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Two goals today:
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Lecture 1:  Introduction

For any given setup where we place a camera in the 
environment, pointing down any of the main coordinate axes (x, 
y, or z), compute a projection of points in the world onto an 
image plane.


Write an algorithm for drawing lines that handles all edge cases 
(i.e., including edges that are exactly horizontal or vertical).
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Lecture 2:  Math Review 1 (part 1 of 2):
How can we measure vectors?


What is a Vector Space?


Draw a geometric representation of each rule that vectors seem to obey.


Can a function be a vector? Explain


Add and scale vectors.


Add and scale functions


What is the norm of a vector?


Associate each property of a norm with a geometric interpretation.


Compute the Euclidean norm in Cartesian coordinates.


Compute the L2 norm of a function.


Associate each property of the inner product with a geometric interpretation.


Compute the inner product in Cartesian coordinates.
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Lecture 2:  Math Review 1 (part 2 of 2):
Use the inner product for operations such as projection.


Compute the inner product of functions.


Give properties and an example of a linear map.


Define span and basis..


Compute an orthonormal basis from a set of vectors.


Be able to use Gram-Schmidt orthonormalization.


Know that orthonormalization of functions can be done by decomposing 
them into sinusoids.


Be able to solve a simple system of linear equations, depict it geometrically, 
and represent it in matrix form.


Be able to represent a linear map in matrix form.
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Lecture 3:  Math Review 2 (Part 1 of 2):
Euclidean norm is any notion of length preserved by rotations/translations/
reflections of space.    Be able to calculate it for a vector of any dimension.


Compute the inner product of two n-dimensional vectors. What is the 
geometric meaning if an orthonormal basis is used?


Compute the cross product of two three-dimensional vectors. What is the 
geometric meaning of this cross product? What is the geometric meaning of 
its magnitude?


Use the cross product to do a quarter rotation of a vector within a plane.


Represent the dot product using matrix notation.


Represent the cross product using matrix notation.


Understand what the determinant measures. What does the determinant of 
a linear map tell us? Give an example.


What is a directional derivative?


Bonus:  Compute the gradient of a function.
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Lecture 3:  Math Review 2 (Part 2 of 2):
Understand gradient as the best linear approximation and the direction of 
steepest ascent.


When is the gradient not defined?


Bonus:  Be able to express gradients of simple matrix expressions


What is a vector field? Give an example.


Be able to compute divergence, curl, and the Laplacian of a vector field.    Also 
be able to express the meaning of these terms geometrically, for example by 
drawing a diagram.


What is the Hessian? Be able to compute the Hessian of a function.
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Lecture 4:  Drawing a Triangle

1. How should we choose the correct color for a pixel?    There is not an exact right answer.   

However, you should be able to discuss some of the issues involved.

2. What is aliasing, and what artifacts does it produce in our images and our animations?

3. One form of aliasing is where high frequencies masquerade as low frequencies.   Give an 

example of this phenomenon.

4. Suppose we have a single red triangle displayed against a blue background.   Does this scene 

contain high frequencies? 

5. What does the Nyqvist-Shannon theorem tell us about how image frequencies relate to 

required sampling rate?

6. One practical solution on your graphics card for reducing aliasing (i.e., for antialiasing) is to take 

multiple samples per pixel and average to get pixel color.    Try to use what we learned about 
sampling theory to explain as precisely as you can why taking multiple samples per pixel can 
reduce aliasing artifacts.


7. Bonus:  Be able to write an implicit representation of an edge given two points.

8. Bonus: Be able to use the implicit edge representation to determine if a point is inside a 

triangle.
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Lecture 5:  Transforms (Part 1 of 2)
1. Which of the following operations are linear transforms:   scale, rotation, 

shear, translation, reflection, rotation about a point that is not the origin?

2. Express scale as a linear transform

3. Express rotation as a linear transform

4. Express shear as a linear transform

5. Express reflection as a linear transform

6. Express translation as an affine transform

7. Know what makes a transform linear vs. affine

8. Know how to build transformation matrices from start and end 

configurations of your object
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Lecture 5:  Transforms (Part 2 of 2)
▪ Create 2D and 3D transformation matrices to perform specific 

scale, shear, rotation, reflection, and translation operations


▪ Compose transformations to achieve compound effects


▪ Rotate an object about a fixed point


▪ Rotate an object about a given axis


▪ Create an orthonormal basis given a single vector


▪ Understand the equivalence of [x y 1] and [wx wy w] vectors


▪ Explain/illustrate how translations in 2D (x, y) are a shear 
operation in the homogeneous coordinate space (x, y, w)



 CMU 15-462/662

Lecture 6:  3D Rotations
What is the problem of gimbal lock?    Give an example where this 
problem occurs.


