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Motivation: The Rendering Equation
▪ Recall the rendering equation, which models light “bouncing 

around the scene”:

How can we possibly evaluate this integral?



 CMU 15-462/662

Numerical Integration—Overview
▪ In graphics, many quantities we’re 

interested in are naturally expressed 
as integrals (total brightness, total 
area, …) 

▪ For very, very simple integrals, we can 
compute the solution analytically 

▪ For everything else, we have to 
compute a numerical approximation 

▪ Basic idea: 
- integral is “area under curve” 
- sample the function at many points 
- integral is approximated as 

weighted sum

f(x)

h ⇠ 1

n
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Rendering: what are we integrating?
▪ Recall this view of the world:

Want to “sum up”—i.e., integrate!—light from all directions 
(But let’s start a little simpler…)
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Review: integral as “area under curve”

x = a

x = b

x = a

x = b

Z b

a
f(x)dx

f(x)
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Or: average value times size of domain

x = a

x = b

x = a

x = b

Z b

a
f(x)dx

f(x)
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Review: fundamental theorem of calculus
Z b

a
f(x)dx = F (b)� F (a)

f(x) =
d

dx
F (x)

x� F (x)� F (a)

x� F (x)� F (a)

x� F (x)� F (a)� x = a

x� F (x)� F (a)

x� F (x)� F (a)



 CMU 15-462/662

Simple case: constant function 

f(x)

x = a

x = b

x = a

x = b

Z b

a
Cdx = (b� a)C

Z b

a
Cdx = (b� a)C

C
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Affine function:

f(x)

x = a

x = b

x = a

x = b

f(x) = cx+ d
Z b

a
f(x)dx =

1

2
(f(a) + f(b))(b� a)

f(a)� f(b)

f(a)� f(b)

1

2
(f(a) + f(b))

Need only one sample of the function (at just the right place…)
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More general polynomials?

x = a

x = b

x = a

x = b

f(x)
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Gauss Quadrature
▪ For any polynomial of degree 2n-1 or less, we can always 

obtain the exact integral by sampling at a special set of n 
points and taking a special weighted combination

n=2 n=4

n=3 n=5

n=1
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Piecewise affine function

f(x)

For piecewise functions, just sum integral of each piece:

x0 = a x1 � x2 � x3x1 � x2 � x3x1 � x2 � x3 x4 = b

Z b

a
f(x)dx =

1

2

n�1X

i=0

(xi+1 � xi)(f(xi) + f(xi+1))
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Key idea so far: 
To approximate an integral, we need 
(i) quadrature points, and 
(ii) weights for each point
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Arbitrary function f(x)?

f(x)

x0 = a x1 � x2 � x3x1 � x2 � x3x1 � x2 � x3 x4 = b



 CMU 15-462/662

Trapezoid rule

f(x)

Approximate integral of f(x) by pretending function is piecewise affine

x0 = a x1 � x2 � x3x1 � x2 � x3x1 � x2 � x3 x4 = b

h =
b� a

n� 1
Z b

a
f(x)dx = h

 
n�1X

i=1

f(xi) +
1

2
(f(x0) + f(xn))

!
For equal length segments:
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Trapezoid rule

f(x)

h ⇠ 1

n

Consider cost and accuracy of estimate as                           (or                 )  n ! 1 h ! 0

Work:
Error can be shown to be: O(h2) = O(

1

n2
)

O(n)

(for f(x) with continuous second derivative)
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What about a 2D function?

How should we approximate the area underneath?
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Integration in 2D
Consider integrating                   using the trapezoidal rule 
(apply rule twice: when integrating in x and in y)  

f(x, y)

First application of rule

Second application

Errors add, so error still: 

Z by

ay

Z bx

ax

f(x, y)dxdy =

Z by

ay

 
O(h2) +

nX

i=0

Aif(xi, y)

!
dy

= O(h2) +
nX

i=0

Ai

Z by

ay

f(xi, y)dy

= O(h2) +
nX

i=0

Ai

0

@O(h2) +
nX

j=0

Ajf(xi, yj)

1

A

= O(h2) +
nX

i=0

nX

j=0

AiAjf(xi, yj)

O(h2)

But work is now: O(n2)

Must perform much more work in 2D to get 
same error bound on integral!

(n x n set of measurements) In K-D, let N = nk

Error goes as:  O
✓

1

N2/k

◆



 CMU 15-462/662

…

Curse of Dimensionality
▪ How much does it cost to apply the trapezoid 

rule as we go up in dimension? 
- 1D: O(n) 
- 2D: O(n2) 
- … 
- kD: O(nk) 

▪ For many problems in graphics (like 
rendering), k is very, very big (e.g., tens or 
hundreds or thousands) 

▪ Applying trapezoid rule does not scale! 

