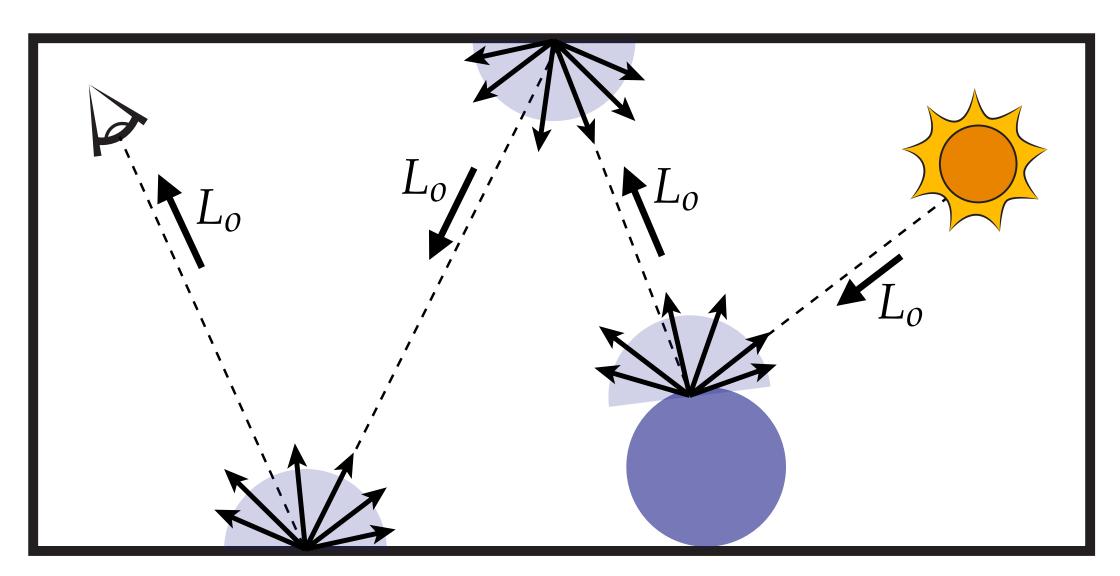
Numerical Integration

Computer Graphics CMU 15-462/15-662

Motivation: The Rendering Equation

Recall the rendering equation, which models light "bouncing around the scene":



$$L_{o}(\mathbf{p},\omega_{o}) = L_{e}(\mathbf{p},\omega_{o}) + \int_{\mathcal{H}^{2}} f_{r}(\mathbf{p},\omega_{i} \to \omega_{o})$$

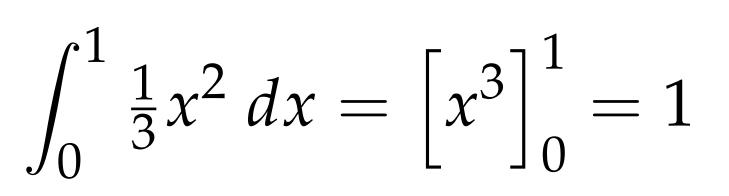
How can we possibly evaluate this integral?

quation odels light "bouncing

$L_i(\mathbf{p},\omega_i)\cos\theta\,d\omega_i$

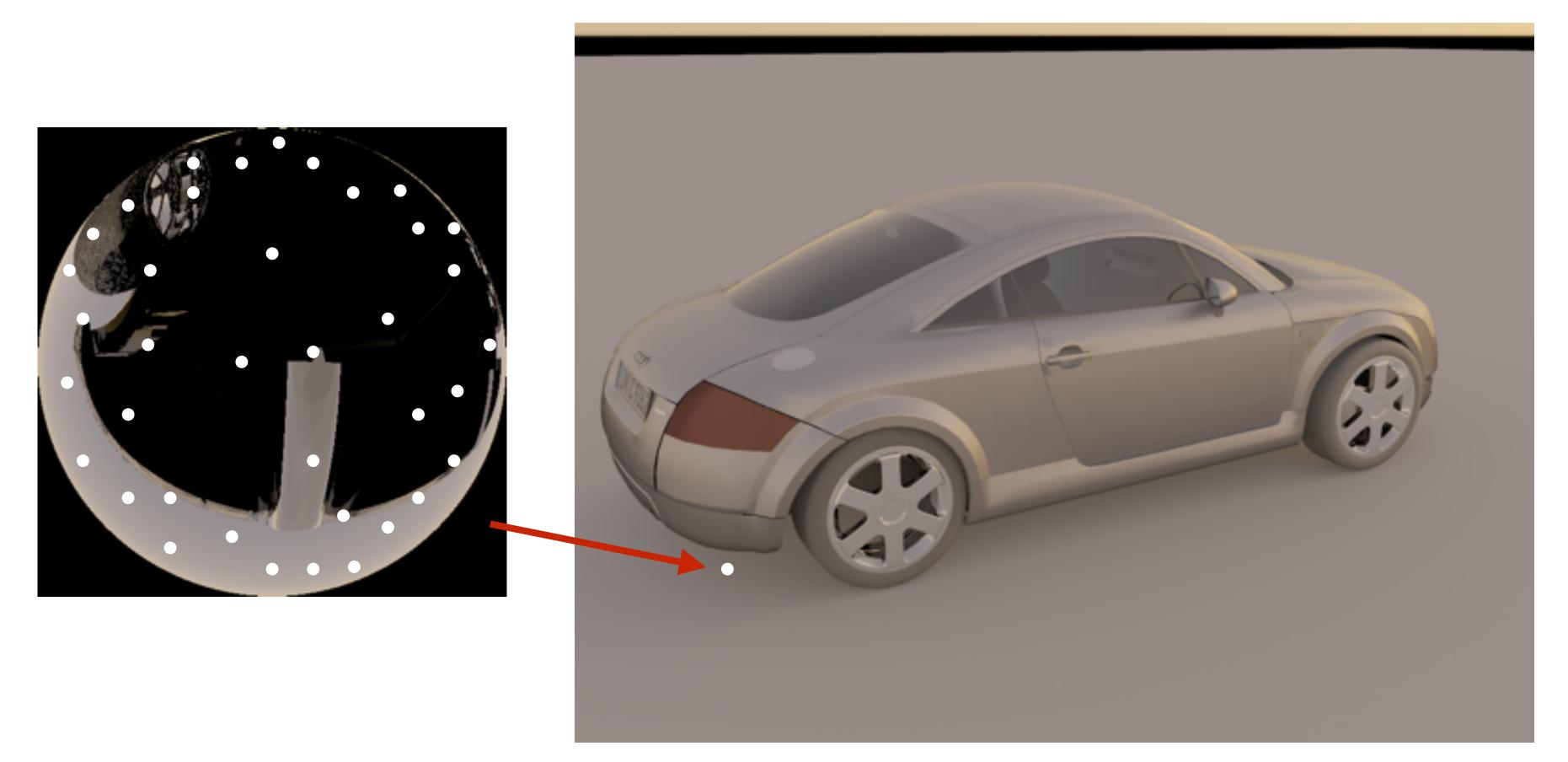
Numerical Integration—Overview

- In graphics, many quantities we're interested in are naturally expressed as integrals (total brightness, total area, ...)
- For very, very simple integrals, we can compute the solution analytically
- For everything else, we have to compute a numerical approximation
- Basic idea:
 - integral is "area under curve"
 - sample the function at many points
 - integral is approximated as weighted sum



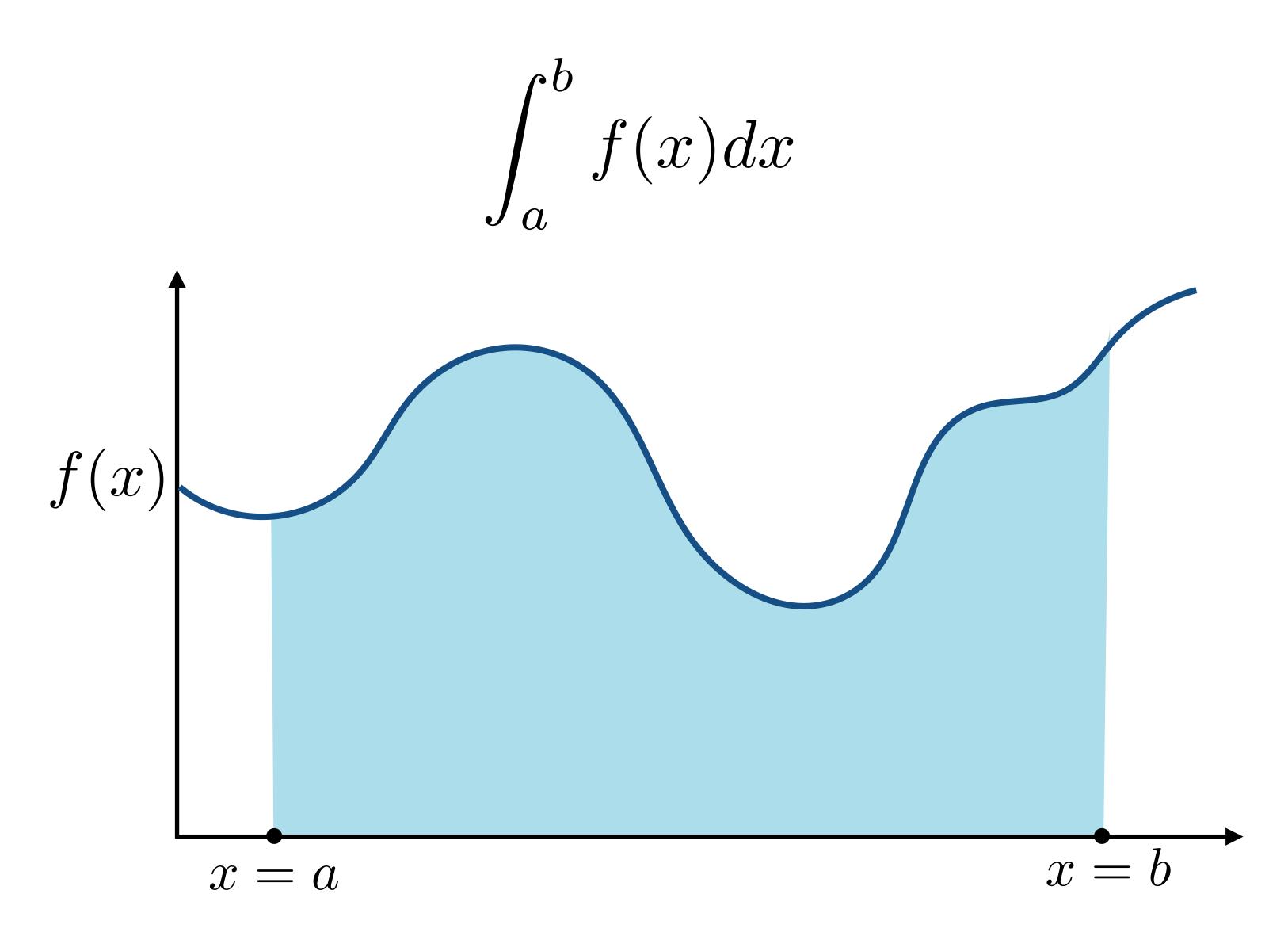


Rendering: what are we integrating? Recall this view of the world:

