Spatial Transformations

Computer Graphics
CMU 15-462/15-662

Spatial Transformation

- Basically any function that assigns each point a new location
- Today we'll focus on common transformations of space (rotation, scaling, etc.) encoded by linear maps

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

Transformations in Computer Graphics

- Where are linear transformations used in computer graphics?
- All over the place!
- Position/deform objects in space
- Move the camera
- Animate objects over time
- Project 3D objects onto 2D images
- Map 2D textures onto 3D objects
- Project shadows of 3D objects onto other 3D objects

The Rasterization Pipeline

Review: Linear Maps

Q: What does it mean for a map $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ to be linear?
Geometrically: it maps lines to lines, and preserves the origin

Algebraically: preserves vector space operations (addition \& scaling)

Why do we care about linear transformations?

- Cheap to apply
- Usually pretty easy to solve for (linear systems)
- Composition of linear transformations is linear
- product of many matrices is a single matrix
- gives uniform representation of transformations
- simplifies graphics algorithms, systems (e.g., GPUs \& APIs)

$$
\begin{array}{r}
{\left[\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]}
\end{array}\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \cdots=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]
$$

What kinds of linear transformations can we compose?

Types of Transformations

What would you call each of these types of transformations?

Q: How did you know that? (Hint: you did not inspect a formula!)

Invariants of Transformation
 A transformation is determined by the invariants it preserves

transformation
invariants
straight lines / origin
differences between pairs of points
lines through the origin / direction of vectors
origin / distances between points / orientation orientation
translation
scaling
rotation
linear
algebraic description

$$
\begin{gathered}
f(\mathrm{a} \mathbf{x}+\mathbf{y})=\mathrm{a} f(\mathbf{x})+f(\mathbf{y}) \\
f(0)=0
\end{gathered}
$$

Rotation

Rotations defined by three basic properties:

keeps origin fixed

preserves distances

preserves orientation

First two properties together imply that rotations are linear.

Will have a lot more to say about rotations next lecture...

2D Rotations-Matrix Representation

Rotations preserve distances and the origin-hence, a 2D rotation by an angle θ maps each point \mathbf{x} to a point $f_{\theta}(\mathbf{x})$ on the circle of radius $|\mathbf{x}|$:

- Where does $\mathbf{x}=(1,0)$ go if we rotate by θ (counter-clockwise)?
- How about $\mathbf{x}=(0,1)$?

What about a general vector $\mathbf{x}=\left(x_{1}, x_{2}\right)$?

2D Rotations-Matrix Representation

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

$$
f(\mathbf{x})=x_{1}\left[\begin{array}{r}
\cos \theta \\
\sin \theta
\end{array}\right]+x_{2}\left[\begin{array}{r}
-\sin \theta \\
\cos \theta
\end{array}\right]
$$

So, How do we represent the 2D rotation function $f_{\theta}(\mathbf{x})$ using a matrix?

$$
f_{\theta}(\mathbf{x})=\left[\begin{array}{rr}
\cos \theta & -\sin (\theta) \\
\sin \theta & \cos (\theta)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

3D Rotations

■ Q: In 3D, how do we rotate around the x_{3}-axis?

- A: Just apply the same transformation of x_{1}, x_{2}; keep x_{3} fixed
rotate around x_{1}
rotate around x_{2}
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin (\theta) \\ 0 & \sin \theta & \cos (\theta)\end{array}\right]\left[\begin{array}{ccc}\cos \theta & 0 & \sin (\theta) \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos (\theta)\end{array}\right]\left[\begin{array}{ccc}\cos \theta & -\sin (\theta) & 0 \\ \sin \theta & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]$

rotate around x_{3}

Rotations-Transpose as Inverse

Rotation will map standard basis to orthonormal basis e_{1}, e_{2}, e_{3} :

Hence, $R^{\top} R=I$, or equivalently, $R^{\top}=R^{-1}$.

