Spatial Transformations
Spatial Transformation

- Basically any function that assigns each point a new location
- Today we’ll focus on common transformations of space (rotation, scaling, etc.) encoded by linear maps

\[f : \mathbb{R}^n \rightarrow \mathbb{R}^n \]
Transformations in Computer Graphics

- Where are linear transformations used in computer graphics?
 - All over the place!
 - Position/deform objects in space
 - Move the camera
 - Animate objects over time
 - Project 3D objects onto 2D images
 - Map 2D textures onto 3D objects
 - Project shadows of 3D objects onto other 3D objects
 - ...
The Rasterization Pipeline

1. Transform/position objects in space
2. Project objects onto the screen
3. Sample triangle coverage
4. Sample texture maps / evaluate shaders
5. Interpolate triangle attributes at covered samples
6. Combine samples into final image (depth, alpha, …)
Q: What does it mean for a map $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$ to be linear?

Geometrically: it maps lines to lines, and preserves the origin.

Algebraically: preserves vector space operations (addition & scaling).

- First, add x, y to get $x + y$.
- Then, apply f to both x and y: $f(x), f(y)$.
- Then, add the results $f(x) + f(y)$.
- Alternatively, apply f first to $x + y$: $f(x + y)$.

The two results should be equal: $f(x) + f(y) = f(x + y)$.
Why do we care about linear transformations?

- Cheap to apply
- Usually pretty easy to solve for (linear systems)
- Composition of linear transformations is linear
 - product of many matrices is a single matrix
 - gives uniform representation of transformations
 - simplifies graphics algorithms, systems (e.g., GPUs & APIs)

rotation scale rotation composite transformation

\[
\begin{pmatrix}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{pmatrix}
\begin{pmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{pmatrix}
\cdots
\begin{pmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{pmatrix}
\]
What kinds of linear transformations can we compose?
Types of Transformations

What would you call each of these types of transformations?

Q: How did you know that? (Hint: you did not inspect a formula!)
Invariants of Transformation

A transformation is determined by the **invariants** it preserves

<table>
<thead>
<tr>
<th>transformation</th>
<th>invariants</th>
<th>algebraic description</th>
</tr>
</thead>
<tbody>
<tr>
<td>linear</td>
<td>straight lines / origin</td>
<td>$f(ax+y) = af(x) + f(y)$, $f(0) = 0$</td>
</tr>
<tr>
<td>translation</td>
<td>differences between pairs of points</td>
<td>$f(x-y) = x-y$</td>
</tr>
<tr>
<td>scaling</td>
<td>lines through the origin / direction of vectors</td>
<td>$f(x)/</td>
</tr>
<tr>
<td>rotation</td>
<td>origin / distances between points / orientation</td>
<td>$</td>
</tr>
</tbody>
</table>

(Essentially how your brain “knows” what kind of transformation you’re looking at...)
Rotation

Rotations defined by three basic properties:

- keeps origin fixed
- preserves distances
- preserves orientation

First two properties together imply that rotations are **linear**.

Will have a lot more to say about rotations next lecture...
2D Rotations—Matrix Representation

Rotations preserve distances and the origin—hence, a 2D rotation by an angle θ maps each point \mathbf{x} to a point $f_\theta(\mathbf{x})$ on the circle of radius $|\mathbf{x}|$:

Where does $\mathbf{x} = (1,0)$ go if we rotate by θ (counter-clockwise)?

How about $\mathbf{x} = (0,1)$?

What about a general vector $\mathbf{x} = (x_1, x_2)$?
2D Rotations—Matrix Representation

So, How do we represent the 2D rotation function $f_\theta(x)$ using a matrix?

$$f_\theta(x) = \begin{bmatrix} \cos \theta & -\sin(\theta) \\ \sin \theta & \cos(\theta) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
3D Rotations

Q: In 3D, how do we rotate around the x_3-axis?