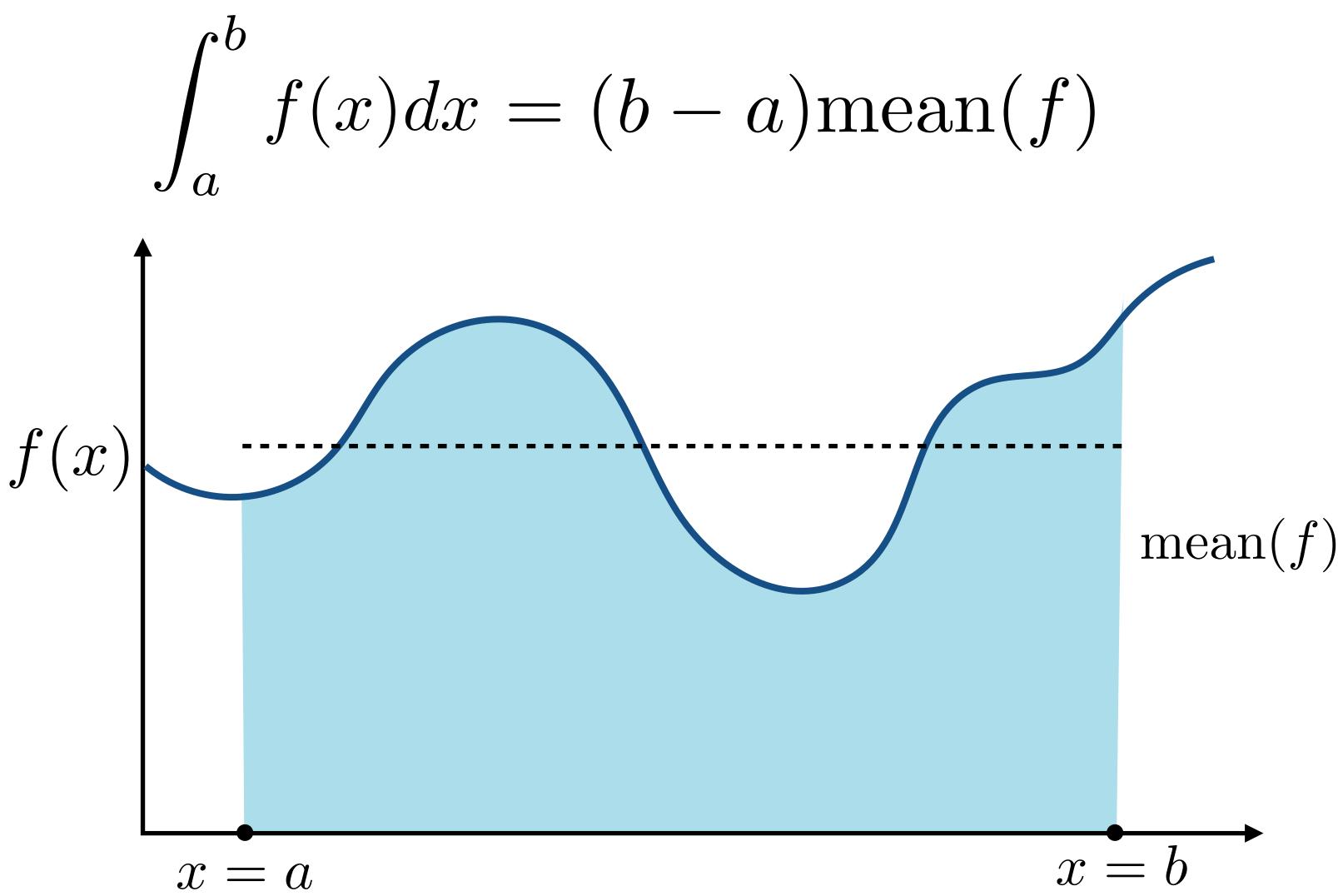


Want to "sum up"—i.e., integrate!—light from all directions (But let's start a little simpler...)

Review: integral as "area under curve"



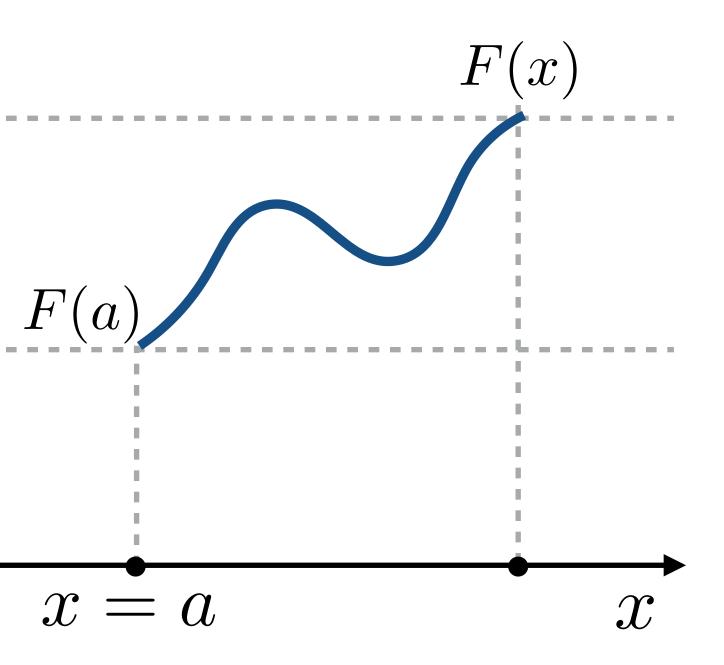
Or: average value times size of domain



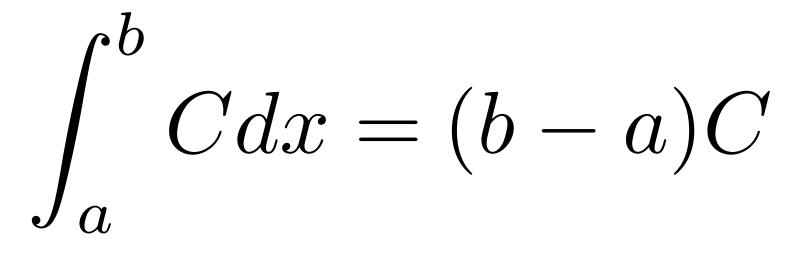
Review: fundamental theorem of calculus

 $\int_{a}^{b} f(x)dx = F(b) - F(a)$ $f(x) = \frac{d}{dx}F(x)$

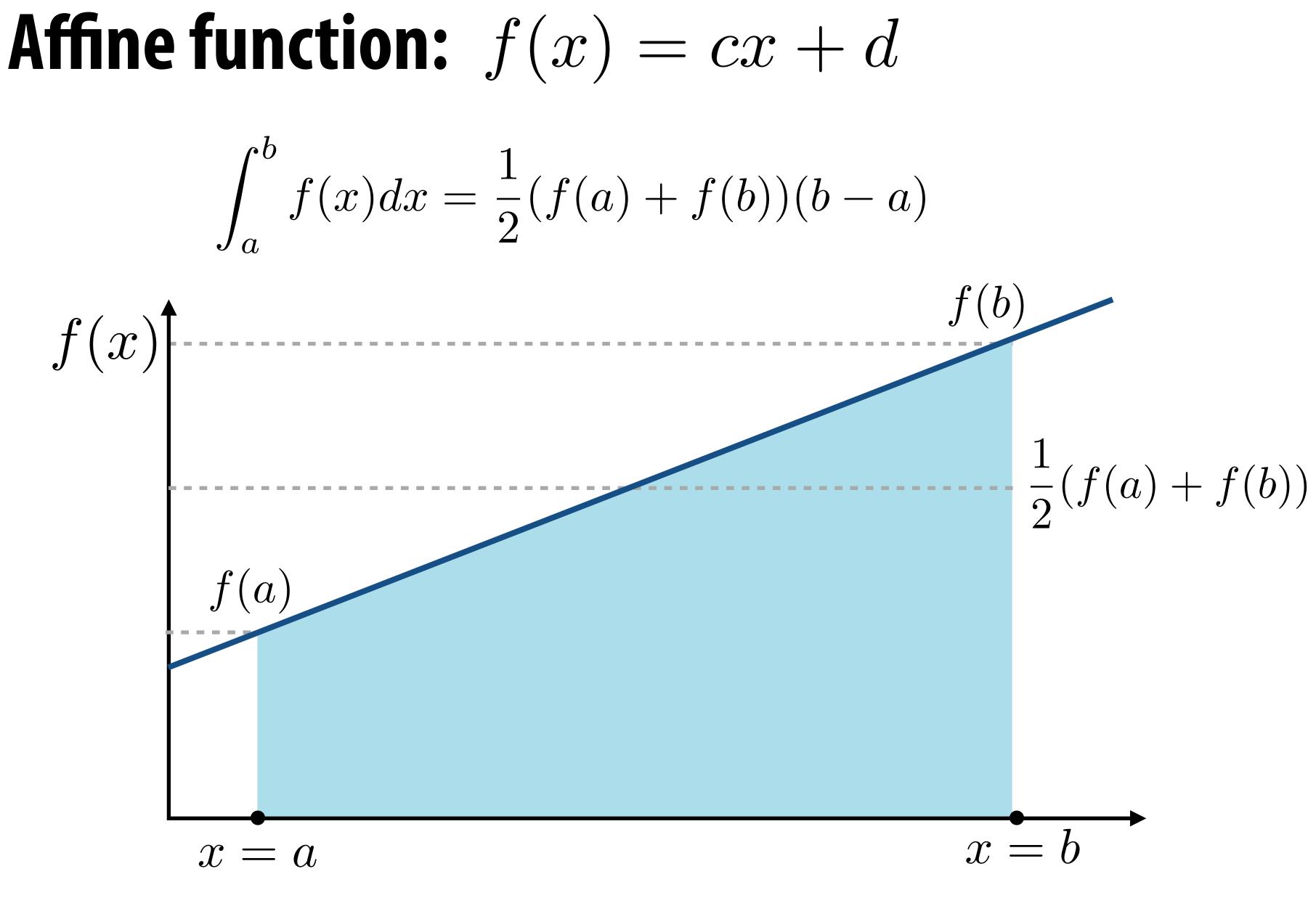
F(x)