▪ Need a fundamentally different approach…
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Monte Carlo Integration

Credit: many of these slides were created by Matt Pharr and Pat Hanrahan 
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Monte Carlo Integration

▪ Estimate value of integral using random sampling of function 

- Value of estimate depends on random samples used 

- But algorithm gives the correct value of integral “on average” 

▪ Only requires function to be evaluated at random points on its domain 

- Applicable to functions with discontinuities, functions that are 
impossible to integrate directly 

▪ Error of estimate is independent of the dimensionality of the integrand 

- Depends on the number of random samples used:

So far we’ve discussed techniques that use 
a fixed set of sample points (e.g., uniformly 
spaced, or obtained by finding roots of 
polynomial (Gaussian quadrature))
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Review: random variables

X random variable. Represents a distribution of 
potential values

probability density function (PDF). Describes relative 
probability of a random process choosing value 

X ⇠ p(x)

p(1) = p(2) = p(3) = p(4) = p(5) = p(6)

X takes on values 1,2,3,4,5,6

X ⇠ p(x)

Uniform PDF: all values over a domain are equally likely 

e.g., for an unbiased die
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Think:        is the probability that a random measurement of        will yield the value  

Discrete probability distributions

xi

xi

pi pi

pi � 0

pi =
1

6

n discrete values

With probability

Requirements of a PDF:

Six-sided die example:

nX

i=1

pi = 1

pi X xi

X takes on the value        with probabilityxi pi
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Cumulative distribution function (CDF)

0  Pi  1

Pn = 1 Pj

0

1
Cumulative PDF:

where:

xi

pi

Pj =
jX

i=1

pi

(For a discrete probability distribution)
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How do we generate samples of a discrete 
random variable (with a known PDF?) 
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Sampling from discrete probability 
distributions

⇠

Pi�1 < ⇠  Pi

To randomly select an event, 
select       ifxi

2 [0, 1)Uniform random variable

x2

Pj

0

1
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Continuous probability distributions

PDF p(x)

p(x) � 0

P (x)

P (x) =

Z x

0
p(x) dx

P (x) = Pr(X < x)

P (1) = 1

= P (b)� P (a)

CDF

Pr(a  X  b) =

Z b

a
p(x) dx

Uniform distribution 
(for random variable        defined on [0,1] domain)

1

0 1

0 1

X
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Sampling continuous random variables 
using the inversion method

Cumulative probability distribution function
P (x) = Pr(X < x)

Construction of samples: 
Solve for x = P�1(⇠)

0

1

⇠

x

Must know the formula for: 
1. The integral of 
2. The inverse function

p(x)
1
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Example—Sampling Quadratic Distribution
▪ As a toy example, consider the simple 

probability distribution p(x) := 3(1-x)2 
over the interval [0,1] 

▪ How do we pick random samples 
distributed according to p(x)? 

▪ First, integrate probability distribution 
p(x) to get cumulative distribution P(x) 

▪ Invert P(x) by solving                        for x 

▪ Finally, plug uniformly distributed 
random values     in [0,1] into this 
expression

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

x

x
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How do we uniformly sample the unit circle?

I.e., choose any point P=(px, py) in circle with equal probability) 
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Uniformly sampling unit circle: first try
▪      = uniform random angle between 0 and 

▪      = uniform random radius between 0 and 1 

▪ Return point: 

2⇡

(r cos ✓, r sin ✓)

This algorithm does not produce the desired uniform sampling of 
the area of a circle. Why?

(r cos ✓, r sin ✓)
(r cos ✓, r sin ✓)
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Because sampling is not uniform in area!

✓ = 2⇡⇠1 r = ⇠2

rdrd✓

Points farther from center of circle are less likely to be chosen

So how should we pick samples?  Well, think about 
how we integrate over a disk in polar coordinates…
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Sampling a circle (via inversion in 2D)

A =

Z 2⇡

0

Z 1

0
r dr d✓ =

Z 1

0
r dr

Z 2⇡

0
d✓ =

✓
r2

2

◆ ���
1

0
✓
���
2⇡

0
= ⇡

p(r, ✓) dr d✓ =
1

⇡
r dr d✓ ! p(r, ✓) =

r

⇡

p(r) = 2r

P (r) = r2 r =
p

⇠2

rdrd✓
p(r, ✓) = p(r)p(✓)

p(✓) =
1

2⇡

P (✓) =
1

2⇡
✓ ✓ = 2⇡⇠1

independent r, ✓

so that we integrate to 
1 instead of area 
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Uniform area sampling of a circle
WRONG 

probability is uniform;  
samples are not!

