
Computer Graphics
CMU 15-462/15-662

Numerical Integration

 CMU 15-462/662

Motivation: The Rendering Equation
▪ Recall the rendering equation, which models light “bouncing

around the scene”:

How can we possibly evaluate this integral?

 CMU 15-462/662

Numerical Integration—Overview
▪ In graphics, many quantities we’re

interested in are naturally expressed
as integrals (total brightness, total
area, …)

▪ For very, very simple integrals, we can
compute the solution analytically

▪ For everything else, we have to
compute a numerical approximation

▪ Basic idea:
- integral is “area under curve”
- sample the function at many points
- integral is approximated as

weighted sum

f(x)

h ⇠ 1

n

 CMU 15-462/662

Rendering: what are we integrating?
▪ Recall this view of the world:

Want to “sum up”—i.e., integrate!—light from all directions
(But let’s start a little simpler…)

 CMU 15-462/662

Review: integral as “area under curve”

x = a

x = b

x = a

x = b

Z b

a
f(x)dx

f(x)

 CMU 15-462/662

Or: average value times size of domain

x = a

x = b

x = a

x = b

Z b

a
f(x)dx

f(x)

 CMU 15-462/662

Review: fundamental theorem of calculus
Z b

a
f(x)dx = F (b)� F (a)

f(x) =
d

dx
F (x)

x� F (x)� F (a)

x� F (x)� F (a)

x� F (x)� F (a)� x = a

x� F (x)� F (a)

x� F (x)� F (a)

 CMU 15-462/662

Simple case: constant function

f(x)

x = a

x = b

x = a

x = b

Z b

a
Cdx = (b� a)C

Z b

a
Cdx = (b� a)C

C

 CMU 15-462/662

Affine function:

f(x)

x = a

x = b

x = a

x = b

f(x) = cx+ d
Z b

a
f(x)dx =

1

2
(f(a) + f(b))(b� a)

f(a)� f(b)

f(a)� f(b)

1

2
(f(a) + f(b))

Need only one sample of the function (at just the right place…)

 CMU 15-462/662

More general polynomials?

x = a

x = b

x = a

x = b

f(x)

 CMU 15-462/662

Gauss Quadrature
▪ For any polynomial of degree 2n-1 or less, we can always

obtain the exact integral by sampling at a special set of n
points and taking a special weighted combination

n=2 n=4

n=3 n=5

n=1

 CMU 15-462/662

Piecewise affine function

f(x)

For piecewise functions, just sum integral of each piece:

x0 = a x1 � x2 � x3x1 � x2 � x3x1 � x2 � x3 x4 = b

Z b

a
f(x)dx =

1

2

n�1X

i=0

(xi+1 � xi)(f(xi) + f(xi+1))

 CMU 15-462/662

Key idea so far:
To approximate an integral, we need
(i) quadrature points, and
(ii) weights for each point

 CMU 15-462/662

Arbitrary function f(x)?

f(x)

x0 = a x1 � x2 � x3x1 � x2 � x3x1 � x2 � x3 x4 = b

 CMU 15-462/662

Trapezoid rule

f(x)

Approximate integral of f(x) by pretending function is piecewise affine

x0 = a x1 � x2 � x3x1 � x2 � x3x1 � x2 � x3 x4 = b

h =
b� a

n� 1
Z b

a
f(x)dx = h

n�1X

i=1

f(xi) +
1

2
(f(x0) + f(xn))

!
For equal length segments:

 CMU 15-462/662

Trapezoid rule

f(x)

h ⇠ 1

n

Consider cost and accuracy of estimate as (or) n ! 1 h ! 0

Work:
Error can be shown to be: O(h2) = O(

1

n2
)

O(n)

(for f(x) with continuous second derivative)

 CMU 15-462/662

What about a 2D function?

How should we approximate the area underneath?