Simple case: constant function

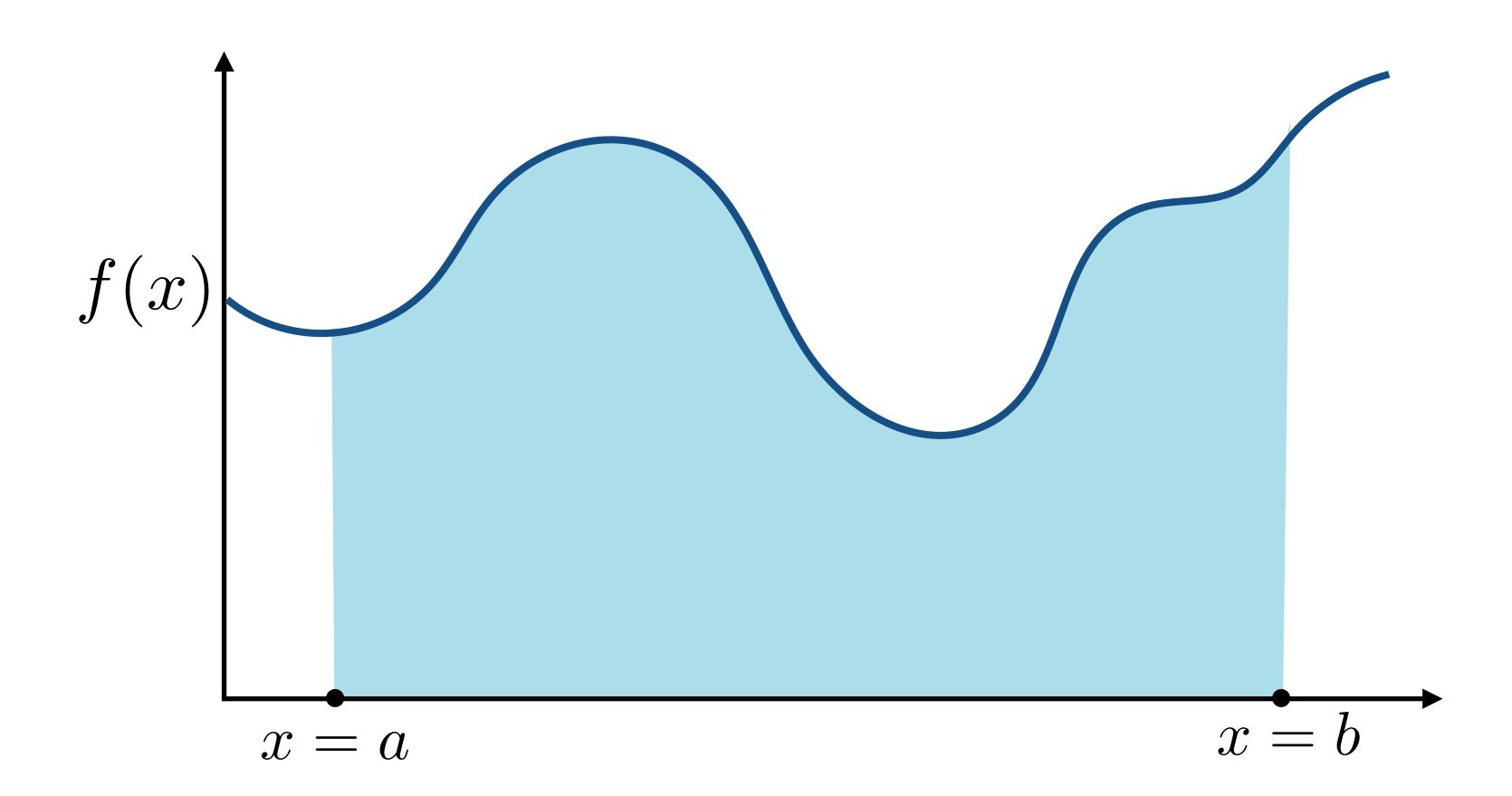






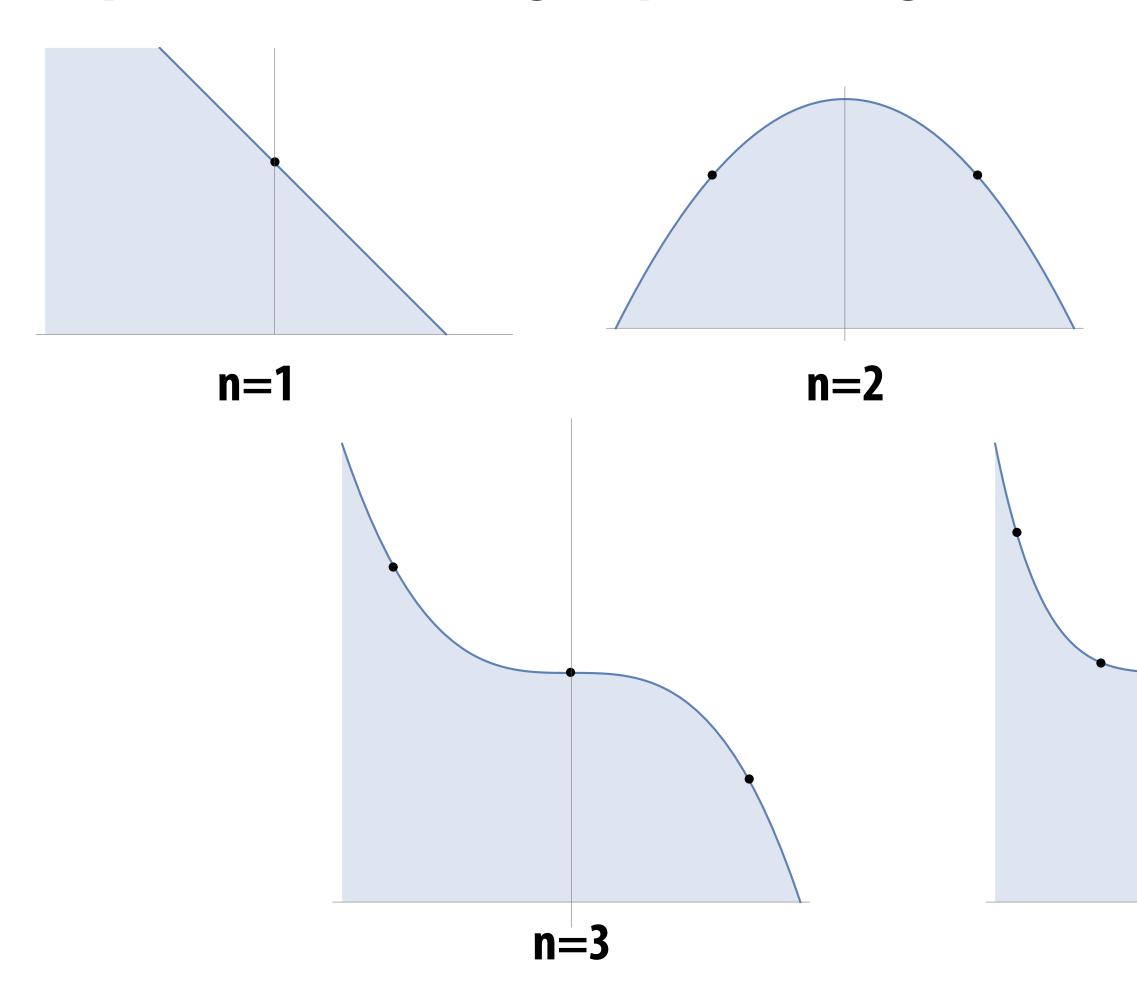
Need only one sample of the function (at just the right place...)

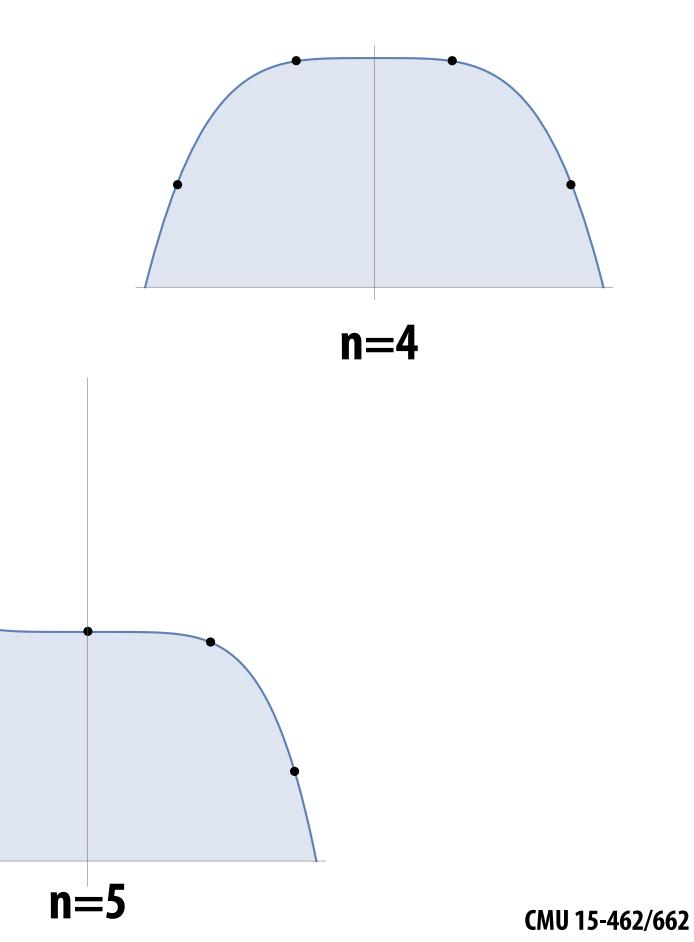
More general polynomials?



Gauss Quadrature

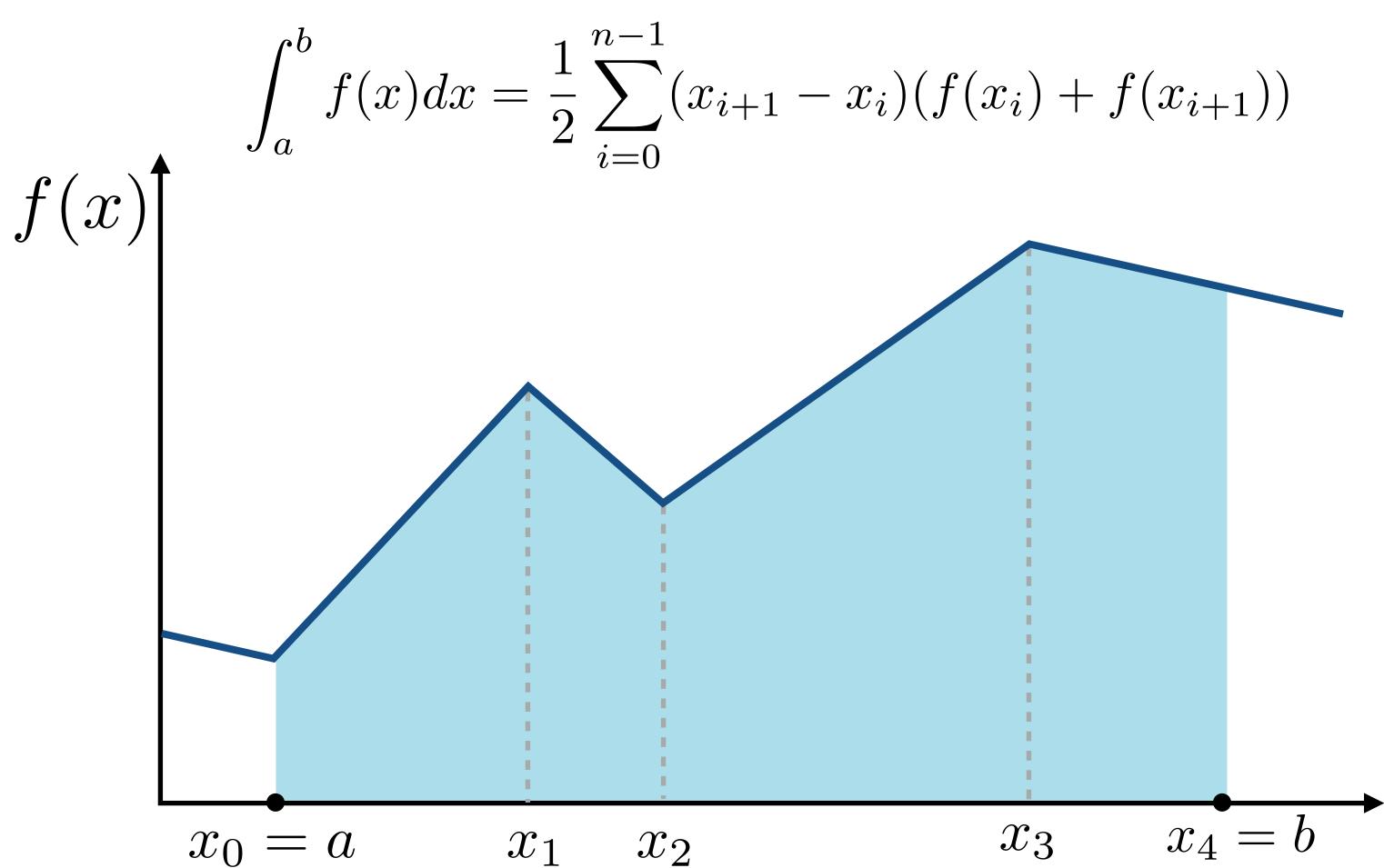
For any polynomial of degree 2n-1 or less, we can always obtain the exact integral by sampling at a special set of n points and taking a special weighted combination





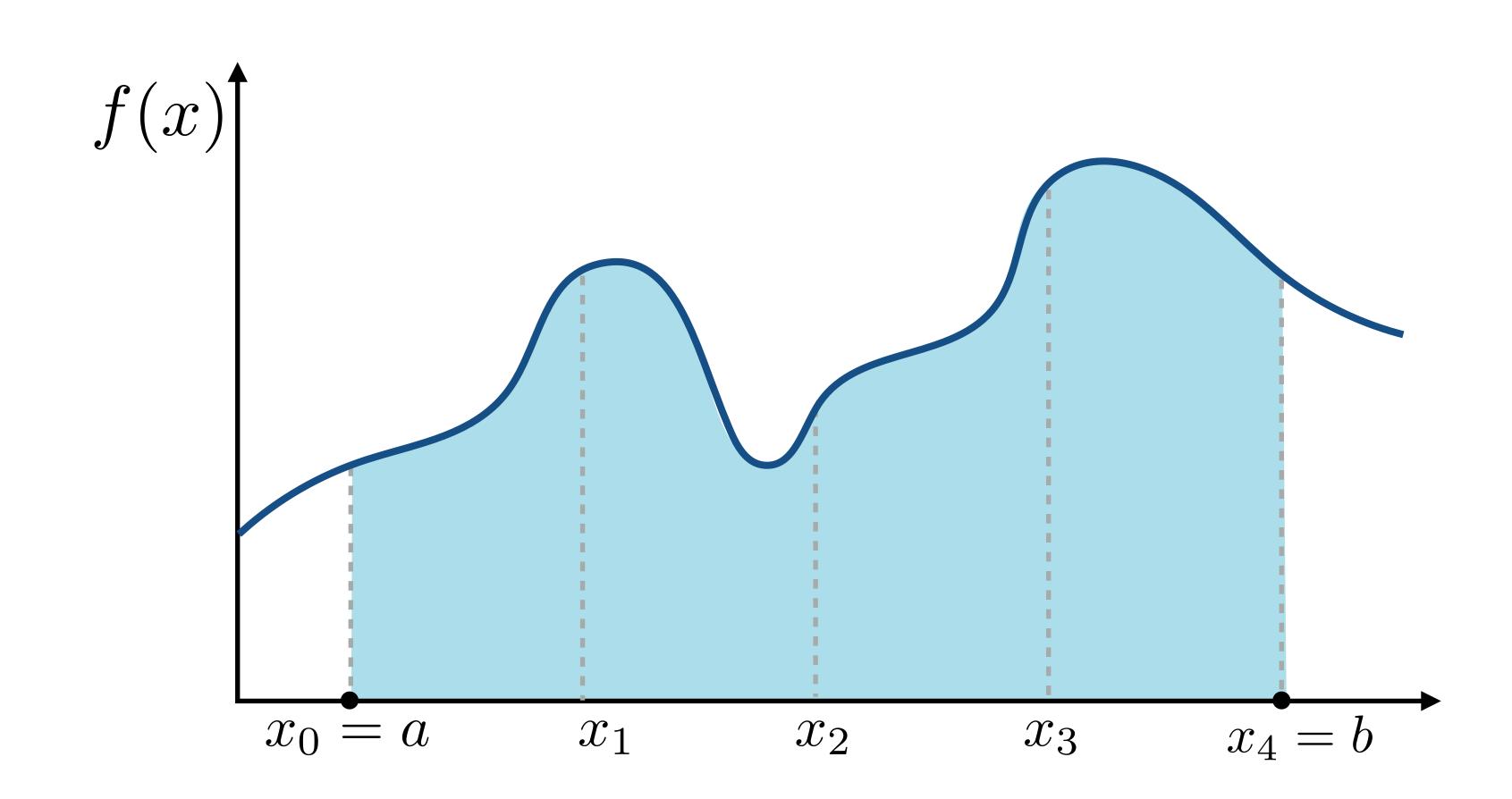
Piecewise affine function

For piecewise functions, just sum integral of each piece:

