance for midterm

• Local operations for A2.0

Midterm Review
Computer Graphics 15-462 / 15-662

 CMU 15-462/662

Lecture 1: Introduction

For any given setup where we place a camera in the
environment, pointing down any of the main coordinate axes (x,
y, or z), compute a projection of points in the world onto an
image plane.

Write an algorithm for drawing lines that handles all edge cases
(i.e., including edges that are exactly horizontal or vertical).

 CMU 15-462/662

Lecture 2: Math Review 1 (part 1 of 2):
How can we measure vectors?

What is a Vector Space?

Draw a geometric representation of each rule that vectors seem to obey.

Can a function be a vector? Explain

Add and scale vectors.

Add and scale functions

What is the norm of a vector?

Associate each property of a norm with a geometric interpretation.

Compute the Euclidean norm in Cartesian coordinates.

Compute the L2 norm of a function.

Associate each property of the inner product with a geometric interpretation.

Compute the inner product in Cartesian coordinates.

 CMU 15-462/662

Lecture 2: Math Review 1 (part 2 of 2):
Use the inner product for operations such as projection.

Compute the inner product of functions.

Give properties and an example of a linear map.

Define span and basis..

Compute an orthonormal basis from a set of vectors.

Be able to use Gram-Schmidt orthonormalization.

Know that orthonormalization of functions can be done by decomposing
them into sinusoids.

Be able to solve a simple system of linear equations, depict it geometrically,
and represent it in matrix form.

Be able to represent a linear map in matrix form.

 CMU 15-462/662

Lecture 3: Math Review 2 (Part 1 of 2):
Euclidean norm is any notion of length preserved by rotations/translations/
reflections of space. Be able to calculate it for a vector of any dimension.

Compute the inner product of two n-dimensional vectors. What is the
geometric meaning if an orthonormal basis is used?

Compute the cross product of two three-dimensional vectors. What is the
geometric meaning of this cross product? What is the geometric meaning of
its magnitude?

Use the cross product to do a quarter rotation of a vector within a plane.

Represent the dot product using matrix notation.

Represent the cross product using matrix notation.

Understand what the determinant measures. What does the determinant of
a linear map tell us? Give an example.

What is a directional derivative?

Bonus: Compute the gradient of a function.

 CMU 15-462/662

Lecture 3: Math Review 2 (Part 2 of 2):
Understand gradient as the best linear approximation and the direction of
steepest ascent.

When is the gradient not defined?

Bonus: Be able to express gradients of simple matrix expressions

What is a vector field? Give an example.

Be able to compute divergence, curl, and the Laplacian of a vector field. Also
be able to express the meaning of these terms geometrically, for example by
drawing a diagram.

What is the Hessian? Be able to compute the Hessian of a function.

 CMU 15-462/662

Lecture 4: Drawing a Triangle

1. How should we choose the correct color for a pixel? There is not an exact right answer.

However, you should be able to discuss some of the issues involved.

2. What is aliasing, and what artifacts does it produce in our images and our animations?

3. One form of aliasing is where high frequencies masquerade as low frequencies. Give an

example of this phenomenon.

4. Suppose we have a single red triangle displayed against a blue background. Does this scene

contain high frequencies?

5. What does the Nyqvist-Shannon theorem tell us about how image frequencies relate to

required sampling rate?

6. One practical solution on your graphics card for reducing aliasing (i.e., for antialiasing) is to take

multiple samples per pixel and average to get pixel color. Try to use what we learned about
sampling theory to explain as precisely as you can why taking multiple samples per pixel can
reduce aliasing artifacts.

7. Bonus: Be able to write an implicit representation of an edge given two points.

8. Bonus: Be able to use the implicit edge representation to determine if a point is inside a

triangle.

 CMU 15-462/662

Lecture 5: Transforms (Part 1 of 2)
1. Which of the following operations are linear transforms: scale, rotation,

shear, translation, reflection, rotation about a point that is not the origin?

2. Express scale as a linear transform

3. Express rotation as a linear transform

4. Express shear as a linear transform

5. Express reflection as a linear transform

6. Express translation as an affine transform

7. Know what makes a transform linear vs. affine

8. Know how to build transformation matrices from start and end

configurations of your object

 CMU 15-462/662

Lecture 5: Transforms (Part 2 of 2)
▪ Create 2D and 3D transformation matrices to perform specific

scale, shear, rotation, reflection, and translation operations

▪ Compose transformations to achieve compound effects

▪ Rotate an object about a fixed point

▪ Rotate an object about a given axis

▪ Create an orthonormal basis given a single vector

▪ Understand the equivalence of [x y 1] and [wx wy w] vectors

▪ Explain/illustrate how translations in 2D (x, y) are a shear
operation in the homogeneous coordinate space (x, y, w)

 CMU 15-462/662

Lecture 6: 3D Rotations
What is the problem of gimbal lock? Give an example where this
problem occurs.