A: Just apply the same transformation of x_1, x_2; keep x_3 fixed

- **rotate around x_1**
 \[
 \begin{bmatrix}
 1 & 0 & 0 \\
 0 & \cos \theta & -\sin(\theta) \\
 0 & \sin \theta & \cos(\theta)
 \end{bmatrix}
 \]

- **rotate around x_2**
 \[
 \begin{bmatrix}
 \cos \theta & 0 & \sin(\theta) \\
 0 & 1 & 0 \\
 -\sin \theta & 0 & \cos(\theta)
 \end{bmatrix}
 \]

- **rotate around x_3**
 \[
 \begin{bmatrix}
 \cos \theta & -\sin(\theta) & 0 \\
 \sin \theta & \cos(\theta) & 0 \\
 0 & 0 & 1
 \end{bmatrix}
 \]
Rotations—Transpose as Inverse

Rotation will map standard basis to orthonormal basis e_1, e_2, e_3:

\[
\begin{bmatrix}
\vec{e}_1^T \\
\vec{e}_2^T \\
\vec{e}_3^T
\end{bmatrix}
\begin{bmatrix}
e_1 \\
e_2 \\
e_3
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Hence, $R^T R = I$, or equivalently, $R^T = R^{-1}$.
Reflections

- Q: Does every matrix $Q^TQ = I$ describe a rotation?
- Remember that rotations must preserve the origin, preserve distances, and preserve orientation.
- Consider for instance this matrix:

\[
Q = \begin{bmatrix}
-1 & 0 \\
0 & 1
\end{bmatrix}
\quad Q^TQ = \begin{bmatrix}
(-1)^2 & 0 \\
0 & 1
\end{bmatrix} = I
\]

Q: Does this matrix represent a rotation? (If not, which invariant does it fail to preserve?)

A: No! It represents a reflection across the y-axis (and hence fails to preserve orientation).
Orthogonal Transformations

- In general, transformations that preserve distances and the origin are called orthogonal transformations.

- Represented by matrices $Q^TQ = I$
 - **Rotations** additionally preserve orientation: $\det(Q) > 0$
 - **Reflections** reverse orientation: $\det(Q) < 0$
Scaling

- Each vector \mathbf{u} gets mapped to a scalar multiple
 - $f(\mathbf{u}) = a\mathbf{u}, \quad a \in \mathbb{R}$
- Preserves the direction of all vectors*
 - $\frac{\mathbf{u}}{|\mathbf{u}|} = \frac{a\mathbf{u}}{|a\mathbf{u}|}$
- Q: Is scaling a linear transformation? A: Yes!

*assuming $a \neq 0, \mathbf{u} \neq 0$
Q: Suppose we want to scale a vector \(\mathbf{u} = (u_1, u_2, u_3) \) by \(a \). How would we represent this operation via a matrix?

A: Just build a diagonal matrix \(D \), with \(a \) along the diagonal:

\[
\begin{bmatrix}
a & 0 & 0 \\
0 & a & 0 \\
0 & 0 & a \\
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
u_3 \\
\end{bmatrix}
=
\begin{bmatrix}
au_1 \\
au_2 \\
au_3 \\
\end{bmatrix}
\]

Q: What happens if \(a \) is negative?
Negative Scaling

For $a = -1$, can think of scaling by a as sequence of reflections.

E.g., in 2D:

$$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Since each reflection reverses orientation, orientation is preserved.

What about 3D?

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

Now we have three reflections, and so orientation is reversed!
Nonuniform Scaling (Axis-Aligned)

- We can also scale each axis by a different amount
 \[f(u_1, u_2, u_3) = (au_1, bu_2, cu_3), \quad a, b, c \in \mathbb{R} \]

- Q: What's the matrix representation?
- A: Just put \(a, b, c \) on the diagonal:

\[
\begin{bmatrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c \\
\end{bmatrix}
\begin{bmatrix}
u_1 \\
u_2 \\
u_3 \\
\end{bmatrix}
=
\begin{bmatrix}
au_1 \\
bu_2 \\
cu_3 \\
\end{bmatrix}
\]

Ok, but what if we want to scale along some other axes?
Nonuniform Scaling

- **Idea.** We could:
 - rotate to the new axes \(R \)
 - apply a diagonal scaling \(D \)
 - rotate back* to the original axes \(R^T \)

Notice that the overall transformation is represented by a symmetric matrix
\[
A := R^T DR
\]

Q: Do all symmetric matrices represent nonuniform scaling (for some choice of axes)?