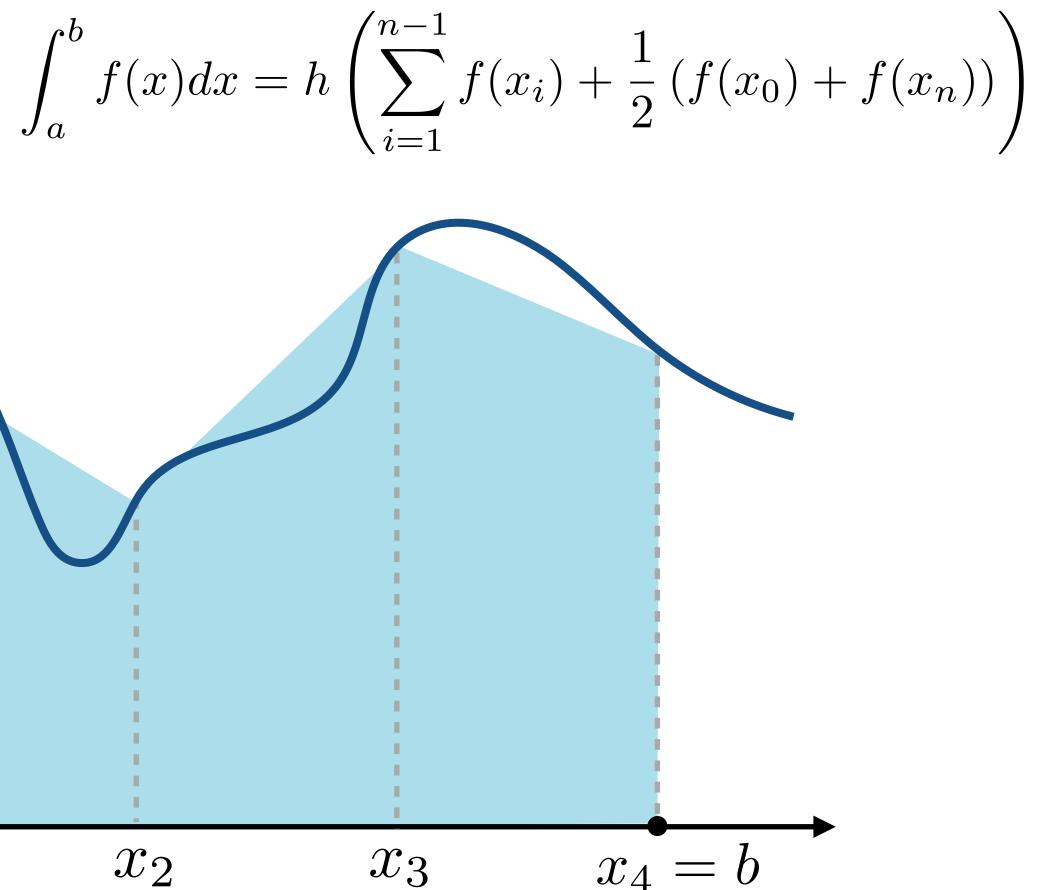


Key idea so far: To approximate an integral, we need (i) quadrature points, and (ii) weights for each point $\int_{a}^{b} f(x) \, dx \approx \sum_{i=1}^{n} w_i f(x_i)$

Arbitrary function f(x)?



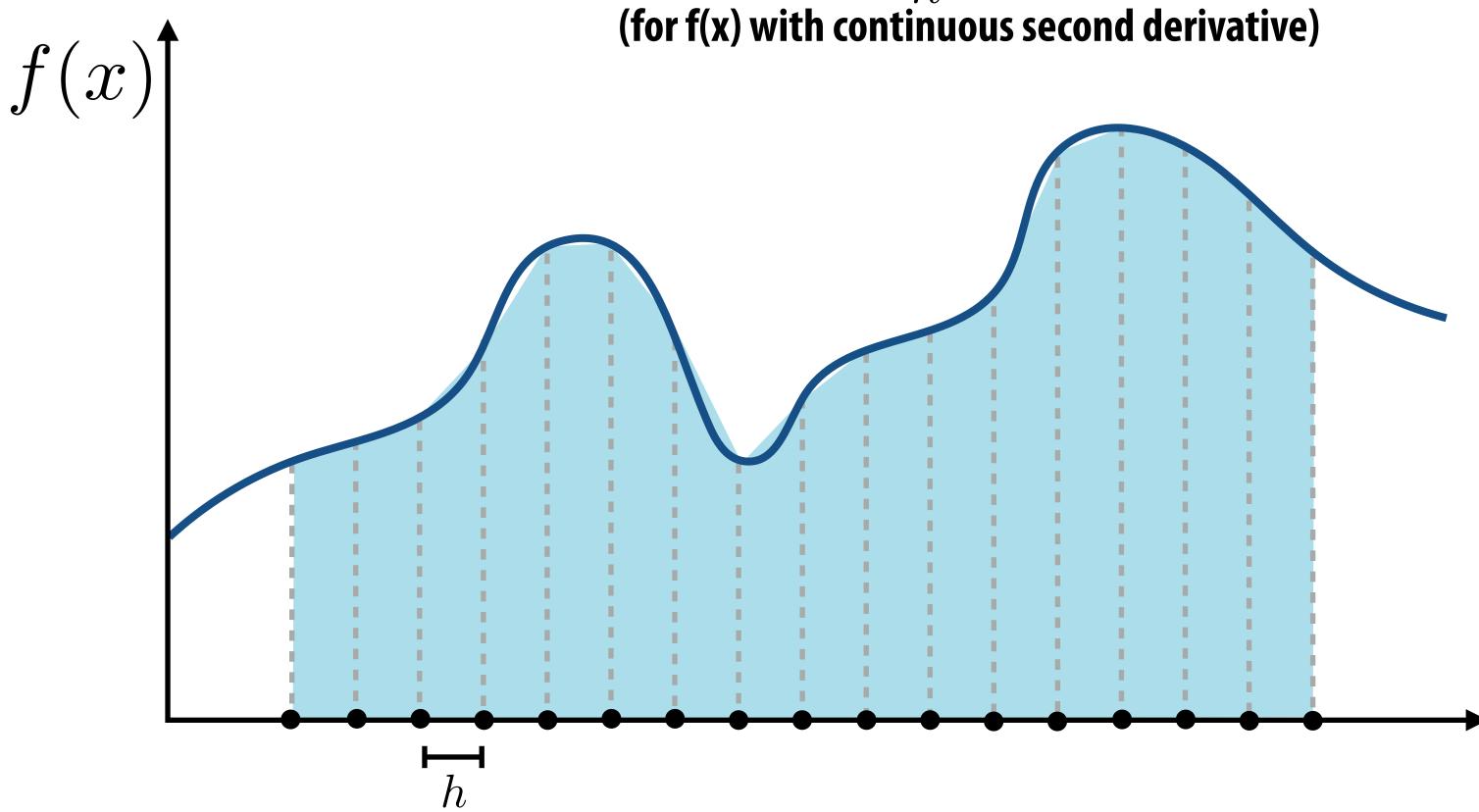
Trapezoid rule <u>Approximate integral of f(x) by pretending function is piecewise affine</u> For equal length segments: $h = \frac{b-a}{m-1}$ f(x) $x_0 = a$ x_1 \mathcal{X}_2



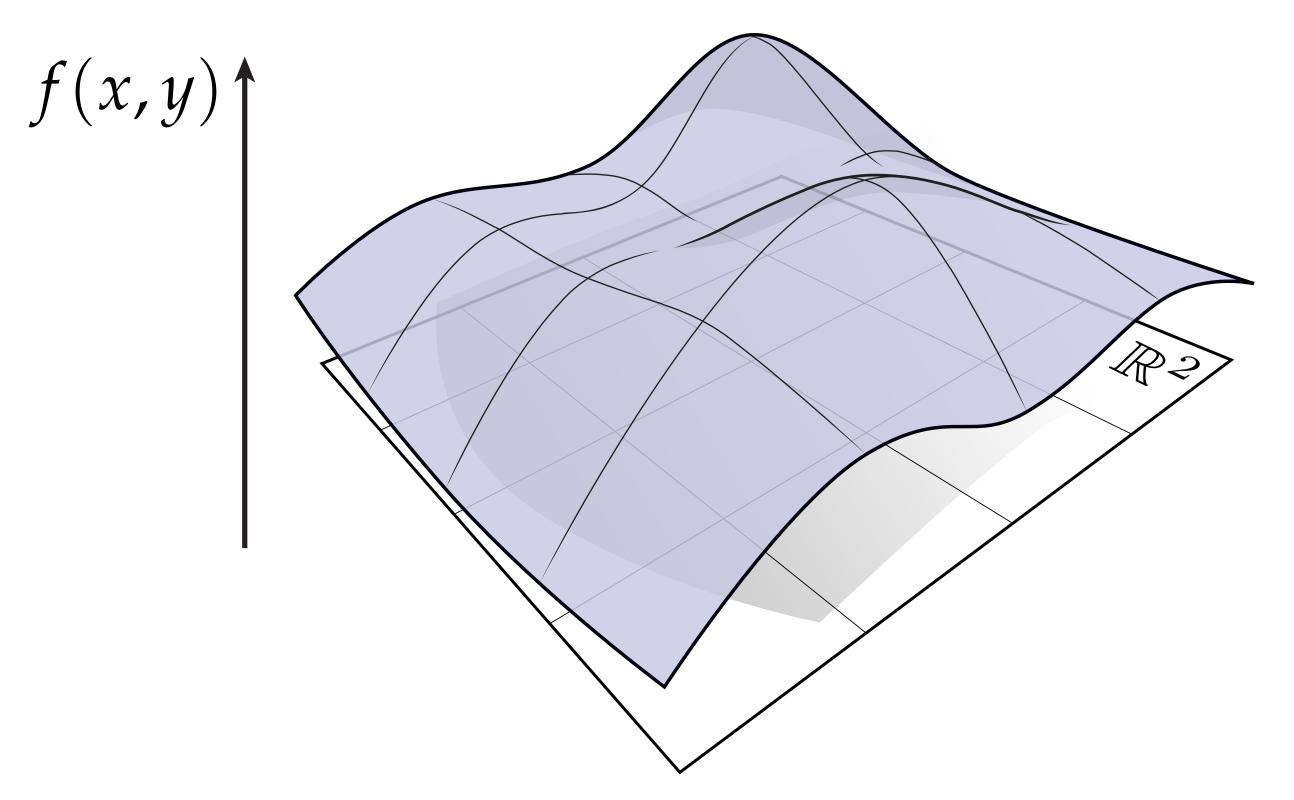
Trapezoid rule

Consider cost and accuracy of estimate as $n \to \infty$ (or $h \to 0$) Work: O(n)

Error can be shown to be: $O(h^2) = O(\frac{1}{n^2})$



What about a 2D function?



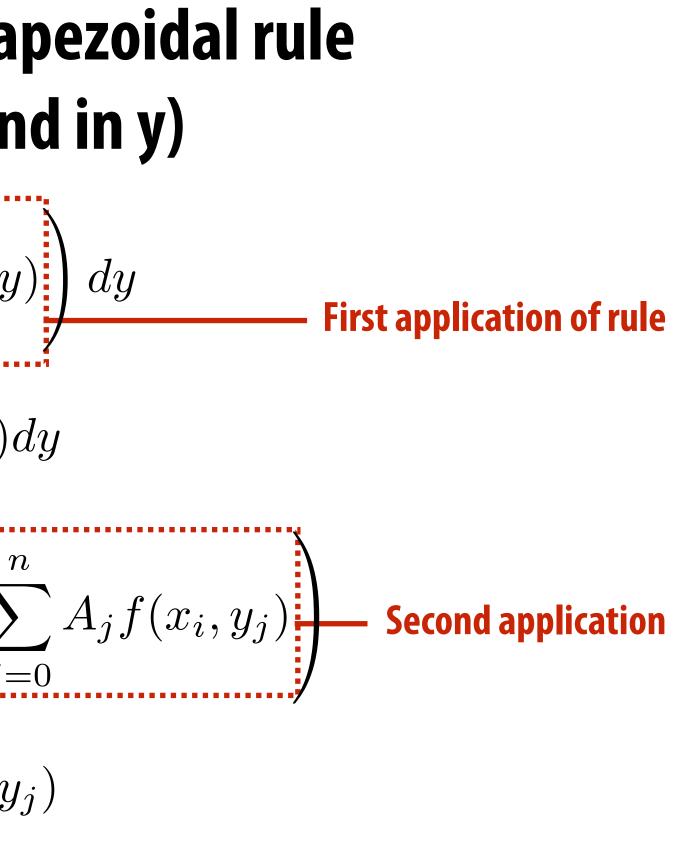
How should we approximate the area underneath?