Reflections

- Q: Does every matrix $Q^{\top} Q=I$ describe a rotation?
- Remember that rotations must preserve the origin, preserve distances, and preserve orientation
- Consider for instance this matrix:

$$
Q=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right] \quad Q^{\top} Q=\left[\begin{array}{cc}
(-1)^{2} & 0 \\
0 & 1
\end{array}\right]=I
$$

Q: Does this matrix represent a rotation?
(If not, which invariant does it fail to preserve?)
A: No! It represents a reflection across the y-axis (and hence fails to preserve orientation)

Orthogonal Transformations

- In general, transformations that preserve distances and the origin are called orthogonal transformations
- Represented by matrices $Q^{\top} Q=I$
- Rotations additionally preserve orientation: $\operatorname{det}(Q)>0$
- Reflections reverse orientation: $\operatorname{det}(Q)<0$

rotation

reflection

Scaling

- Each vector u gets mapped to a scalar multiple
- $f(\mathbf{u})=a \mathbf{u}, \quad a \in \mathbb{R}$
- Preserves the direction of all vectors*
$-\frac{\mathbf{u}}{|\mathbf{u}|}=\frac{a \mathbf{u}}{|a \mathbf{u}|}$

- Q: Is scaling a linear transformation? A: Yes!

SCALAR MULTIPLICATION

$$
f(b \mathbf{u})=a b \mathbf{u}=b a \mathbf{u}=b f(\mathbf{u})
$$

Scaling — Matrix Representation

Q: Suppose we want to scale a vector $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$ by a. How would we represent this operation via a matrix?

A: Just build a diagonal matrix D, with a along the diagonal:

$$
\underbrace{\left[\begin{array}{ccc}
a & 0 & 0 \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right]}_{D} \underbrace{\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]}_{\mathbf{u}}=\underbrace{\left[\begin{array}{l}
a u_{1} \\
a u_{2} \\
a u_{3}
\end{array}\right]}_{\mathbf{a} \mathbf{u}}
$$

Q: What happens if a is negative?

Negative Scaling

For $a=-1$, can think of scaling by a as sequence of reflections.
E.g., in 2D:

$$
\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Since each reflection reverses orientation, orientation is preserved. What about 3D?

$$
\begin{aligned}
& {\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right]=} \\
& {\left[\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]}
\end{aligned}
$$

Now we have three reflections, and so orientation is reversed!

Nonuniform Scaling (Axis-Aligned)

- We can also scale each axis by a different amount
- $f\left(u_{1}, u_{2}, u_{3}\right)=\left(a u_{1}, b u_{2}, c u_{3}\right), \quad a, b, c \in \mathbb{R}$
- Q: What's the matrix representation?
- A: Just put a, b, c on the diagonal:

$$
\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
a u_{1} \\
b u_{2} \\
c u_{3}
\end{array}\right]
$$

Ok, but what if we want to scale along some other axes?

Nonuniform Scaling

- Idea. We could:
- rotate to the new axes (R)
- apply a diagonal scaling (D)
- rotate back* to the original axes $\left(R^{\top}\right)$
- Notice that the overall transformation is represented by a symmetric matrix $A:=R^{\top} D R$

Q: Do all symmetric matrices represent nonuniform scaling (for some choice of axes)?

Spectral Theorem

- A: Yes! Spectral theorem says a symmetric matrix $A=A^{\top}$ has
- orthonormal eigenvectors $e_{1}, \ldots, e_{n} \in \mathbb{R}^{n}$
- real eigenvalues $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$

$$
A e_{i}=\lambda_{i} e_{i}
$$

- Can also write this relationship as $A R=R D$, where

$$
\begin{array}{lll}
R=\left[\begin{array}{lll}
e_{1} & \cdots & e_{n}
\end{array}\right] \quad D=\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]
\end{array}
$$

- Hence, every symmetric matrix performs a non-uniform scaling along some set of orthogonal axes.
- If A is positive definite $\left(\lambda_{i}>0\right)$, this scaling is positive.