*Recall that for a rotation, the inverse equals the transpose: \(R^{-1} = R^T \)
Spectral Theorem

- A: Yes! Spectral theorem says a symmetric matrix \(A = A^\top \) has
 - orthonormal eigenvectors \(e_1, \ldots, e_n \in \mathbb{R}^n \)
 - real eigenvalues \(\lambda_1, \ldots, \lambda_n \in \mathbb{R} \)

- Can also write this relationship as
 \[
 Ae_i = \lambda_i e_i
 \]

- Equivalently,
 \[
 A = RDR^\top
 \]

- Hence, every symmetric matrix performs a non-uniform scaling along some set of orthogonal axes.

- If \(A \) is positive definite \((\lambda_i > 0)\), this scaling is positive.
Shear

- A shear displaces each point \mathbf{x} in a direction \mathbf{u} according to its distance along a fixed vector \mathbf{v}:

$$f_{u,v}(\mathbf{x}) = \mathbf{x} + \langle \mathbf{v}, \mathbf{x} \rangle \mathbf{u}$$

- **Q:** Is this transformation linear?
- **A:** Yes—for instance, can represent it via a matrix $A_{u,v} = I + \mathbf{u}\mathbf{v}^\top$

Example.

$$\mathbf{u} = (\cos(t), 0, 0) \quad \mathbf{v} = (0, 1, 0)$$

$$A_{u,v} = \begin{bmatrix} 1 & \cos(t) & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
Composite Transformations

From these basic transformations (rotation, reflection, scaling, shear...) we can now build up composite transformations via matrix multiplication:

\[A(t) = R_x(t)R_y(t)S(t) \]
How do we decompose a linear transformation into pieces?
(rotations, reflections, scaling, ...)

Decomposition of Linear Transformations

- In general, no **unique** way to write a given linear transformation as a composition of basic transformations!
- However, there are many useful decompositions:
 - singular value decomposition (good for signal processing)
 - LU factorization (good for solving linear systems)
 - polar decomposition (good for spatial transformations)
 - …
- Consider for instance this linear transformation:

\[A = \begin{bmatrix}
.34 & -.11 & -.89 \\
-.65 & .52 & -.70 \\
.25 & .23 & -.69 \\
\end{bmatrix} \]
Polar & Singular Value Decomposition

For example, polar decomposition decomposes any matrix A into orthogonal matrix Q and symmetric positive-semidefinite matrix P:

$$ A = QP $$

Q: What do each of the parts mean geometrically?

rotation/reflection nonnegative, nonuniform scaling

Since P is symmetric, can take this further via the spectral decomposition $P = VDVT$ (V orthogonal, D diagonal):

$$ A = QVDVT = UDVVT $$

Result $UDVT$ is called the **singular value decomposition**
Interpolating Transformations

- How are these decompositions useful for graphics?
- Consider interpolating between two linear transformations A_0, A_1 of some initial model

Goal: animate transition with some nice continuous motion
Interpolating Transformations—Linear

One idea: just take a linear combination of the two matrices, weighted by the current time $t \in [0, 1]$

$$A(t) = (1 - t)A_0 + tA_1$$

Hits the right start/endpoints... but looks awful in between!
Interpolating Transformations—Polar

Better idea: separately interpolate components of polar decomposition.

\[
P(t) = (1 - t)P_0 + tP_1
\]

\[
\overline{Q}(t) = (1 - t)Q_0 + tQ_1
\]

\[
\overline{Q}(t) = Q(t)X(t)
\]

\[
A(t) = Q(t)P(t)
\]

\[A_0 = Q_0P_0, \quad A_1 = Q_1P_1\]

scaling \hspace{3cm} rotation \hspace{3cm} final interpolation

See: Shoemake & Duff, “Matrix Animation and Polar Decomposition”
Example: Linear Blend Skinning

- Naïve linear interpolation also causes artifacts when blending between transformations on a character ("candy wrapper effect")
- Lots of research on alternative ways to blend transformations...