RIGHT 
probability is nonuniform; 

samples are uniform

✓ = 2⇡⇠1

r =
p

⇠2

✓ = 2⇡⇠1

r = ⇠2
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Uniform sampling via rejection sampling

Efficiency of technique: area of circle / area of square

Completely different idea: pick uniform samples in square (easy) 
Then toss out any samples not in square (easy)
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Efficiency of Rejection Sampling
▪ If the region we care about covers only a very small fraction of 

the region we’re sampling, rejection is probably a bad idea:

Smarter in this case to “warp” our 
random variables to follow the spiral.
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So how do we use numerical integration to 
do rendering?
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Monte Carlo Rendering
▪ Goal: render a photorealistic image 
▪ Put together many of the ideas we’ve studied: 

- color 
- materials 
- radiometry 
- numerical integration 
- geometric queries 
- spatial data structures 
- rendering equation 

▪ Combine into final Monte Carlo ray tracing algorithm 
▪ Alternative to rasterization, lets us generate much more 

realistic images (usually at much greater cost…)
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Photorealistic Rendering—Basic Goal
What are the INPUTS and OUTPUTS?

camera lightsgeometry materials

image

Ray Tracer
(“scene”)
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Ray Tracing vs. Rasterization—Order
▪ Both rasterization & ray tracing will generate an image 
▪ What’s the difference? 
▪ One basic difference: order in which we process samples

RASTERIZATION RAY TRACING

for each primitive:
   for each sample:
      determine coverage
      evaluate color

for each sample:
   for each primitive:
      determine coverage
      evaluate color

(Use Z-buffer to determine 
which primitive is visible)

(Use spatial data structure like BVH to 
determine which primitive is visible)
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Ray Tracing vs. Rasterization—Illumination
▪ More major difference: sophistication of illumination model 

- [LOCAL] rasterizer processes one primitive at a time; hard* to 
determine things like “A is in the shadow of B” 

- [GLOBAL] ray tracer processes on ray at a time; ray knows about 
everything it intersects, easy to talk about shadows & other “global” 
illumination effects

RASTERIZATION RAY TRACING

*But not impossible to do some things with rasterization (e.g., shadow maps)… just results in more complexity

Q: What illumination effects are missing from the image on the left?
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Monte Carlo Ray Tracing
▪ To develop a full-blown photorealistic ray tracer, will need to 

apply Monte Carlo integration to the rendering equation 
▪ To determine color of each pixel, integrate incoming light 
▪ What function are we integrating? 

- illumination along different paths of light 
▪ What does a “sample” mean in this context? 

- each path we trace is a sample
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Monte Carlo Integration
▪ Started looking at Monte Carlo integration in our lecture on numerical 

integration 

▪ Basic idea: take average of random samples 

▪ Will need to flesh this idea out with some key concepts: 

- EXPECTED VALUE — what value do we get on average? 

- VARIANCE — what’s the expected deviation from the average? 

- IMPORTANCE SAMPLING — how do we (correctly) take more samples 
in more important regions?
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Expected Value

▪ E.g., consider a fair coin where heads = 1, tails = 0 

▪ Equal probability of heads & is tails (1/2 for both) 

▪ Expected value is then (1/2)•1 + (1/2)•0 = 1/2

Properties of expectation:

E

"
X

i

Yi

#
=
X

i

E[Yi]

E[aY ] =aE[Y ]

(Can you show these are true?)

number of possible outcomes

probability of ith outcome
value of ith outcome

expected value of 
random variable Y

Intuition: what value does a random variable take, on average?
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Variance
Intuition: how far are our samples from the average, on average?

x1

p(xi)

x2 x3 x4 x5 x6 x7

p(xi)

x1 x2 x3 x4 x5 x6 x7

Q: Which of these has higher variance?

V [aY ] = a2 V [Y ]

Properties of variance:

V

"
NX

i=1

Yi

#
=

NX

i=1

V [Yi]

(Can you show these are true?)

Definition
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Law of Large Numbers

V

"
1

N

NX

i=1

Yi

#
=

1

N2

NX

i=1

V [Yi] =
1

N2
N V [Y ] =

1

N
V [Y ]

▪ Important fact: for any random variable, the average value of 
N trials approaches the expected value as we increase N 

▪ Decrease in variance is always linear in N:

Consider a coconut…
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Q: Why is the law of large numbers 
important for Monte Carlo ray tracing?

A: No matter how hard the integrals are 
(crazy lighting, geometry, materials, 
etc.), can always* get the right image 
by taking more samples.

*As long as we make sure to sample all possible kinds of light paths…
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Biasing
▪ So far, we’ve picked samples uniformly from 

the domain (every point is equally likely) 
▪ Suppose we pick samples from some other 

distribution (more samples in one place than 
another) 

▪ Q: Can we still use samples f(Xi) to get a 
(correct) estimate of our integral? 

▪ A: Sure!  Just weight contribution of each 
sample by how likely we were to pick it 

▪ Q: Are we correct to divide by p?  Or… should 
we multiply instead? 

▪ A: Think about a simple example where we 
sample RED region 8x as often as BLUE region 

▪ average color over square should be purple 

▪ if we multiply, average will be TOO RED 

▪ if we divide, average will be JUST RIGHT

(uniform)
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Next Time: Use biasing for Importance Sampling, along 
with other aspects of effective Monte Carlo Raytracing!