Shear

- A shear displaces each point \mathbf{x} in a direction \mathbf{u} according to its distance along a fixed vector v :

$$
f_{\mathbf{u}, \mathbf{v}}(\mathbf{x})=\mathbf{x}+\langle\mathbf{v}, \mathbf{x}\rangle \mathbf{u}
$$

- Q: Is this transformation linear?
- A: Yes-for instance, can represent it via a matrix

$$
A_{\mathbf{u}, \mathbf{v}}=I+\mathbf{u} \mathbf{v}^{\top}
$$

Example.

$$
\begin{aligned}
& \mathbf{u}=(\cos (t), 0,0) \\
& \mathbf{v}=(0,1,0) \quad A_{\mathbf{u}, \mathbf{v}}=\left[\begin{array}{ccc}
1 & \cos (t) & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Composite Transformations

From these basic transformations (rotation, reflection, scaling, shear...) we can now build up composite transformations via matrix multiplication:

How do we decompose a linear transformation into pieces?

 (rotations, reflections, scaling, ...)
Decomposition of Linear Transformations

- In general, no unique way to write a given linear transformation as a composition of basic transformations!
- However, there are many useful decompositions:
- singular value decomposition (good for signal processing)
- LU factorization (good for solving linear systems)
- polar decomposition (good for spatial transformations)
- Consider for instance this linear transformation:

$$
A=\left[\begin{array}{rrr}
.34 & -.11 & -.89 \\
-.65 & .52 & -.70 \\
.25 & .23 & -.69
\end{array}\right]
$$

Polar \& Singular Value Decomposition

For example, polar decomposition decomposes any matrix A into orthogonal matrix Q and symmetric positive-semidefinite matrix P :

Q: What do each of the parts mean geometrically?
rotation/reflection nonnegative,

Since P is symmetric, can take this further via the spectral decomposition $P=V D V^{\top}$ (V orthogonal, D diagonal):

Result $U D V^{\top}$ is called the singular value decomposition

Interpolating Transformations

- How are these decompositions useful for graphics?
- Consider interpolating between two linear transformations A_{0}, A_{1} of some initial model

Interpolating Transformations-Linear

One idea: just take a linear combination of the two matrices, weighted by the current time $t \in[0,1]$

$$
A(t)=(1-t) A_{0}+t A_{1}
$$

Hits the right start/endpoints. . . but looks awful in between!

Interpolating Transformations—Polar

Better idea: separately interpolate components of polar decomposition.

$$
A_{0}=Q_{0} P_{0}, \quad A_{1}=Q_{1} P_{1}
$$

scaling
rotation

$$
\widetilde{Q}(t)=(1-t) Q_{0}+t Q_{1}
$$

$$
\widetilde{Q}(t)=Q(t) X(t)
$$

final interpolation

...looks better!

Example: Linear Blend Skinning

- Naïve linear interpolation also causes artifacts when blending between transformations on a character ("candy wrapper effect")
- Lots of research on alternative ways to blend transformations...

LBS: candy-wrapper artifact

Jacobson, Deng, Kavan, \& Lewis (2014)
"Skinning: Real-time Shape Deformation"

Translations

- So far we've ignored a basic transformation-translations
- A translation simply adds an offset \mathbf{u} to the given point \mathbf{x} :

$$
f_{\mathbf{u}}(\mathbf{x})=\mathbf{x}+\mathbf{u}
$$

Q: Is this transformation linear?
(Certainly seems to move us along a line...)
Let's carefully check the definition...

additivity

$$
\begin{aligned}
& f_{\mathbf{u}}(\mathbf{x}+\mathbf{y})=\mathbf{x}+\mathbf{y}+\mathbf{u} \\
& f_{\mathbf{u}}(\mathbf{x})+f_{\mathbf{u}}(\mathbf{y})=\mathbf{x}+\mathbf{y}+2 \mathbf{u}
\end{aligned}
$$

homogeneity

$$
\begin{gathered}
f_{\mathbf{u}}(a \mathbf{x})=a \mathbf{x}+\mathbf{u} \\
a f_{\mathbf{u}}(\mathbf{x})=a \mathbf{x}+a \mathbf{u}
\end{gathered}
$$

A: No! Translation is affine, not linear!