 CMU 15-462/662

Integration in 2D
Consider integrating using the trapezoidal rule
(apply rule twice: when integrating in x and in y)

f(x, y)

First application of rule

Second application

Errors add, so error still:

Z by

ay

Z bx

ax

f(x, y)dxdy =

Z by

ay

O(h2) +

nX

i=0

Aif(xi, y)

!
dy

= O(h2) +
nX

i=0

Ai

Z by

ay

f(xi, y)dy

= O(h2) +
nX

i=0

Ai

0

@O(h2) +
nX

j=0

Ajf(xi, yj)

1

A

= O(h2) +
nX

i=0

nX

j=0

AiAjf(xi, yj)

O(h2)

But work is now: O(n2)

Must perform much more work in 2D to get
same error bound on integral!

(n x n set of measurements) In K-D, let N = nk

Error goes as: O
✓

1

N2/k

◆

 CMU 15-462/662

…

Curse of Dimensionality
▪ How much does it cost to apply the trapezoid

rule as we go up in dimension?
- 1D: O(n)
- 2D: O(n2)
- …
- kD: O(nk)

▪ For many problems in graphics (like
rendering), k is very, very big (e.g., tens or
hundreds or thousands)

▪ Applying trapezoid rule does not scale!

▪ Need a fundamentally different approach…

 CMU 15-462/662

Monte Carlo Integration

Credit: many of these slides were created by Matt Pharr and Pat Hanrahan

 CMU 15-462/662

Monte Carlo Integration

▪ Estimate value of integral using random sampling of function

- Value of estimate depends on random samples used

- But algorithm gives the correct value of integral “on average”

▪ Only requires function to be evaluated at random points on its domain

- Applicable to functions with discontinuities, functions that are
impossible to integrate directly

▪ Error of estimate is independent of the dimensionality of the integrand

- Depends on the number of random samples used:

So far we’ve discussed techniques that use
a fixed set of sample points (e.g., uniformly
spaced, or obtained by finding roots of
polynomial (Gaussian quadrature))

CMU 15-462/662

Review: random variables

X random variable. Represents a distribution of
potential values

probability density function (PDF). Describes relative
probability of a random process choosing value

X ⇠ p(x)

p(1) = p(2) = p(3) = p(4) = p(5) = p(6)

X takes on values 1,2,3,4,5,6

X ⇠ p(x)

Uniform PDF: all values over a domain are equally likely

e.g., for an unbiased die

CMU 15-462/662

Think: is the probability that a random measurement of will yield the value

Discrete probability distributions

xi

xi

pi pi

pi � 0

pi =
1

6

n discrete values

With probability

Requirements of a PDF:

Six-sided die example:

nX

i=1

pi = 1

pi X xi

X takes on the value with probabilityxi pi

CMU 15-462/662

Cumulative distribution function (CDF)

0 Pi 1

Pn = 1 Pj

0

1
Cumulative PDF:

where:

xi

pi

Pj =
jX

i=1

pi

(For a discrete probability distribution)

CMU 15-462/662

How do we generate samples of a discrete
random variable (with a known PDF?)

CMU 15-462/662

Sampling from discrete probability
distributions

⇠

Pi�1 < ⇠ Pi

To randomly select an event,
select ifxi

2 [0, 1)Uniform random variable

x2

Pj

0

1

CMU 15-462/662

Continuous probability distributions

PDF p(x)

p(x) � 0

P (x)

P (x) =

Z x

0
p(x) dx

P (x) = Pr(X < x)

P (1) = 1

= P (b)� P (a)

CDF

Pr(a X b) =

Z b

a
p(x) dx

Uniform distribution
(for random variable defined on [0,1] domain)

1

0 1

0 1

X

CMU 15-462/662

Sampling continuous random variables
using the inversion method

Cumulative probability distribution function
P (x) = Pr(X < x)

Construction of samples:
Solve for x = P�1(⇠)

0

1

⇠

x

Must know the formula for:
1. The integral of
2. The inverse function

p(x)
1

 CMU 15-462/662

Example—Sampling Quadratic Distribution
▪ As a toy example, consider the simple

probability distribution p(x) := 3(1-x)2
over the interval [0,1]

▪ How do we pick random samples
distributed according to p(x)?