Integration in 2D **Consider integrating** f(x, y) using the trapezoidal rule (apply rule twice: when integrating in x and in y)

Errors add, so error still: $O(h^2)$ **But work is now:** $O(n^2)$ (n x n set of measurements)

In K-D, let

Error goes

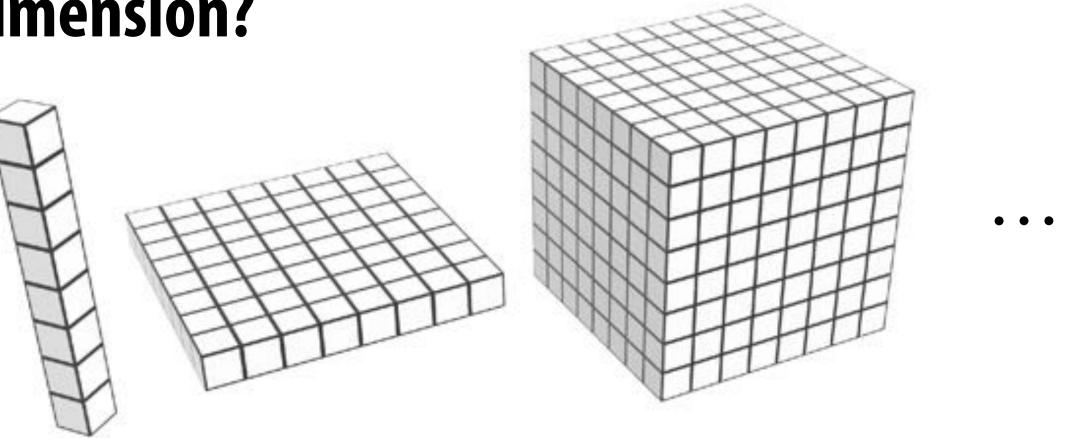


Must perform much more work in 2D to get same error bound on integral!

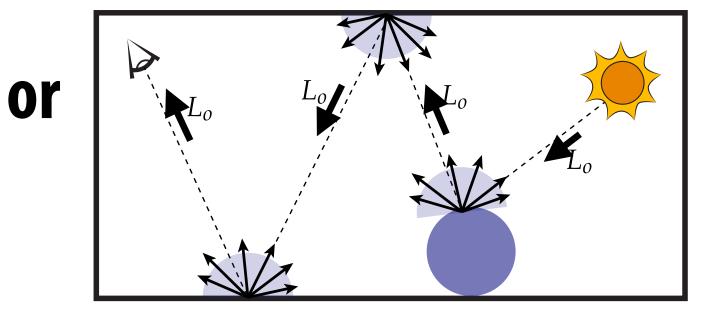
$$N=n^k$$
as: $O\left(rac{1}{N^{2/k}}
ight)$

Curse of Dimensionality

- How much does it cost to apply the trapezoid rule as we go up in dimension?
 - 1D: O(n)
 - $2D: O(n^2)$



- **kD**: **O**(**n**^k)
- For many problems in graphics (like rendering), k is very, very big (e.g., tens or hundreds or thousands)
- Applying trapezoid rule does not scale!
- Need a fundamentally different approach...



Monte Carlo Integration

Credit: many of these slides were created by Matt Pharr and Pat Hanrahan

Monte Carlo Integration

- Estimate value of integral using random sampling of function ¹
 - Value of estimate depends on random samples used
 - But algorithm gives the correct value of integral "on average"
- Only requires function to be evaluated at random points on its domain
 - Applicable to functions with discontinuities, functions that are impossible to integrate directly
 - Error of estimate is independent of the dimensionality of the integrand
 - Depends on the number of random samples used: $O\left(\frac{1}{\sqrt{n}}\right)$

So far we've discussed techniques that use a fixed set of sample points (e.g., uniformly spaced, or obtained by finding roots of polynomial (Gaussian quadrature))

n points on its domain functions that are

Sed: $O\left(\frac{1}{\sqrt{n}}\right)$

Review: random variables

- random variable. Represents a distribution of Xpotential values
- $X \sim p(x)$ probability density function (PDF). Describes relative probability of a random process choosing value x
- **Uniform PDF: all values over a domain are equally likely**
- e.g., for an unbiased die X takes on values 1,2,3,4,5,6 p(1) = p(2) = p(3) = p(4) = p(5) = p(6)

Discrete probability distributions

n discrete values x_i

With probability p_i

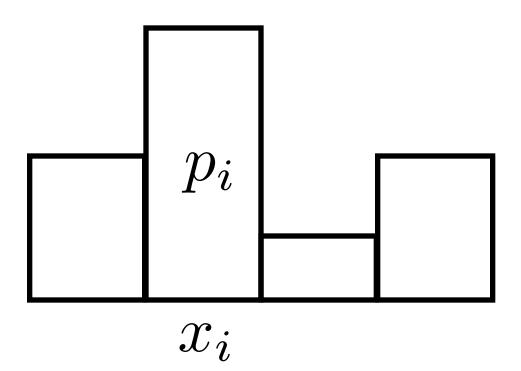
Requirements of a PDF:

$$p_i \ge 0$$

$$\sum_{i=1}^{n} p_i = 1$$

Six-sided die example: $p_i = \frac{1}{6}$

Think: p_i is the probability that a random measurement of X will yield the value x_i X takes on the value x_i with probability p_i



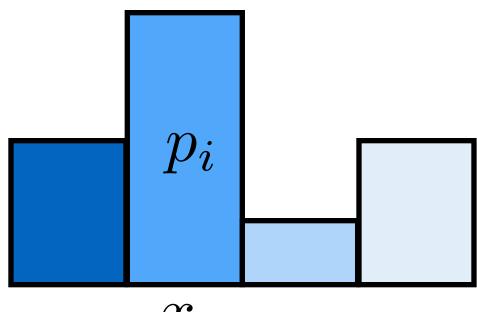
Cumulative distribution function (CDF) (For a discrete probability distribution)

Cumulative PDF:
$$P_j = \sum_{i=1}^j p_i$$

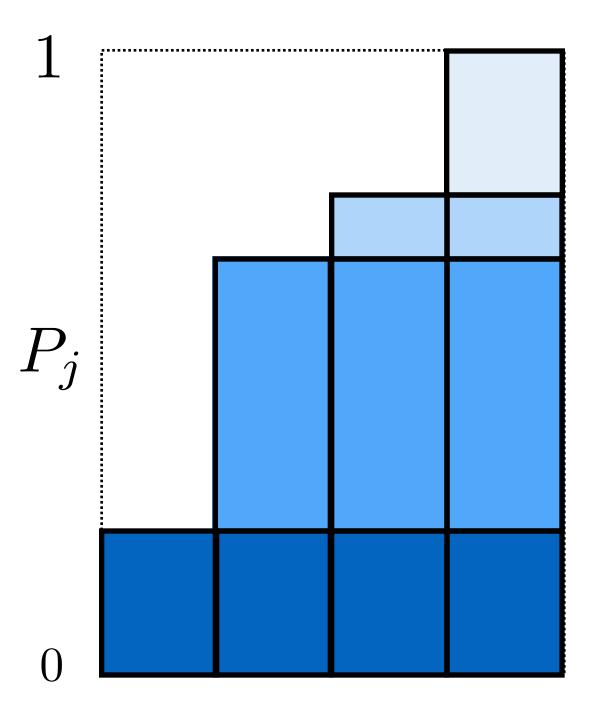
where:

$$0 \leq P_i \leq 1$$

$$P_n = 1$$



 x_i

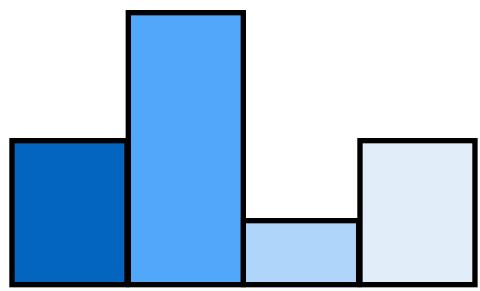


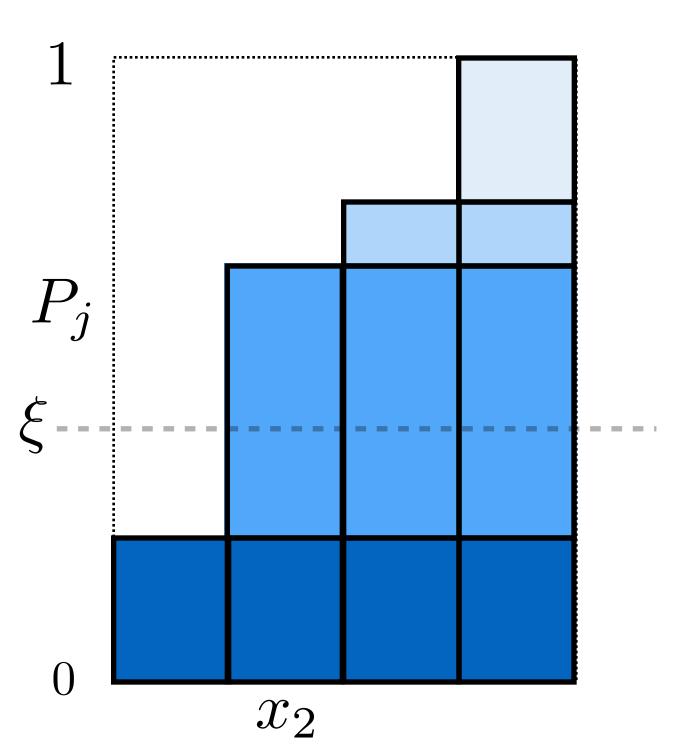
How do we generate samples of a discrete random variable (with a known PDF?)

Sampling from discrete probability distributions

To randomly select an event, select x_i if

$P_{i-1} < \xi \le P_i$ **1 Uniform random variable** $\in [0, 1)$



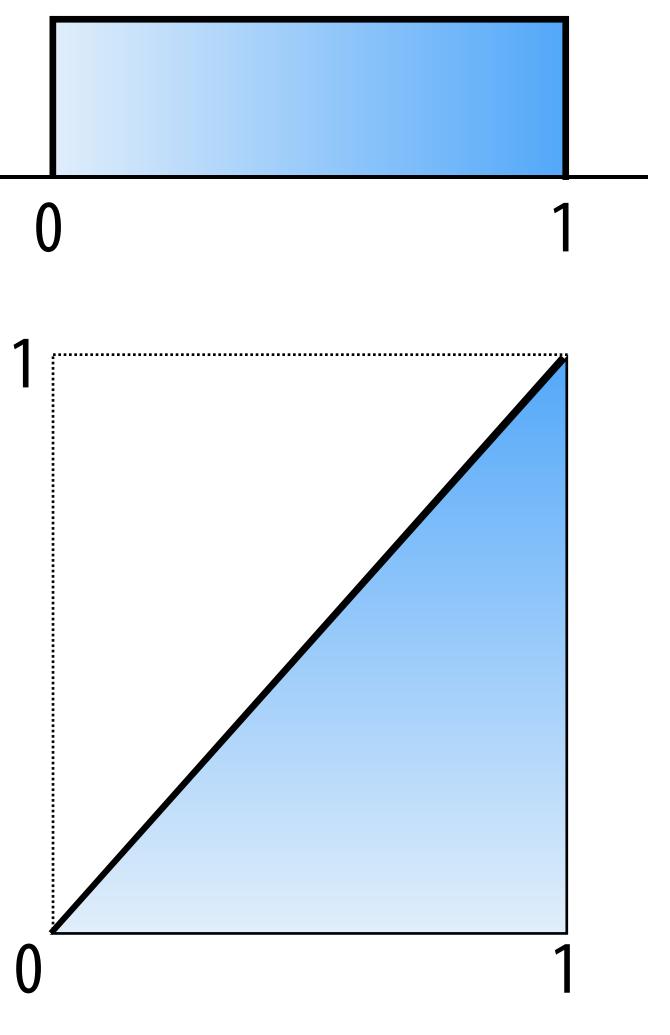


Continuous probability distributions

PDF p(x) $p(x) \ge 0$ **CDF** P(x) $P(x) = \int_0^x p(x) \, \mathrm{d}x$ $P(x) = \Pr(X < x)$ P(1) = 1 $\Pr(a \le X \le b) = \int^b p(x) \, \mathrm{d}x$ Ja= P(b) - P(a)

Uniform distribution

(for random variable X defined on [0,1] domain)