LBS: candy-wrapper artifact

Rumman & Fratarcangeli (2015)
"Position-based Skinning for Soft Articulated Characters"

Jacobson, Deng, Kavan, & Lewis (2014)
"Skinning: Real-time Shape Deformation"
Translations

- So far we’ve ignored a basic transformation—translations
- A translation simply adds an offset \(u \) to the given point \(x \):

\[
f_u(x) = x + u
\]

Q: Is this transformation **linear**?
(Certainly seems to move us along a line...)

Let’s carefully check the definition...

additivity
\[
f_u(x + y) = x + y + u
\]
\[
f_u(x) + f_u(y) = x + y + 2u
\]

homogeneity
\[
f_u(ax) = ax + u
\]
\[
a f_u(x) = ax + au
\]

A: No! Translation is **affine**, not linear!
Composition of Transformations

- Recall we can compose linear transformations via matrix multiplication:

\[A_3(A_2(A_1\mathbf{x})) = (A_3A_2A_1)\mathbf{x} \]

- It's easy enough to compose translations—just add vectors:

\[f_{u_3}(f_{u_2}(f_{u_1}(\mathbf{x}))) = f_{u_1+u_2+u_3}(\mathbf{x}) \]

- What if we want to intermingle translations and linear transformations (rotation, scale, shear, etc.)?

\[A_2(A_1\mathbf{x} + \mathbf{b}_1) + \mathbf{b}_2 = (A_2A_1)\mathbf{x} + (A_2\mathbf{b}_1 + \mathbf{b}_2) \]

- Now we have to keep track of a matrix and a vector
- Moreover, we’ll see (later) that this encoding won’t work for other important cases, such as perspective transformations

But there is a better way…
Strange idea:
Maybe translations turn into **linear** transformations if we go into the 4th dimension...!
Homogeneous Coordinates

- Came from efforts to study perspective
- Introduced by Möbius as a natural way of assigning coordinates to lines
- Show up naturally in a surprising large number of places in computer graphics:
 - 3D transformations
 - perspective projection
 - quadric error simplification
 - premultiplied alpha
 - shadow mapping
 - projective texture mapping
 - discrete conformal geometry
 - hyperbolic geometry
 - clipping
 - directional lights
 - ...

Probably worth understanding!
Homogeneous Coordinates—Basic Idea

- Consider any 2D plane that does not pass through the origin 0 in 3D
- Every line through the origin in 3D corresponds to a point in the 2D plane
 - Just find the point p where the line L pierces the plane

Hence, any point \hat{p} on the line L can be used to represent the point p.

Q: What does this story remind you of?
Review: Perspective projection

- Hopefully it reminds you of our “pinhole camera”
- Objects along the same line project to the same point

If you have an image of a single dot, can’t know where it is!
Only which line it belongs to.
Homogeneous Coordinates (2D)

- More explicitly, consider a point \(\mathbf{p} = (x, y) \), and the plane \(z = 1 \) in 3D.

- Any three numbers \(\mathbf{\hat{p}} = (a, b, c) \) such that \(\left(\frac{a}{c}, \frac{b}{c} \right) = (x, y) \) are homogeneous coordinates for \(\mathbf{p} \).

 - E.g., \((x, y, 1) \)

 - In general: \((cx, cy, c) \) for \(c \neq 0 \)

- Hence, two points \(\mathbf{\hat{p}}, \mathbf{\hat{q}} \in \mathbb{R}^3 \setminus \{O\} \) describe the same point in 2D (and line in 3D) if \(\mathbf{\hat{p}} = \lambda \mathbf{\hat{q}} \) for some \(\lambda \neq 0 \)

Great... but how does this help us with transformations?
Translation in Homogeneous Coordinates

Let’s think about what happens to our homogeneous coordinates $\hat{\mathbf{p}}$ if we apply a translation to our 2D coordinates \mathbf{p}.