▪ First, integrate probability distribution
p(x) to get cumulative distribution P(x)

▪ Invert P(x) by solving for x

▪ Finally, plug uniformly distributed
random values in [0,1] into this
expression

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.2 0.4 0.6 0.8 1

x

x

CMU 15-462/662

How do we uniformly sample the unit circle?

I.e., choose any point P=(px, py) in circle with equal probability)

CMU 15-462/662

Uniformly sampling unit circle: first try
▪ = uniform random angle between 0 and

▪ = uniform random radius between 0 and 1

▪ Return point:

2⇡

(r cos ✓, r sin ✓)

This algorithm does not produce the desired uniform sampling of
the area of a circle. Why?

(r cos ✓, r sin ✓)
(r cos ✓, r sin ✓)

CMU 15-462/662

Because sampling is not uniform in area!

✓ = 2⇡⇠1 r = ⇠2

rdrd✓

Points farther from center of circle are less likely to be chosen

So how should we pick samples? Well, think about
how we integrate over a disk in polar coordinates…

CMU 15-462/662

Sampling a circle (via inversion in 2D)

A =

Z 2⇡

0

Z 1

0
r dr d✓ =

Z 1

0
r dr

Z 2⇡

0
d✓ =

✓
r2

2

◆ ���
1

0
✓
���
2⇡

0
= ⇡

p(r, ✓) dr d✓ =
1

⇡
r dr d✓ ! p(r, ✓) =

r

⇡

p(r) = 2r

P (r) = r2 r =
p

⇠2

rdrd✓
p(r, ✓) = p(r)p(✓)

p(✓) =
1

2⇡

P (✓) =
1

2⇡
✓ ✓ = 2⇡⇠1

independent r, ✓

so that we integrate to
1 instead of area

CMU 15-462/662

Uniform area sampling of a circle
WRONG

probability is uniform;
samples are not!

RIGHT
probability is nonuniform;

samples are uniform

✓ = 2⇡⇠1

r =
p

⇠2

✓ = 2⇡⇠1

r = ⇠2

CMU 15-462/662

Uniform sampling via rejection sampling

Efficiency of technique: area of circle / area of square

Completely different idea: pick uniform samples in square (easy)
Then toss out any samples not in square (easy)

 CMU 15-462/662

Efficiency of Rejection Sampling
▪ If the region we care about covers only a very small fraction of

the region we’re sampling, rejection is probably a bad idea:

Smarter in this case to “warp” our
random variables to follow the spiral.

CMU 15-462/662

So how do we use numerical integration to
do rendering?

 CMU 15-462/662

Monte Carlo Rendering
▪ Goal: render a photorealistic image
▪ Put together many of the ideas we’ve studied:

- color
- materials
- radiometry
- numerical integration
- geometric queries
- spatial data structures
- rendering equation

▪ Combine into final Monte Carlo ray tracing algorithm
▪ Alternative to rasterization, lets us generate much more

realistic images (usually at much greater cost…)

 CMU 15-462/662

Photorealistic Rendering—Basic Goal
What are the INPUTS and OUTPUTS?

camera lightsgeometry materials

image

Ray Tracer
(“scene”)

 CMU 15-462/662

Ray Tracing vs. Rasterization—Order
▪ Both rasterization & ray tracing will generate an image
▪ What’s the difference?
▪ One basic difference: order in which we process samples

RASTERIZATION RAY TRACING

for each primitive:
 for each sample:
 determine coverage
 evaluate color

for each sample:
 for each primitive:
 determine coverage
 evaluate color

(Use Z-buffer to determine
which primitive is visible)