How does using quaternions solve this problem?


Know that every rotation can be expressed as rotation by some 
angle about some axis.


Know how to go between quaternions and axis-angle format for 
rotations.


Know that quaternions are expressed as higher dimensional 
complex numbers.


Be able to work out quaternion multiplication from the complex 
number representation of a quaternion.
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Lecture 7:  Projection
▪ Review:


▪ Form an orthonormal basis


▪ Create a rotation matrix to rotate any coordinate frame to xyz 


▪ Create the rotation matrix to rotate the xyz coordinate frame to any other frame


▪ Know basic facts about rotation matrices / how to recognize a rotation matrix

▪ Rows (also columns) are unit vectors


▪ Rows (also columns) are orthogonal to one another


▪ If our rows (or columns) are u, v, and w, then uXv=w


▪ The inverse of a rotation matrix is its transpose


▪ Create a projection matrix that projects all points onto an image plane at z=1


▪ Propose a projection matrix that maintains some depth information


▪ Understand the motivation behind the projection matrix that projects the view frustum 
to a unit cube


▪ Be able to draw / discuss the details of the view frustum


▪ Prove that a standard projection matrix preserves some information about depth
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Lecture 7:  Barycentric Coordinates

▪ Interpolate colors using barycentric coordinates


▪ Bonus: Compute barycentric coordinates of a point using implicit edge functions


▪ Compute barycentric coordinates of a point using triangle areas


▪ Estimate the location of a point inside a triangle given its barycentric coordinates


▪ Estimate the location of a point outside a triangle given its barycentric 
coordinates


▪ Estimate barycentric coordinates of a point from a drawing.


▪ Show that interpolation in 3D space followed by projection can give a different 
result from projection followed by interpolation in screen space.   In other words, 
explain why interpolation using barycentric coordinates in screen space may give 
a result that is incorrect.


▪ How, then, can we obtain a correct result using interpolation in screen space?
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Lecture 8:  Textures

▪ Textures are used for many things, beyond pasting images onto object surfaces.

- Normal maps (create appearance of bumpy object on smooth surface by giving false normal to the 

lighting equations)


- Displacement maps (encode offsets in the geometry of a surface, which is difficult to handle in a 
standard graphics pipeline)


- Environment maps (store light information in all directions in a scene)


- Ambient occlusion map (store exposure of geometry to ambient light for better representation of 
surface appearance with simple lighting models)


- Can you think of / discover others?


▪ Know how to interpolate texture coordinates


▪ Know how to index into a texture and compute a correct color using bilinear interpolation


▪ Be able to create a mipmap and store it in memory


▪ Be able to compute color from multiple levels of mipmaps using trilinear interpolation


▪ What is the logic behind selecting an appropriate level in a mipmap?


▪ What can happen if we select a level that is too high resolution?   too low resolution?
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Lecture 8:  Depth and Transparency
▪ What is the depth buffer (Z-buffer) and how is it used for hidden surface removal?


▪ Where does the depth for each sample / fragment come from?   Where is it computed in the graphics 
pipeline?


▪ Is the depth represented in the depth buffer the actual distance from the camera?   If not, what is it?


▪ What is the meaning of the alpha parameter in the [R G B a] color representation?


▪ Be able to use alpha to do compositing with the “Over” operator.


▪ Is “Over” commutative?   If not, create a counterexample.


▪ What is premultiplied alpha, and how does it work?


▪ Be able to use premultiplied alpha for “Over” composition.


▪ Why is premultiplied alpha better?


▪ How do we properly render a scene with mixed opaque and semi-transparent triangles?   What is the 
rendering order we should use?   When is the depth buffer updated?


▪ Draw a rough sketch of the graphics pipeline.   Think about transforming triangles into camera space, 
doing perspective projection, clipping, transforming to screen coordinates, computing colors for 
samples, computing colors for pixels, the depth test, updating color and depth buffers.

Lecture 5 Math
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Lecture 9:  Introduction to Geometry
List some types of implicit surface representations


What types of operations are easy with implicit surface representations?


List some types of explicit surface representations


What types of operations are easy with explicit surface representations?


What is CSG (constructive solid geometry)?   Give some examples of CSG operations.