Q: What kind of transformation does this look like?
Translation in Homogeneous Coordinates

- But wait a minute—shear is a **linear** transformation!
- Can this be right? Let’s check in coordinates…

Suppose we translate a point \(p = (p_1, p_2) \) by a vector \(u = (u_1, u_2) \) to get \(p' = (p_1 + u_1, p_2 + u_2) \)

The homogeneous coordinates \(\hat{p} = (cp_1, cp_2, c) \) then become \(\hat{p}' = (cp_1 + cu_1, cp_2 + cu_2, c) \)

Notice that we’re shifting \(\hat{p} \) by an amount \(cu \) that’s proportional to the distance \(c \) along the third axis—a shear

Using homogeneous coordinates, we can represent an **affine** transformation in 2D as a **linear** transformation in 3D
Homogeneous Translation—Matrix Representation

- To write as a matrix, recall that a shear in the direction \(\mathbf{u} = (u_1, u_2) \) according to the distance along a direction \(\mathbf{v} \) is

\[
f_{\mathbf{u}, \mathbf{v}}(\mathbf{x}) = \mathbf{x} + \langle \mathbf{v}, \mathbf{x} \rangle \mathbf{u}
\]

- In matrix form:

\[
f_{\mathbf{u}, \mathbf{v}}(\mathbf{x}) = (I + \mathbf{u} \mathbf{v}^\top) \mathbf{x}
\]

- In our case, \(\mathbf{v} = (0, 0, 1) \) and so we get a matrix

\[
\begin{bmatrix}
1 & 0 & u_1 \\
0 & 1 & u_2 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
cp_1 \\
cp_2 \\
c
\end{bmatrix}
= \begin{bmatrix}
c(p_1 + u_1) \\
c(p_2 + u_2) \\
c
\end{bmatrix}
\xRightarrow{1/c}
\begin{bmatrix}
p_1 + u_1 \\
p_2 + u_2 \\
c
\end{bmatrix}
\]
Other 2D Transformations in Homogeneous Coordinates

Original shape in 2D can be viewed as many copies, uniformly scaled by x_3

2D scale \leftrightarrow scale x_1 and x_2; preserve x_3
(Q: what happens to 2D shape if you scale x_1, x_2, and x_3 uniformly?)

2D rotation \leftrightarrow rotate around x_3

2D translate \leftrightarrow shear

Now easy to compose all these transformations
3D Transformations in Homogeneous Coordinates

- Not much changes in three (or more) dimensions: just append one “homogeneous coordinate” to the first three.

- Matrix representations of 3D linear transformations just get an additional identity row/column; translation is again a shear.

\[
\begin{bmatrix}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & s & 0 \\
0 & 1 & t & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 & u \\
0 & 1 & 0 & v \\
0 & 0 & 1 & w \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]
Points vs. Vectors

- Homogeneous coordinates have another useful feature: distinguish between points and vectors.

- Consider for instance a triangle with:
 - vertices \(\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{R}^3 \)
 - normal vector \(\mathbf{n} \in \mathbb{R}^3 \)

- Suppose we transform the triangle by appending “1” to \(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{n} \) and multiplying by this matrix:

\[
\begin{bmatrix}
\cos \theta & 0 & \sin \theta & u \\
0 & 1 & 0 & v \\
-\sin \theta & 0 & \cos \theta & w \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

Normal is not orthogonal to triangle! (What went wrong?)
Points vs. Vectors (continued)

- Let’s think about what happens when we multiply the normal vector \(\mathbf{n} \) by our matrix:

\[
\begin{bmatrix}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{bmatrix}
\begin{bmatrix}
u \\
v \\
w
\end{bmatrix}
\]

- But when we rotate/translate a triangle, its normal should just rotate!*

- Solution? Just set homogeneous coordinate to zero!