Composition of Transformations

- Recall we can compose linear transformations via matrix multiplication:

$$
\left.A_{3}\left(A_{2}\left(A_{1} \mathbf{x}\right)\right)\right)=\left(A_{3} A_{2} A_{1}\right) \mathbf{x}
$$

- It's easy enough to compose translations-just add vectors:

$$
f_{\mathbf{u}_{3}}\left(f_{\mathbf{u}_{2}}\left(f_{\mathbf{u}_{1}}(\mathbf{x})\right)\right)=f_{\mathbf{u}_{1}+\mathbf{u}_{2}+\mathbf{u}_{3}}(\mathbf{x})
$$

- What if we want to intermingle translations and linear transformations (rotation, scale, shear, etc.)?

$$
A_{2}\left(A_{1} \mathbf{x}+\mathbf{b}_{1}\right)+\mathbf{b}_{2}=\left(A_{2} A_{1}\right) \mathbf{x}+\left(A_{2} \mathbf{b}_{1}+\mathbf{b}_{2}\right)
$$

- Now we have to keep track of a matrix and a vector
- Moreover, we'll see (later) that this encoding won't work for other important cases, such as perspective transformations

Strange idea:
 Maybe translations turn into linear transformations if we go into the 4th dimension...!

Homogeneous Coordinates

- Came from efforts to study perspective
- Introduced by Möbius as a natural way of assigning coordinates to lines
- Show up naturally in a surprising large number of places in computer graphics:
- 3D transformations

- perspective projection
- quadric error simplification
- premultiplied alpha
- shadow mapping
- projective texture mapping
- discrete conformal geometry
- hyperbolic geometry
- clipping
- directional lights

Probably worth understanding!

Homogeneous Coordinates—Basic Idea

- Consider any 2D plane that does not pass through the origin 0 in 3D
- Every line through the origin in 3D corresponds to a point in the 2D plane
- Just find the point \mathbf{p} where the line L pierces the plane

Hence, any point $\widehat{\mathbf{p}}$ on the line L can be used to represent the point \mathbf{p}. Q: What does this story remind you of?

Review: Perspective projection

■ Hopefully it reminds you of our "pinhole camera"

- Objects along the same line project to the same point

If you have an image of a single dot, can't know where it is! Only which line it belongs to.

Homogeneous Coordinates (2D)

- More explicitly, consider a point $\mathbf{p}=(x, y)$, and the plane $z=1$ in 3D
- Any three numbers $\widehat{\mathbf{p}}=(a, b, c)$ such that $(a / c, b / c)=(x, y)$ are homogeneous coordinates for \mathbf{p}
- E.g., $(x, y, 1)$
- In general: $(c x, c y, c)$ for $c \neq 0$
- Hence, two points $\widehat{\mathbf{p}}, \widehat{\mathbf{q}} \in \mathbb{R}^{3} \backslash\{O\}$ describe the same point in 2 D (and line in 3 D) if $\widehat{\mathbf{p}}=\lambda \widehat{\mathbf{q}}$ for some $\lambda \neq 0$

Great... but how does this help us with transformations?

Translation in Homogeneous Coordinates

Let's think about what happens to our homogeneous coordinates $\widehat{\mathbf{p}}$ if we apply a translation to our 2D coordinates p

2D coordinates

Q: What kind of transformation does this look like?

Translation in Homogeneous Coordinates

- But wait a minute—shear is a linear transformation!