How does using quaternions solve this problem?

Know that every rotation can be expressed as rotation by some
angle about some axis.

Know how to go between quaternions and axis-angle format for
rotations.

Know that quaternions are expressed as higher dimensional
complex numbers.

Be able to work out quaternion multiplication from the complex
number representation of a quaternion.

 CMU 15-462/662

Lecture 7: Projection
▪ Review:

▪ Form an orthonormal basis

▪ Create a rotation matrix to rotate any coordinate frame to xyz

▪ Create the rotation matrix to rotate the xyz coordinate frame to any other frame

▪ Know basic facts about rotation matrices / how to recognize a rotation matrix

▪ Rows (also columns) are unit vectors

▪ Rows (also columns) are orthogonal to one another

▪ If our rows (or columns) are u, v, and w, then uXv=w

▪ The inverse of a rotation matrix is its transpose

▪ Create a projection matrix that projects all points onto an image plane at z=1

▪ Propose a projection matrix that maintains some depth information

▪ Understand the motivation behind the projection matrix that projects the view frustum
to a unit cube

▪ Be able to draw / discuss the details of the view frustum

▪ Prove that a standard projection matrix preserves some information about depth

 CMU 15-462/662

Lecture 7: Barycentric Coordinates

▪ Interpolate colors using barycentric coordinates

▪ Bonus: Compute barycentric coordinates of a point using implicit edge functions

▪ Compute barycentric coordinates of a point using triangle areas

▪ Estimate the location of a point inside a triangle given its barycentric coordinates

▪ Estimate the location of a point outside a triangle given its barycentric
coordinates

▪ Estimate barycentric coordinates of a point from a drawing.

▪ Show that interpolation in 3D space followed by projection can give a different
result from projection followed by interpolation in screen space. In other words,
explain why interpolation using barycentric coordinates in screen space may give
a result that is incorrect.

▪ How, then, can we obtain a correct result using interpolation in screen space?

 CMU 15-462/662

Lecture 8: Textures

▪ Textures are used for many things, beyond pasting images onto object surfaces.

- Normal maps (create appearance of bumpy object on smooth surface by giving false normal to the

lighting equations)

- Displacement maps (encode offsets in the geometry of a surface, which is difficult to handle in a
standard graphics pipeline)

- Environment maps (store light information in all directions in a scene)

- Ambient occlusion map (store exposure of geometry to ambient light for better representation of
surface appearance with simple lighting models)

- Can you think of / discover others?

▪ Know how to interpolate texture coordinates

▪ Know how to index into a texture and compute a correct color using bilinear interpolation

▪ Be able to create a mipmap and store it in memory

▪ Be able to compute color from multiple levels of mipmaps using trilinear interpolation

▪ What is the logic behind selecting an appropriate level in a mipmap?

▪ What can happen if we select a level that is too high resolution? too low resolution?

 CMU 15-462/662

Lecture 8: Depth and Transparency
▪ What is the depth buffer (Z-buffer) and how is it used for hidden surface removal?

▪ Where does the depth for each sample / fragment come from? Where is it computed in the graphics
pipeline?

▪ Is the depth represented in the depth buffer the actual distance from the camera? If not, what is it?

▪ What is the meaning of the alpha parameter in the [R G B a] color representation?

▪ Be able to use alpha to do compositing with the “Over” operator.

▪ Is “Over” commutative? If not, create a counterexample.

▪ What is premultiplied alpha, and how does it work?

▪ Be able to use premultiplied alpha for “Over” composition.

▪ Why is premultiplied alpha better?

▪ How do we properly render a scene with mixed opaque and semi-transparent triangles? What is the
rendering order we should use? When is the depth buffer updated?

▪ Draw a rough sketch of the graphics pipeline. Think about transforming triangles into camera space,
doing perspective projection, clipping, transforming to screen coordinates, computing colors for
samples, computing colors for pixels, the depth test, updating color and depth buffers.

Lecture 5 Math

d

w
(x, y) = Ax+By + C

⇥
p0x p0y

⇤T
, d0

⇥
p1x p1y

⇤T
, d1

⇥
p2x p2y

⇤T
, d2

C = ↵BB + (1� ↵B)↵AA

↵C = ↵B + (1� ↵B)↵A

Lecture 9: Introduction to Geometry
List some types of implicit surface representations

What types of operations are easy with implicit surface representations?

List some types of explicit surface representations

What types of operations are easy with explicit surface representations?

What is CSG (constructive solid geometry)? Give some examples of CSG operations.