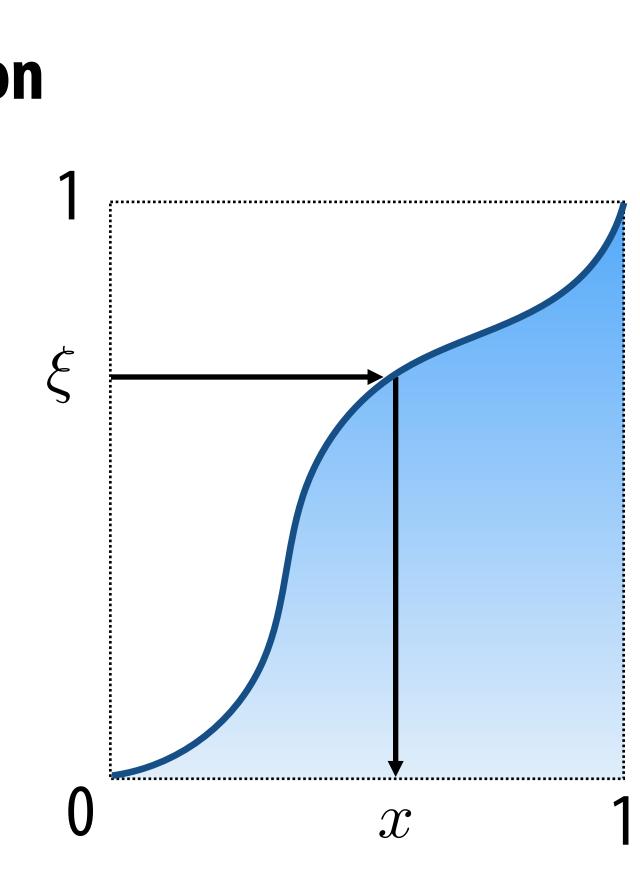
Sampling continuous random variables using the inversion method

Cumulative probability distribution function $P(x) = \Pr(X < x)$

Construction of samples: Solve for $x = P^{-1}(\xi)$

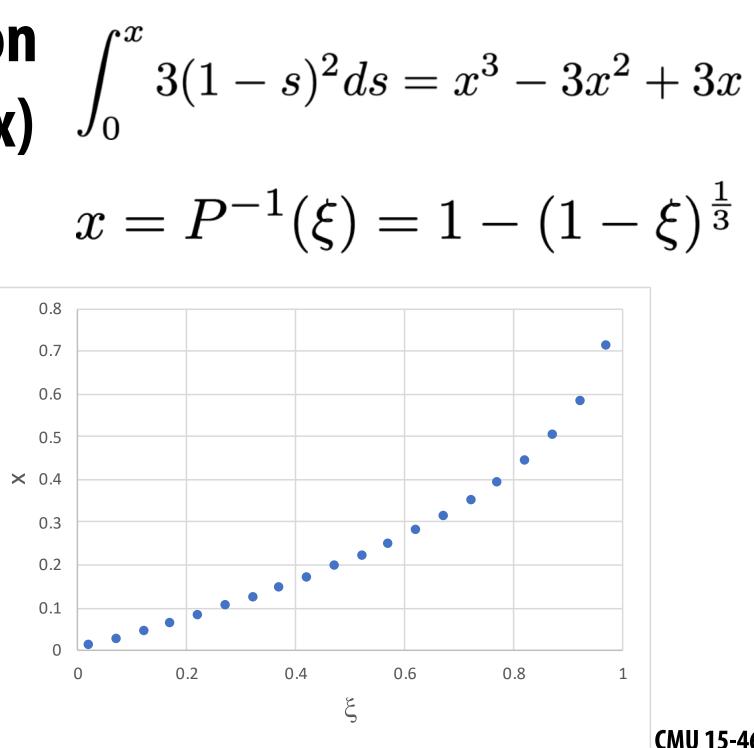
Must know the formula for:

- **1. The integral of** p(x)
- 2. The inverse function $P^{-1}(\xi)$



Example—Sampling Quadratic Distribution

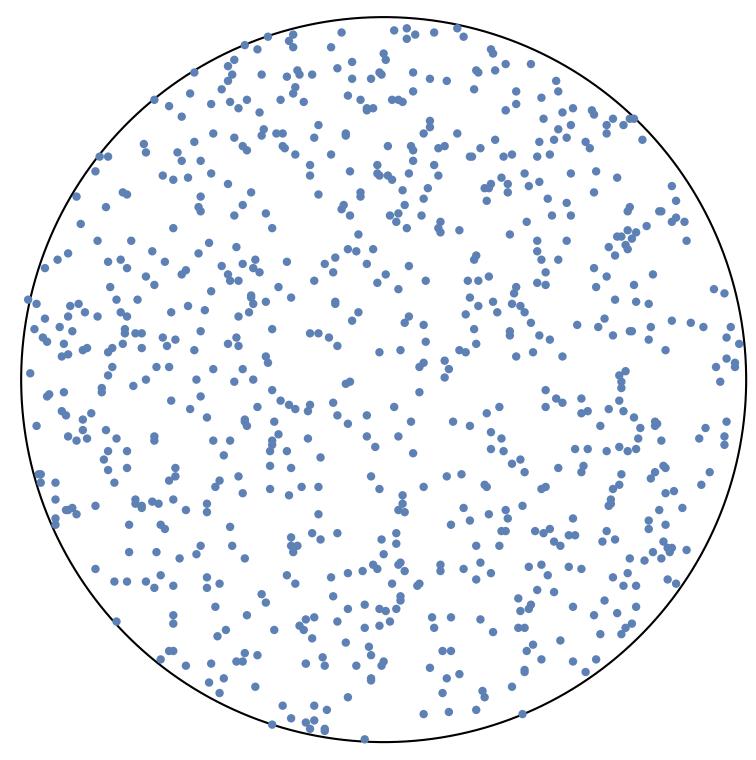
- As a toy example, consider the simple probability distribution p(x) := 3(1-x)² over the interval [0,1]
- How do we pick random samples distributed according to p(x)?
- First, integrate probability distribution p(x) to get cumulative distribution P(x)
- Invert P(x) by solving $\xi = P(x)$ for x
- Finally, plug uniformly distributed random values ξ in [0,1] into this expression



$p(x) := 3(1-x)^2$

 $P(x) = x^3 - 3x^2 + 3x$

How do we uniformly sample the unit circle?



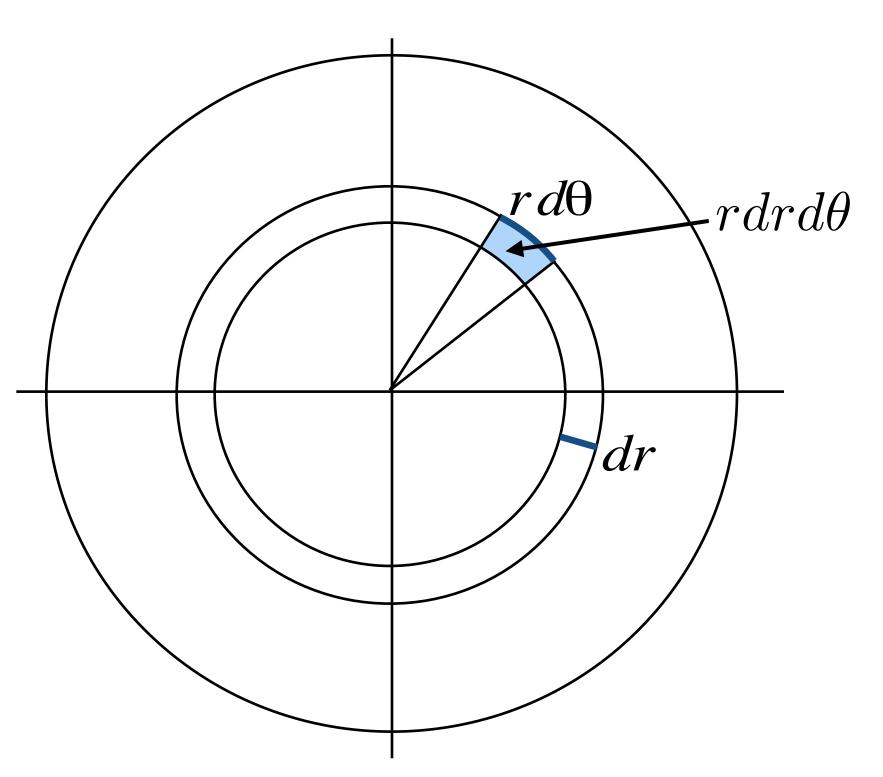
I.e., choose any point P=(px, py) in circle with equal probability)

Uniformly sampling unit circle: first try

- θ = uniform random angle between 0 and 2π
- r = uniform random radius between 0 and 1
- **Return point:** $(r \cos \theta, r \sin \theta)$

This algorithm <u>does not</u> produce the desired uniform sampling of the area of a circle. Why?

Because sampling is not uniform in area! Points farther from center of circle are less likely to be chosen



 $\theta = 2\pi\xi_1 \qquad r = \xi_2$

So how should we pick samples? Well, think about how we integrate over a disk in polar coordinates...

Sampling a circle (via inversion in 2D)

$$A = \int_0^{2\pi} \int_0^1 r \, \mathrm{d}r \, \mathrm{d}\theta = \int_0^1 r \, \mathrm{d}r \int_0^{2\pi} \mathrm{d}\theta$$

$$p(r,\theta) \,\mathrm{d}r \,\mathrm{d}\theta = \frac{1}{\pi} r \,\mathrm{d}r \,\mathrm{d}\theta \to p(r,\theta) = \frac{r}{\pi}$$

$$p(\theta) = \frac{1}{2\pi}$$

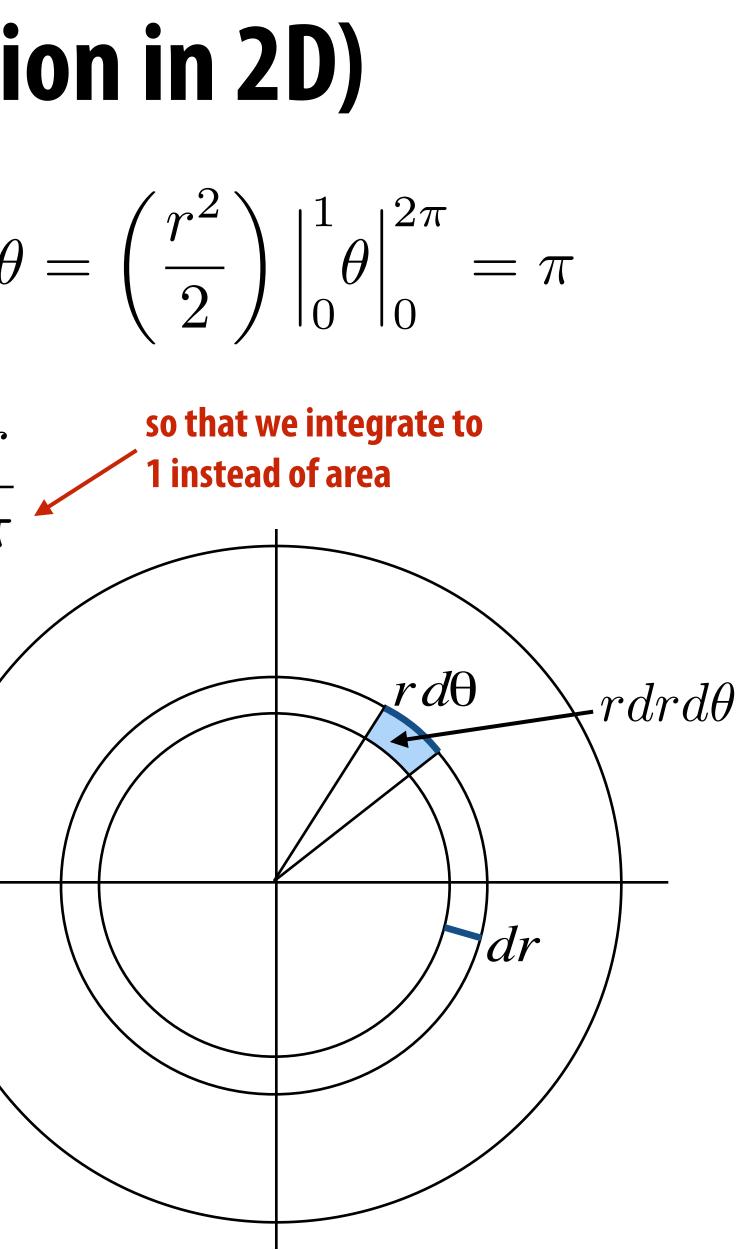
$$P(\theta) = \frac{1}{2\pi}\theta$$

$$p(r) = 2r$$

$$P(r) = r^2$$

 $\xi_1 = P(\theta) = \frac{\theta}{2\pi}$ $\theta = 2\pi\xi_1$

 $\xi_2 = P(r) = r^2$ $r = \sqrt{\xi_2}$



Uniform area sampling of a circle

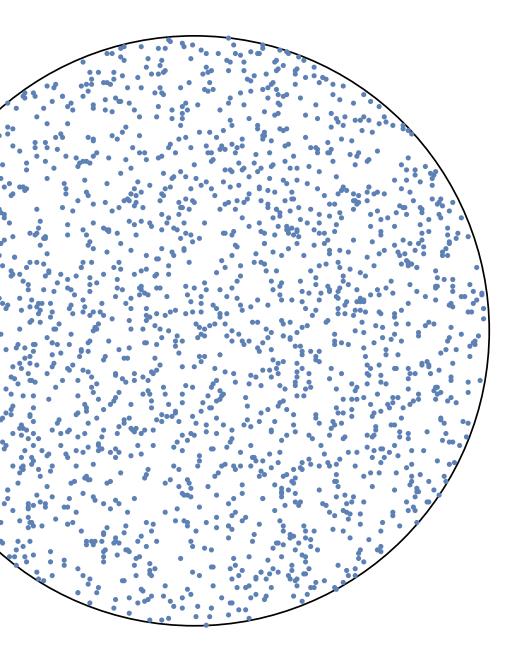
WRONG

probability is uniform; samples are not!