■ Can this be right? Let's check in coordinates. . .

- Suppose we translate a point $\mathbf{p}=\left(p_{1}, p_{2}\right)$ by a vector $\mathbf{u}=\left(u_{1}, u_{2}\right)$ to get $\mathbf{p}^{\prime}=\left(p_{1}+u_{1}, p_{2}+u_{2}\right)$
- The homogeneous coordinates $\hat{\mathbf{p}}=\left(c p_{1}, c p_{2}, c\right)$ then become $\widehat{\mathbf{p}}^{\prime}=\left(c p_{1}+c u_{1}, c p_{2}+c u_{2}, c\right)$
- Notice that we're shifting $\widehat{\mathbf{p}}$ by an amount $c \mathbf{u}$ that's proportional to the distance c along the third axis-a shear

Using homogeneous coordinates, we can represent an affine transformation in 2D as a linear transformation in 3D

Homogeneous Translation—Matrix Representation

- To write as a matrix, recall that a shear in the direction $\mathbf{u}=\left(u_{1}, u_{2}\right)$ according to the distance along a direction \mathbf{v} is

$$
f_{\mathbf{u}, \mathbf{v}}(\mathbf{x})=\mathbf{x}+\langle\mathbf{v}, \mathbf{x}\rangle \mathbf{u}
$$

- In matrix form:

$$
f_{\mathbf{u}, \mathbf{v}}(\mathbf{x})=\left(I+\mathbf{u}^{\top}\right) \mathbf{x}
$$

- In our case, $\mathbf{v}=(0,0,1)$ and so we get a matrix

$$
\left[\begin{array}{ccc}
1 & 0 & u_{1} \\
0 & 1 & u_{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
c p_{1} \\
c p_{2} \\
c
\end{array}\right]=\left[\begin{array}{c}
c\left(p_{1}+u_{1}\right) \\
c\left(p_{2}+u_{2}\right) \\
c
\end{array}\right] \stackrel{1 / c}{\Longrightarrow}\left[\begin{array}{l}
p_{1}+u_{1} \\
p_{2}+u_{2}
\end{array}\right]
$$

Other 2D Transformations in Homogeneous Coordinates

Original shape in 2D can be viewed as many copies, uniformly scaled by x_{3}

2D scale \rightarrow scale x_{1} and $x_{2} ;$ preserve x_{3} (Q: what happens to 2D shape if you scale x_{1}, x_{2}, and x_{3} uniformly?)

2 D rotation \oplus rotate around x_{3}

2D translate - shear

3D Transformations in Homogeneous Coordinates

■ Not much changes in three (or more) dimensions: just append one "homogeneous coordinate" to the first three

- Matrix representations of 3D linear transformations just get an additional identity row/column; translation is again a shear

Points vs. Vectors

■ Homogeneous coordinates have another useful feature: distinguish between points and vectors

- Consider for instance a triangle with:
- vertices $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^{3}$

- normal vector $\mathbf{n} \in \mathbb{R}^{3}$
- Suppose we transform the triangle by appending " 1 " to $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{n}$ and multiplying by this matrix:
$\left[\begin{array}{cccc}\cos \theta & 0 & \sin \theta & u \\ 0 & 1 & 0 & v \\ -\sin \theta & 0 & \cos \theta & w \\ 0 & 0 & 0 & 1\end{array}\right]$

Points vs. Vectors (continued)

- Let's think about what happens when we multiply the normal vector \mathbf{n} by our matrix:
rotate normal around y by θ

$$
\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & u \\
0 & 1 & 0 & v \\
-\sin \theta & 0 & \cos \theta & w \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
n_{1} \\
n_{2} \\
n_{3} \\
1
\end{array}\right]
$$

■ But when we rotate/translate a triangle, its normal should just rotate!*

■ Solution? Just set homogeneous coordinate to zero!