What type of representation is best for CSG operations?

Describe how to do union, intersection, and subtraction of geometry using simple
operators on a surface representation.

What is a level set representation? When is it useful?

What types of splines are common in computer graphics?

Why are they popular? What properties make them most useful?

BONUS: Derive the equation on the slide labeled “Bézier Curves — tangent continuity”
from the definitions given on the previous slides. Draw a diagram to illustrate any terms
you use.

17

Computer Graphics

CMU 15-462/15-662

Meshes and Geometry
Processing (Local Operations)

 CMU 15-462/662

From Wednesday: A manifold polygon mesh has fans, not fins

For polygonal surfaces just two easy conditions to check:

1. Every edge is contained in only two polygons (no “fins”)

2. The polygons containing each vertex make a single “fan”

NO

YES

NO

YES

 CMU 15-462/662

Ok, but why is the manifold
assumption useful?

 CMU 15-462/662

Keep it Simple!
make some assumptions about our geometry to keep data
structures/algorithms simple and efficient

in many common cases, doesn’t fundamentally limit what we can
do with geometry

 CMU 15-462/662

Let’s talk about encoding this data

 CMU 15-462/662

Warm up: two ways to store numbers
Q: What data structures can we use to store a list of numbers?

One idea: use an array (constant time lookup, coherent access)

Alternative: use a linked list (linear lookup, incoherent access)

Q: Why bother with the linked list?

A: For one, we can easily insert numbers wherever we like...

1.7 2.9 0.3 7.5 9.2 4.8 6.0 0.1

1.7

2.9

0.3
7.5

9.2
4.8

6.0

0.1

 CMU 15-462/662

Polygon Soup
Most basic idea:

- For each triangle, just store
three coordinates

- No other information about
connectivity

- Not much different from
point cloud! (“Triangle
cloud?”)

Pros:

- Really stupidly simple

Cons:

- Redundant storage

- Hard to do much beyond
simply drawing the mesh on
screen

- Need spatial data structures
(later) to find neighbors

(x0,y0,z0)

(x1,y1,z1)

(x2,y2,z2)

(x3,y3,z3)

x0,y0,z0 x1,y1,z1 x3,y3,z3
x1,y1,z1 x2,y2,z2 x3,y3,z3

 CMU 15-462/662

Adjacency List (Array-like)
Store triples of coordinates (x,y,z), tuples of indices

E.g., tetrahedron:

0

1

2

3

 x y z
0: -1 -1 -1
1: 1 -1 1
2: 1 1 -1
3: -1 1 1

VERTICES
i j k
0 2 1
0 3 2
3 0 1
3 1 2

POLYGONS

Q: How do we find all the polygons touching vertex 2?

Ok, now consider a more complicated mesh:

Very expensive to find the neighboring polygons! (What’s the cost?)

~1 billion polygons

 CMU 15-462/662

Incidence Matrices
If we want to know who our neighbors are, why not just store a list of
neighbors?

Can encode all neighbor information via incidence matrices

E.g., tetrahedron:

e2

v0

v1

v2

v3

e0

e1

e3
e4

f0

f3

f1

f2

e5

 v0 v1 v2 v3
e0 1 1 0 0
e1 0 1 1 0
e2 1 0 1 0
e3 1 0 0 1
e4 0 0 1 1
e5 0 1 0 1

VERTEX⬌EDGE
 e0 e1 e2 e3 e4 e5
f0 1 0 0 1 0 1
f1 0 1 0 0 1 1
f2 1 1 1 0 0 0
f3 0 0 1 1 1 0

EDGE⬌FACE

1 means “touches”; 0 means “does not touch”

Instead of storing lots of 0’s, use sparse matrices

Still large storage cost, but finding neighbors is now O(1)

Hard to change connectivity, since we used fixed indices

Bonus feature: mesh does not have to be manifold

Store some information about neighbors

Don’t need an exhaustive list; just a few key pointers

Key idea: two halfedges act as “glue” between mesh elements:

Each vertex, edge face points to just one of its halfedges.