(Use spatial data structure like BVH to
determine which primitive is visible)

 CMU 15-462/662

Ray Tracing vs. Rasterization—Illumination
▪ More major difference: sophistication of illumination model

- [LOCAL] rasterizer processes one primitive at a time; hard* to
determine things like “A is in the shadow of B”

- [GLOBAL] ray tracer processes on ray at a time; ray knows about
everything it intersects, easy to talk about shadows & other “global”
illumination effects

RASTERIZATION RAY TRACING

*But not impossible to do some things with rasterization (e.g., shadow maps)… just results in more complexity

Q: What illumination effects are missing from the image on the left?

 CMU 15-462/662

Monte Carlo Ray Tracing
▪ To develop a full-blown photorealistic ray tracer, will need to

apply Monte Carlo integration to the rendering equation
▪ To determine color of each pixel, integrate incoming light
▪ What function are we integrating?

- illumination along different paths of light
▪ What does a “sample” mean in this context?

- each path we trace is a sample

 CMU 15-462/662

Monte Carlo Integration
▪ Started looking at Monte Carlo integration in our lecture on numerical

integration

▪ Basic idea: take average of random samples

▪ Will need to flesh this idea out with some key concepts:

- EXPECTED VALUE — what value do we get on average?

- VARIANCE — what’s the expected deviation from the average?

- IMPORTANCE SAMPLING — how do we (correctly) take more samples
in more important regions?

 CMU 15-462/662

Expected Value

▪ E.g., consider a fair coin where heads = 1, tails = 0

▪ Equal probability of heads & is tails (1/2 for both)

▪ Expected value is then (1/2)•1 + (1/2)•0 = 1/2

Properties of expectation:

E

"
X

i

Yi

#
=
X

i

E[Yi]

E[aY] =aE[Y]

(Can you show these are true?)

number of possible outcomes

probability of ith outcome
value of ith outcome

expected value of
random variable Y

Intuition: what value does a random variable take, on average?

CMU 15-462/662

Variance
Intuition: how far are our samples from the average, on average?

x1

p(xi)

x2 x3 x4 x5 x6 x7

p(xi)

x1 x2 x3 x4 x5 x6 x7

Q: Which of these has higher variance?

V [aY] = a2 V [Y]

Properties of variance:

V

"
NX

i=1

Yi

#
=

NX

i=1

V [Yi]

(Can you show these are true?)

Definition

CMU 15-462/662

Law of Large Numbers

V

"
1

N

NX

i=1

Yi

#
=

1

N2

NX

i=1

V [Yi] =
1

N2
N V [Y] =

1

N
V [Y]

▪ Important fact: for any random variable, the average value of
N trials approaches the expected value as we increase N

▪ Decrease in variance is always linear in N:

Consider a coconut…

 CMU 15-462/662

Q: Why is the law of large numbers
important for Monte Carlo ray tracing?

A: No matter how hard the integrals are
(crazy lighting, geometry, materials,
etc.), can always* get the right image
by taking more samples.

*As long as we make sure to sample all possible kinds of light paths…

CMU 15-462/662

Biasing
▪ So far, we’ve picked samples uniformly from

the domain (every point is equally likely)
▪ Suppose we pick samples from some other

distribution (more samples in one place than
another)

▪ Q: Can we still use samples f(Xi) to get a
(correct) estimate of our integral?

▪ A: Sure! Just weight contribution of each
sample by how likely we were to pick it

▪ Q: Are we correct to divide by p? Or… should
we multiply instead?

▪ A: Think about a simple example where we
sample RED region 8x as often as BLUE region

▪ average color over square should be purple

▪ if we multiply, average will be TOO RED

▪ if we divide, average will be JUST RIGHT

(uniform)

 CMU 15-462/662

Next Time: Use biasing for Importance Sampling, along
with other aspects of effective Monte Carlo Raytracing!