What type of representation is best for CSG operations?


Describe how to do union, intersection, and subtraction of geometry using simple 
operators on a surface representation.


What is a level set representation?   When is it useful?


What types of splines are common in computer graphics?


Why are they popular?   What properties make them most useful?


BONUS:  Derive the equation on the slide labeled “Bézier Curves — tangent continuity” 
from the definitions given on the previous slides.   Draw a diagram to illustrate any terms 
you use.

17
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From Wednesday:  A manifold polygon mesh has fans, not fins

For polygonal surfaces just two easy conditions to check:


1. Every edge is contained in only two polygons (no “fins”)


2. The polygons containing each vertex make a single “fan”

NO

YES

NO

YES
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Ok, but why is the manifold 
assumption useful?
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Keep it Simple!
make some assumptions about our geometry to keep data 
structures/algorithms simple and efficient


in many common cases, doesn’t fundamentally limit what we can 
do with geometry
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Let’s talk about encoding this data
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Warm up: two ways to store numbers
Q: What data structures can we use to store a list of numbers?


One idea: use an array (constant time lookup, coherent access)


Alternative: use a linked list (linear lookup, incoherent access)


Q: Why bother with the linked list?


A: For one, we can easily insert numbers wherever we like...

1.7 2.9 0.3 7.5 9.2 4.8 6.0 0.1

1.7

2.9

0.3
7.5

9.2
4.8

6.0

0.1
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Polygon Soup
Most basic idea:


- For each triangle, just store 
three coordinates


- No other information about 
connectivity


- Not much different from 
point cloud! (“Triangle 
cloud?”)


Pros:


- Really stupidly simple


Cons:


- Redundant storage


- Hard to do much beyond 
simply drawing the mesh on 
screen


- Need spatial data structures 
(later) to find neighbors

(x0,y0,z0)

(x1,y1,z1)

(x2,y2,z2)

(x3,y3,z3)

x0,y0,z0  x1,y1,z1  x3,y3,z3
x1,y1,z1  x2,y2,z2  x3,y3,z3
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Adjacency List (Array-like)
Store triples of coordinates (x,y,z), tuples of indices


E.g., tetrahedron:

0

1

2

3

    x  y  z
0: -1 -1 -1
1:  1 -1  1
2:  1  1 -1
3: -1  1  1

VERTICES
i  j  k
0  2  1
0  3  2
3  0  1
3  1  2

POLYGONS

Q: How do we find all the polygons touching vertex 2?


Ok, now consider a more complicated mesh:


Very expensive to find the neighboring polygons!  (What’s the cost?)


~1 billion polygons
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Incidence Matrices
If we want to know who our neighbors are, why not just store a list of 
neighbors?


Can encode all neighbor information via incidence matrices


E.g., tetrahedron:

e2

v0

v1

v2

v3

e0

e1

e3
e4

f0

f3

f1

f2

e5

  v0 v1 v2 v3
e0 1  1  0  0
e1 0  1  1  0
e2 1  0  1  0
e3 1  0  0  1
e4 0  0  1  1
e5 0  1  0  1

VERTEX⬌EDGE
  e0 e1 e2 e3 e4 e5
f0 1  0  0  1  0  1
f1 0  1  0  0  1  1
f2 1  1  1  0  0  0
f3 0  0  1  1  1  0

EDGE⬌FACE

1 means “touches”; 0 means “does not touch”


Instead of storing lots of 0’s, use sparse matrices


Still large storage cost, but finding neighbors is now O(1)


Hard to change connectivity, since we used fixed indices


Bonus feature: mesh does not have to be manifold



Store some information about neighbors


Don’t need an exhaustive list; just a few key pointers


Key idea: two halfedges act as “glue” between mesh elements:


Each vertex, edge face points to just one of its halfedges.
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Halfedge Data Structure (Linked-list-like)

H
a
l
f
e
d
g
e

twin

e
d
g
e

next

vertex

face

struct Halfedge
{
   Halfedge* twin;
   Halfedge* next;
   Vertex* vertex;
   Edge* edge;
   Face* face;
};

struct Vertex
{
   Halfedge* halfedge;
};

halfedge

vertex

struct Edge
{
   Halfedge* halfedge;
};ha

lf
ed
ge

ed
ge

struct Face
{
   Halfedge* halfedge;
};

ha
lf
ed
ge

Face



Use “twin” and “next” pointers to move around mesh


Use “vertex”, “edge”, and “face” pointers to grab element


Example: visit all vertices of a face:


Example: visit all neighbors of a vertex:


Note: only makes sense if mesh is manifold!
 CMU 15-462/662

Halfedge makes mesh traversal easy

ha
lf
ed
ge

next

next

Face

Halfedge* h = f->halfedge;
do {
   h = h->next;
   // do something w/ h->vertex
}
while( h != f->halfedge );

ha
lf
ed
ge

twin

twin

next

next
Vertex

Halfedge* h = v->halfedge;
do {
   h = h->twin->next;
}
while( h != v->halfedge );
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Halfedge connectivity is always manifold
Consider simplified halfedge data structure


Require only “common-sense” conditions

struct Halfedge {
   Halfedge *next, *twin;
};

Keep following next, and you’ll get faces.

Keep following twin and you’ll get edges.

Keep following next->twin and you’ll get vertices.

Q: Why, therefore, is it impossible to encode the red figures?

twin->twin == this
twin != this
every he is someone’s “next”

(pointer to yourself!)



Connectivity vs. Geometry
Recall manifold conditions (fans not fins):


- every edge contained in two faces

- every vertex contained in one fan


These conditions say nothing about vertex 
positions!  Just connectivity


Hence, can have perfectly good (manifold) 
connectivity, even if geometry is awful 


In fact, sometimes you can have perfectly good 
manifold connectivity for which any vertex 
positions give “bad” geometry!


Can lead to confusion when debugging: mesh 
looks “bad”, even though connectivity is fine

non manifold 
connectivity?

…or just a really 
skinny triangle?

same connectivity, 
random vertex positionscube (manifold)
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Halfedge meshes are easy to edit
Remember key feature of linked list: insert/delete elements


Same story with halfedge mesh (“linked list on steroids”)


E.g., for triangle meshes, several atomic operations:

b

c

a d

b

c

a d

!ip

b

m

c

a d

b

c

a d

split

a

b

c d

a

b

m

collapse

How?  Allocate/delete elements; reassigning pointers.


Must be careful to preserve manifoldness!
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Edge Flip (Triangles)
Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d):


Long list of pointer reassignments (edge->halfedge = ...)


However, no elements created/destroyed.


Q: What happens if we flip twice?


Challenge: can you implement edge flip such that pointers are 
unchanged after two flips?

b

c

a d

b

c

a d

!ip
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Edge Split (Triangles)
Insert midpoint m of edge (c,b), connect to get four triangles:


This time, have to add new elements.


Lots of pointer reassignments.


Q: Can we “reverse” this operation?

b

m

c

a d

b

c

a d

split
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Edge Collapse (Triangles)
Replace edge (b,c) with a single vertex m:


Now have to delete elements.


Still lots of pointer assignments!


Q: How would we implement this with an adjacency list?


Any other good way to do it?  (E.g., different data structure?)

a

b

c d

a

b

m

collapse



Paul Heckbert (former CMU prof.)

quadedge code - http://bit.ly/1QZLHosMany very similar data structures:


- winged edge


- corner table


- quadedge


- ...


Each stores local neighborhood information


Similar tradeoffs relative to simple polygon list:


- CONS: additional storage, incoherent memory access


- PROS: better access time for individual elements, intuitive 
traversal of local neighborhoods


With some thought*, can design halfedge-type data structures with 
coherent data storage, support for non manifold connectivity, etc.
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Alternatives to Halfedge

*see for instance http://geometry-central.net/

http://geometry-central.net/
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Comparison of Polygon Mesh Data Strucutres

Adjacency List
Incidence 
Matrices

Halfedge Mesh

constant-time 
neighborhood access?

NO YES YES

easy to add/remove 
mesh elements?

NO NO YES

nonmanifold 
geometry?

YES YES NO

Conclusion: pick the right data structure for the job!
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Ok, but what can we actually do with our 
fancy new data structures?
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Subdivision Modeling
Common modeling paradigm in modern 3D tools:


- Coarse “control cage”


- Perform local operations to control/edit shape


- Global subdivision process determines final surface
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Subdivision Modeling—Local Operations
For general polygon meshes, we can dream up lots of local mesh 
operations that might be useful for modeling:

…and many, many more!
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Geometry Processing


reconstruction
filtering

remeshing
compressionparameterizationshape analysis
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Next time…
Wednesday:   GOOD LUCK WITH YOUR MIDTERM!


Monday:  


- Midterm review


- More on subdivision and geometry processing


- Quadric error metric for simplification