 CMU 15-462/662

Halfedge Data Structure (Linked-list-like)

H
a
l
f
e
d
g
e

twin

e
d
g
e

next

vertex

face

struct Halfedge
{
 Halfedge* twin;
 Halfedge* next;
 Vertex* vertex;
 Edge* edge;
 Face* face;
};

struct Vertex
{
 Halfedge* halfedge;
};

halfedge

vertex

struct Edge
{
 Halfedge* halfedge;
};ha

lf
ed
ge

ed
ge

struct Face
{
 Halfedge* halfedge;
};

ha
lf
ed
ge

Face

Use “twin” and “next” pointers to move around mesh

Use “vertex”, “edge”, and “face” pointers to grab element

Example: visit all vertices of a face:

Example: visit all neighbors of a vertex:

Note: only makes sense if mesh is manifold!
 CMU 15-462/662

Halfedge makes mesh traversal easy

ha
lf
ed
ge

next

next

Face

Halfedge* h = f->halfedge;
do {
 h = h->next;
 // do something w/ h->vertex
}
while(h != f->halfedge);

ha
lf
ed
ge

twin

twin

next

next
Vertex

Halfedge* h = v->halfedge;
do {
 h = h->twin->next;
}
while(h != v->halfedge);

 CMU 15-462/662

Halfedge connectivity is always manifold
Consider simplified halfedge data structure

Require only “common-sense” conditions

struct Halfedge {
 Halfedge *next, *twin;
};

Keep following next, and you’ll get faces.

Keep following twin and you’ll get edges.

Keep following next->twin and you’ll get vertices.

Q: Why, therefore, is it impossible to encode the red figures?

twin->twin == this
twin != this
every he is someone’s “next”

(pointer to yourself!)

Connectivity vs. Geometry
Recall manifold conditions (fans not fins):

- every edge contained in two faces

- every vertex contained in one fan

These conditions say nothing about vertex
positions! Just connectivity

Hence, can have perfectly good (manifold)
connectivity, even if geometry is awful

In fact, sometimes you can have perfectly good
manifold connectivity for which any vertex
positions give “bad” geometry!

Can lead to confusion when debugging: mesh
looks “bad”, even though connectivity is fine

non manifold
connectivity?

…or just a really
skinny triangle?

same connectivity,
random vertex positionscube (manifold)

 CMU 15-462/662

Halfedge meshes are easy to edit
Remember key feature of linked list: insert/delete elements

Same story with halfedge mesh (“linked list on steroids”)

E.g., for triangle meshes, several atomic operations:

b

c

a d

b

c

a d

!ip

b

m

c

a d

b

c

a d

split

a

b

c d

a

b

m

collapse

How? Allocate/delete elements; reassigning pointers.

Must be careful to preserve manifoldness!

 CMU 15-462/662

Edge Flip (Triangles)
Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d):

Long list of pointer reassignments (edge->halfedge = ...)

However, no elements created/destroyed.

Q: What happens if we flip twice?

Challenge: can you implement edge flip such that pointers are
unchanged after two flips?

b

c

a d

b

c

a d

!ip

 CMU 15-462/662

Edge Split (Triangles)
Insert midpoint m of edge (c,b), connect to get four triangles:

This time, have to add new elements.

Lots of pointer reassignments.

Q: Can we “reverse” this operation?

b

m

c

a d

b

c

a d

split

 CMU 15-462/662

Edge Collapse (Triangles)
Replace edge (b,c) with a single vertex m:

Now have to delete elements.

Still lots of pointer assignments!

Q: How would we implement this with an adjacency list?

Any other good way to do it? (E.g., different data structure?)

a

b

c d

a

b

m

collapse

Paul Heckbert (former CMU prof.)

quadedge code - http://bit.ly/1QZLHosMany very similar data structures:

- winged edge

- corner table

- quadedge

- ...

Each stores local neighborhood information

Similar tradeoffs relative to simple polygon list:

- CONS: additional storage, incoherent memory access

- PROS: better access time for individual elements, intuitive
traversal of local neighborhoods

With some thought*, can design halfedge-type data structures with
coherent data storage, support for non manifold connectivity, etc.

 CMU 15-462/662

Alternatives to Halfedge

*see for instance http://geometry-central.net/

http://geometry-central.net/

 CMU 15-462/662

Comparison of Polygon Mesh Data Strucutres

Adjacency List
Incidence
Matrices

Halfedge Mesh

constant-time
neighborhood access?

NO YES YES

easy to add/remove
mesh elements?

NO NO YES

nonmanifold
geometry?

YES YES NO

Conclusion: pick the right data structure for the job!

 CMU 15-462/662

Ok, but what can we actually do with our
fancy new data structures?

 CMU 15-462/662

Subdivision Modeling
Common modeling paradigm in modern 3D tools:

- Coarse “control cage”

- Perform local operations to control/edit shape

- Global subdivision process determines final surface

 CMU 15-462/662

Subdivision Modeling—Local Operations
For general polygon meshes, we can dream up lots of local mesh
operations that might be useful for modeling:

…and many, many more!

 CMU 15-462/662

Geometry Processing

reconstruction
filtering

remeshing
compressionparameterizationshape analysis

 CMU 15-462/662

Next time…
Wednesday: GOOD LUCK WITH YOUR MIDTERM!

Monday:

- Midterm review

- More on subdivision and geometry processing

- Quadric error metric for simplification