- Translation now gets ignored; normal is orthogonal to triangle
translate normal by ($u, v, w)$

Points vs. Vectors in Homogeneous Coordinates

- In general:
- A point has a nonzero homogeneous coordinate ($c=1$)
- A vector has a zero homogeneous coordinate ($c=0$)
- But wait... what division by c mean when it's equal to zero?
- Well consider what happens as $c \rightarrow 0$...

$(x, y) / 1$
$(x, y) / 0.5$
$(x, y) / 0.25$
$(x, y) / 0.001$
Can think of vectors as "points at infinity" (sometimes called "ideal points")
(In practice: still need to check for divide by zero!)

Perspective Projection in Homogeneous Coordinates

- Q: How can we perform perspective projection* using homogeneous coordinates?

- Remember from our pinhole camera model that the basic idea

$$
(x, y, z) \mapsto(x / z, y / z)
$$ was to "divide by z "

- So, we can build a matrix that "copies" the z coordinate into the homogeneous coordinate
- Division by the homogeneous

$$
\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z \\
z
\end{array}\right]
$$ coordinate now gives us perspective projection onto the plane $z=1$

$$
\Longrightarrow\left[\begin{array}{c}
x / z \\
y / z \\
1
\end{array}\right]
$$

Screen Transformation

- One last transformation is needed in the rasterization pipeline: transform from viewing plane to pixel coordinates
- E.g., suppose we want to draw all points that fall inside the square $[-1,1] \times[-1,1]$ on the $z=1$ plane, into a W x H pixel image
"normalized device coordinates"

Q: What transformation(s) would you apply? (Careful: y is now down!)

Scene Graph

■ For complex scenes (e.g., more than just a cube!) scene graph can help organize transformations

■ Motivation: suppose we want to build a "cube creature" by transforming copies of the unit cube

- Difficult to specify each transformation directly
- Instead, build up transformations of "lower" parts from transformations of "upper" parts
- E.g., first position the body
- Then transform upper arm relative to the body
- Then transform lower arm relative to upper arm

Scene Graph (continued)

- Scene graph stores relative transformations in directed graph
- Each edge (+root) stores a linear transformation (e.g., a 4x4 matrix)
- Composition of transformations gets applied to nodes

- E.g., $A_{1} A_{0}$ gets applied to left upper leg; $A_{2} A_{1} A_{0}$ to left lower leg
- Keep transformations on a stack to reduce redundant multiplication

Scene Graph—Example

Often used to build up complex "rig":

In general, scene graph also includes other models, lights, cameras, ...

Instancing

- What if we want many copies of the same object in a scene?
- Rather than have many copies of the geometry, scene graph, etc., can just put a "pointer" node in our scene graph
- Like any other node, can specify a different transformation on each incoming edge

Instancing—Example

Order matters when composing transformations!

scale by $1 / 2$, then translate by $(3,1)$

translate by $(3,1)$, then scale by $1 / 2$

How would you perform these transformations?

Common task: rotate about a point x

Drawing a Cube Creature

- Let's put this all together: starting with our 3D cube, we want to make a 2D, perspective-correct image of a "cube creature"
- First we use our scene graph to apply 3D transformations to several copies of our cube

- Then we apply a 3D transformation to position our camera
- Then a perspective projection
- Finally we convert to image coordinates (and rasterize)

■ ...Easy, right? :-)

Spatial Transformations-Summary transformation defined by its invariants

basic linear transformations
scaling
rotation
reflection
shear

basic nonlinear transformations

translation
perspective projection
linear when represented via homogeneous coords
composite transformations

- compose basic transformations to get more interesting ones
- always reduces to a single 4×4 matrix (in homogeneous coordinates)
-simple, unified representation, efficient implementation
- order of composition matters!
- many ways to decompose a given transformation (polar, SVD, ...)
- use scene graph to organize transformations
- use instancing to eliminate redundancy

Next time: 3D Rotations