 $\theta = 2\pi\xi_1$

 $r = \xi_2$

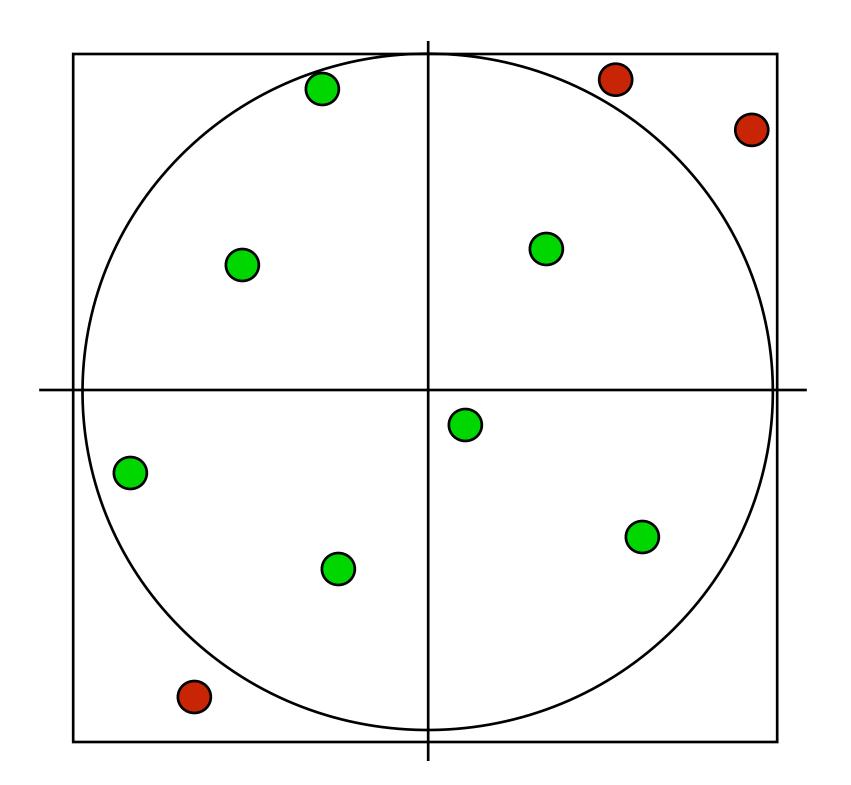
RIGHT probability is nonuniform; samples are uniform



$$\theta = 2\pi\xi_1$$

$$r = \sqrt{\xi_2}$$

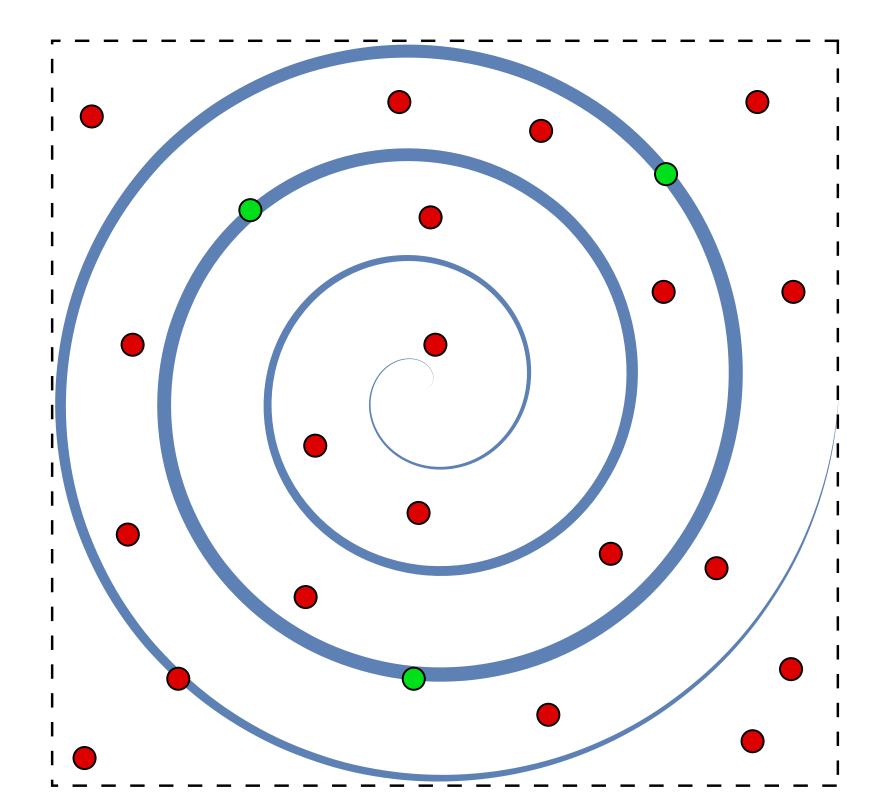
Uniform sampling via rejection sampling Completely different idea: pick uniform samples in square (easy) Then toss out any samples not in square (easy)



Efficiency of technique: area of circle / area of square

Efficiency of Rejection Sampling

If the region we care about covers only a very small fraction of the region we're sampling, rejection is probably a bad idea:



Smarter in this case to "warp" our random variables to follow the spiral.

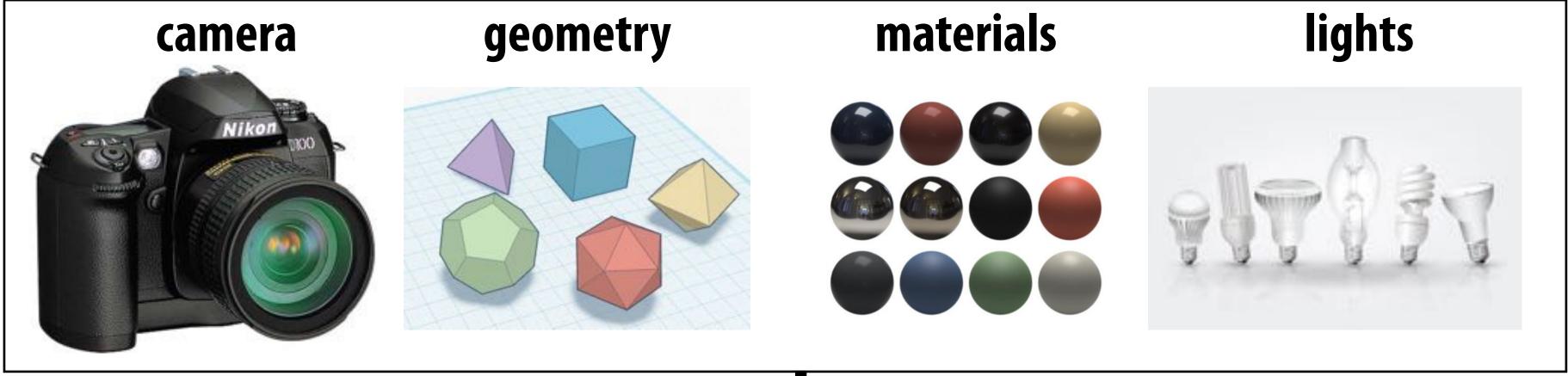
So how do we use numerical integration to do rendering?

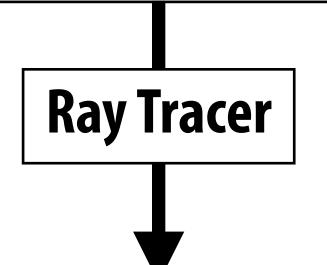
Monte Carlo Rendering

- Goal: render a photorealistic image
- Put together many of the ideas we've studied:
 - color
 - materials
 - radiometry
 - numerical integration
 - geometric queries
 - spatial data structures
 - rendering equation

- **Combine into final Monte Carlo ray tracing algorithm**
- Alternative to rasterization, lets us generate much more realistic images (usually at much greater cost...)

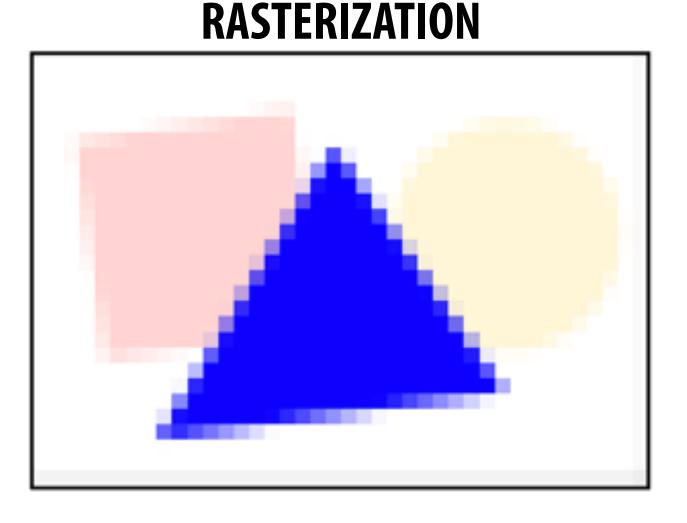
Photorealistic Rendering—Basic Goal What are the INPUTS and OUTPUTS?

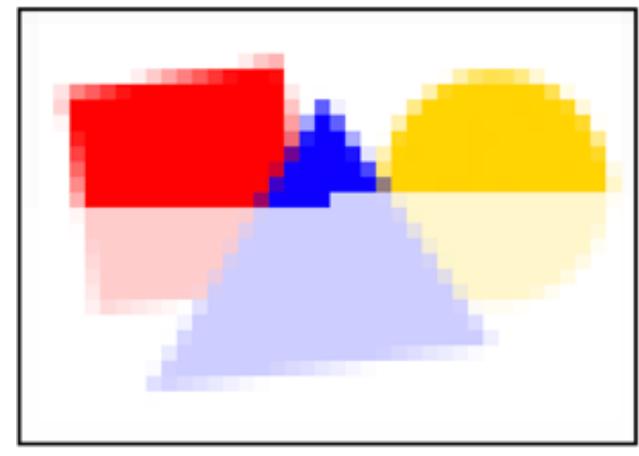




Ray Tracing vs. Rasterization—Order

- Both rasterization & ray tracing will generate an image
- What's the difference?
- **One basic difference: order in which we process samples**





for each primitive: for each **sample**: determine coverage evaluate color (Use Z-buffer to determine which primitive is visible)

for each **sample**: for each **primitive**: evaluate color (Use spatial data structure like BVH to determine which primitive is visible)

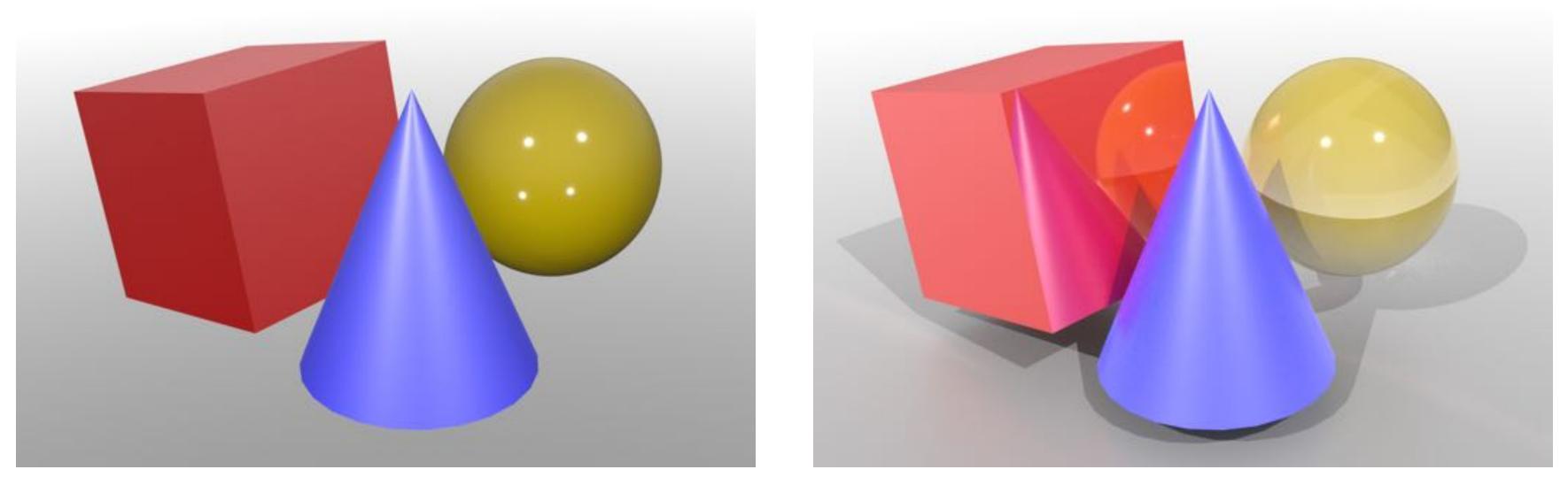
RAY TRACING

determine coverage

Ray Tracing vs. Rasterization—Illumination More major difference: sophistication of illumination model

- - [LOCAL] rasterizer processes one primitive at a time; hard* to determine things like "A is in the shadow of B"
 - [GLOBAL] ray tracer processes on ray at a time; ray knows about everything it intersects, easy to talk about shadows & other "global" illumination effects

RASTERIZATION



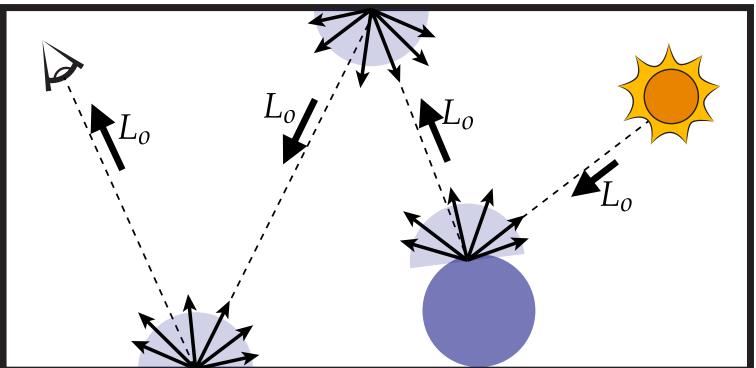
Q: What illumination effects are missing from the image on the left?