- Translation now gets ignored; normal is orthogonal to triangle

*Recall that vectors just have direction and magnitude—they don’t have a “basepoint”!
Points vs. Vectors in Homogeneous Coordinates

- In general:
 - A point has a **nonzero** homogeneous coordinate \((c = 1)\)
 - A vector has a **zero** homogeneous coordinate \((c = 0)\)

- But wait... what division by \(c\) mean when it’s equal to zero?
- Well consider what happens as \(c \to 0\)...

\[
\begin{align*}
(x, y)/1 \quad &\quad (x, y)/0.5 \quad &\quad (x, y)/0.25 \quad &\quad (x, y)/0.001 \\
\end{align*}
\]

Can think of vectors as “points at infinity” (sometimes called “ideal points”)

(In practice: still need to check for divide by zero!)
Q: How can we perform perspective projection* using homogeneous coordinates?

- Remember from our pinhole camera model that the basic idea was to “divide by z”

- So, we can build a matrix that “copies” the z coordinate into the homogeneous coordinate

- Division by the homogeneous coordinate now gives us perspective projection onto the plane $z = 1$

$$(x, y, z) \mapsto (x/z, y/z)$$

$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix} = \begin{bmatrix}
x \\
y \\
z \\
z
\end{bmatrix}$

$$\implies \begin{bmatrix}
x/z \\
y/z \\
1
\end{bmatrix}$$

*Assuming a pinhole camera at $(0,0,0)$ looking down the z-axis
Screen Transformation

- One last transformation is needed in the rasterization pipeline: transform from viewing plane to pixel coordinates.

- E.g., suppose we want to draw all points that fall inside the square \([-1, 1] \times [-1, 1]\) on the \(z = 1\) plane, into a \(W \times H\) pixel image.

Q: What transformation(s) would you apply? (Careful: \(y\) is now down!)
Scene Graph

- For complex scenes (e.g., more than just a cube!), scene graph can help organize transformations

- Motivation: suppose we want to build a “cube creature” by transforming copies of the unit cube

- Difficult to specify each transformation directly

- Instead, build up transformations of “lower” parts from transformations of “upper” parts
 - E.g., first position the body
 - Then transform upper arm relative to the body
 - Then transform lower arm relative to upper arm
 - ...
Scene Graph (continued)

- Scene graph stores relative transformations in directed graph
- Each edge (+root) stores a linear transformation (e.g., a 4x4 matrix)
- Composition of transformations gets applied to nodes

- E.g., A_1A_0 gets applied to left upper leg; $A_2A_1A_0$ to left lower leg
- Keep transformations on a stack to reduce redundant multiplication
Scene Graph—Example

Often used to build up complex “rig”:

In general, scene graph also includes other models, lights, cameras, …
Instancing

- What if we want many copies of the same object in a scene?
- Rather than have many copies of the geometry, scene graph, etc., can just put a “pointer” node in our scene graph.
- Like any other node, can specify a different transformation on each incoming edge.

Deussen et al, “Realistic modeling and rendering of plant ecosystems”
Instancing—Example
Order matters when composing transformations!

scale by $1/2$, then translate by $(3,1)$

translate by $(3,1)$, then scale by $1/2$
How would you perform these transformations?

Remember: always more than one way to do it!
Common task: rotate about a point x

1. Translate by $-x$.
2. Rotate.
3. Translate by x.

Q: What happens if we just rotate without translating first?
Drawing a Cube Creature

- Let’s put this all together: starting with our 3D cube, we want to make a 2D, perspective-correct image of a “cube creature”

- First we use our scene graph to apply 3D transformations to several copies of our cube

- Then we apply a 3D transformation to position our camera

- Then a perspective projection

- Finally we convert to image coordinates (and rasterize)

- …Easy, right? :-)

Spatial Transformations—Summary

transformation defined by its invariants

basic linear transformations
- scaling
- rotation
- reflection
- shear

basic nonlinear transformations
- translation
- perspective projection

composite transformations
- compose basic transformations to get more interesting ones
- always reduces to a single 4x4 matrix (in homogeneous coordinates)
 - simple, unified representation, efficient implementation
- order of composition matters!
- many ways to decompose a given transformation (polar, SVD, ...)
- use scene graph to organize transformations
 - use instancing to eliminate redundancy

linear when represented via homogeneous coords
homogeneous coords also distinguish points & vectors
Next time: 3D Rotations