*But not impossible to do <u>some</u> things with rasterization (e.g., shadow maps)... just results in more complexity

RAY TRACING

Monte Carlo Ray Tracing

- To develop a full-blown photorealistic ray tracer, will need to apply Monte Carlo integration to the rendering equation
- To determine color of each pixel, integrate incoming light
- What function are we integrating?
 - illumination along different paths of light
- What does a "sample" mean in this context?
 - each path we trace is a sample



$$L_{o}(\mathbf{p},\omega_{o}) = L_{e}(\mathbf{p},\omega_{o}) + \int_{\mathcal{H}^{2}} f_{r}(\mathbf{p},\omega_{i} \to \omega_{o}) I$$

 $L_i(\mathbf{p}, \omega_i) \cos\theta \, d\omega_i$

Monte Carlo Integration

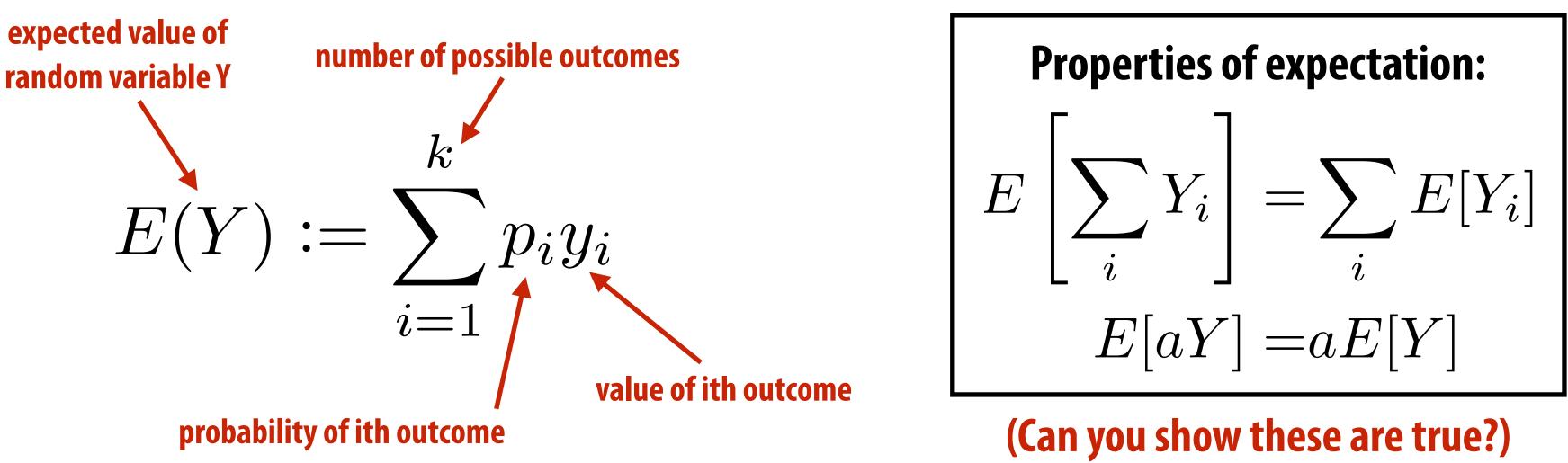
- Started looking at Monte Carlo integration in our lecture on numerical integration
- **Basic idea: take average of random samples**
- Will need to flesh this idea out with some key concepts:
 - **EXPECTED VALUE** what value do we get on average?
 - VARIANCE what's the expected deviation from the average?
 - **IMPORTANCE SAMPLING** how do we (correctly) take more samples in more important regions?

$$\lim_{N \to \infty} \frac{|\Omega|}{N} \sum_{i=1}^{N} f(X_i) = \int_{\Omega} f(x) \, dx$$

Expected Value

Intuition: what value does a random variable take, on average?

- E.g., consider a fair coin where heads = 1, tails = 0
- Equal probability of heads & is tails (1/2 for both)
- Expected value is then $(1/2) \cdot 1 + (1/2) \cdot 0 = 1/2$



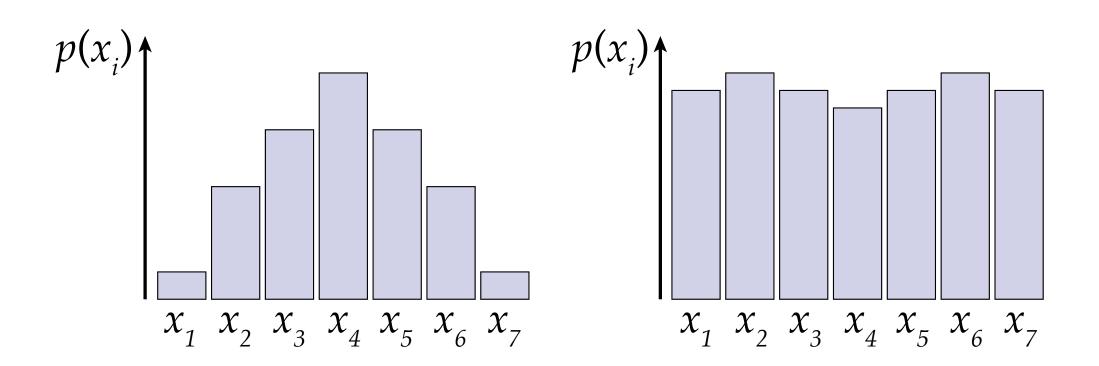
Variance

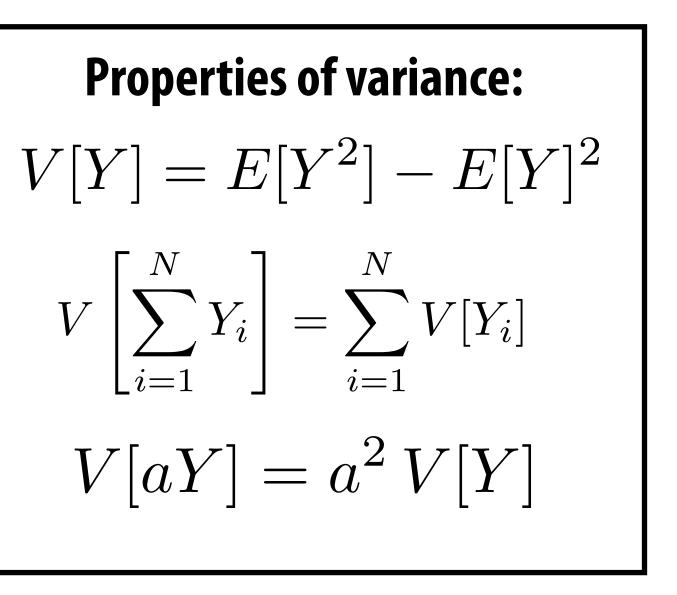
Intuition: how far are our samples from the average, on average?

Definition

 $V[Y] = E[(Y - E[Y])^2]$

Q: Which of these has higher variance?





(Can you show these are true?)

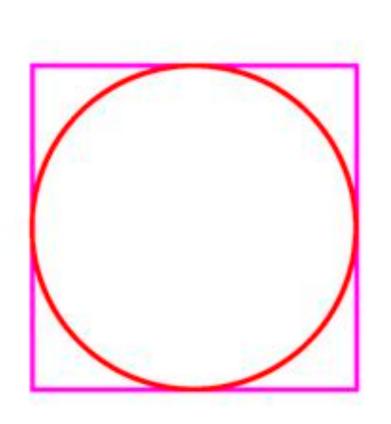
Law of Large Numbers

- Important fact: for any random variable, the average value of N trials approaches the expected value as we increase N
- **Decrease in variance is always linear in N:**

$$V\left[\frac{1}{N}\sum_{i=1}^{N}Y_{i}\right] = \frac{1}{N^{2}}\sum_{i=1}^{N}V[Y_{i}] = \frac{1}{N^{2}}$$

Consider a coconut...

nCoconuts	estimate of π
1	4.000000
10	3.200000
100	3.240000
1000	3.112000
10000	3.163600
100000	3.139520
1000000	3.141764



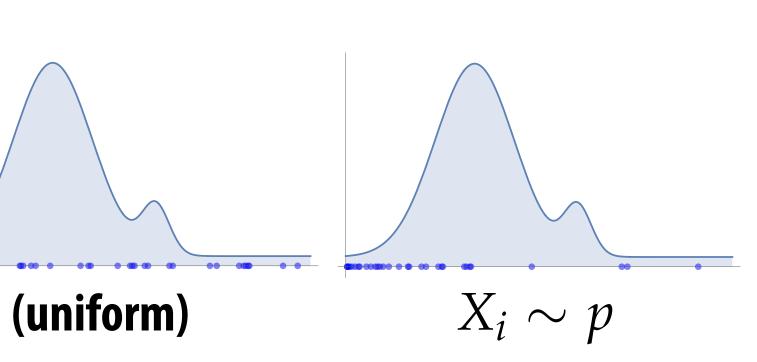
$\frac{1}{2}NV[Y] = \frac{1}{N}V[Y]$

Q: Why is the law of large numbers important for Monte Carlo ray tracing? A: No matter how hard the integrals are (crazy lighting, geometry, materials, etc.), can always* get the right image by taking more samples.

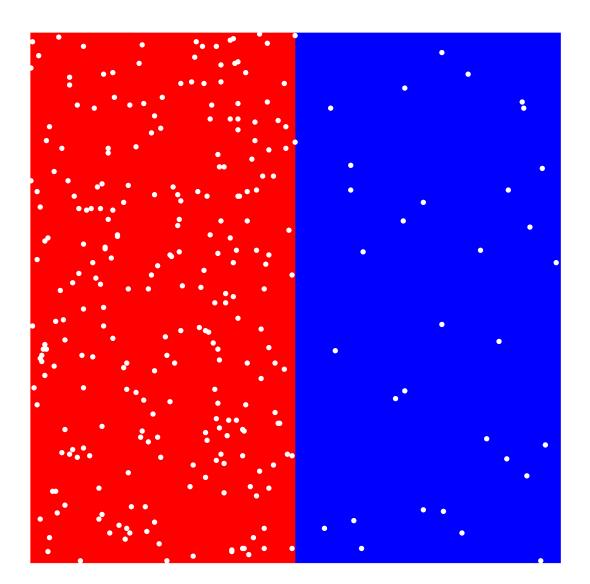
*As long as we make sure to sample all possible kinds of light paths...

Biasing

- So far, we've picked samples uniformly from the domain (every point is equally likely)
- Suppose we pick samples from some other distribution (more samples in one place than another)
- Q: Can we still use samples f(Xi) to get a (correct) estimate of our integral?
- A: Sure! Just weight contribution of each sample by how likely we were to pick it
- Q: Are we correct to divide by p? Or... should we multiply instead?
- A: Think about a simple example where we sample RED region 8x as often as BLUE region
 - average color over square should be purple
 - if we multiply, average will be TOO RED
 - if we divide, average will be JUST RIGHT



 $\int_{\Omega} f(x) \, dx \approx \frac{1}{N} \sum_{i=1}^{N} \frac{f(X_i)}{p(X_i)}$



Next Time: Use biasing for Importance Sampling, along with other aspects of effective Monte Carlo Raytracing!

