Geometric Queries

Computer Graphics CMU 15-462/15-662

First, a review and wrap-up from Wednesday

Quadric Error Metric

- Approximate distance to a collection of triangles
- Q: Distance to plane w/ normal n passing through point p?
- A: dist(x) = $\langle n, x \rangle \langle n, p \rangle = \langle n, x p \rangle$
- Quadric error is then sum of squared point-to-plane distances:

Quadric Error - Homogeneous Coordinates

- Suppose in coordinates we have
 - a query point $\mathbf{x} = (x, y, z)$
 - a normal $\mathbf{n} = (a, b, c)$
 - an offset $d := -\langle \mathbf{n}, \mathbf{p} \rangle$
- In homogeneous coordinates, let
 - $-\mathbf{u} := (x, y, z, 1)$
 - $-\mathbf{v} := (a, b, c, d)$
 - Signed distance to plane is then just $\langle \mathbf{u}, \mathbf{v} \rangle = ax + by + cz + d$
- Squared distance is $\langle \mathbf{u}, \mathbf{v} \rangle^2 = \mathbf{u}^{\mathsf{T}} (\mathbf{v} \mathbf{v}^{\mathsf{T}}) \mathbf{u} =: \mathbf{u}^{\mathsf{T}} K \mathbf{u}$
- Matrix $K = \mathbf{v}\mathbf{v}^T$ encodes squared distance to plane

Key idea: <u>sum</u> of matrices $K \Leftrightarrow$ distance to <u>union</u> of planes $\mathbf{u}^{\mathsf{T}}K_1\mathbf{u} + \mathbf{u}^{\mathsf{T}}K_2\mathbf{u} = \mathbf{u}^{\mathsf{T}}(K_1 + K_2)\mathbf{u}$

Quadric Error of Edge Collapse

- How much does it cost to collapse an edge e_{ij} ?
- Idea: compute midpoint m, measure error $Q(\mathbf{m}) = \mathbf{m}^{\mathsf{T}}(K_i + K_i)\mathbf{m}$
- **Error becomes "score" for** e_{ij} , **determining priority**

- **Better idea: find point x that minimizes error!**
- Ok, but how do we minimize quadric error?

m

Review: Minimizing a Quadratic Function

- Suppose you have a function $f(x) = ax^2 + bx + c$ Q: What does the graph of this function look like? **Could also look like this!**

- Q: How do we find the minimum?
- A: Find where the function looks "flat" if we zoom in really close
- I.e., find point x where 1st derivative vanishes:

f'(x) = 02ax + b = 0

$$x = -b/2a$$

(What does x describe for the second function?)

Minimizing Quadratic Polynomial

- Not much harder to minimize a quadratic polynomial in *n* variables
- Can always write in terms of a symmetric matrix A
- E.g., in 2D: $f(x, y) = ax^2 + bxy + cy^2 + dx + ey + g$

$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix} \quad A = \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix}$$

$f(x, y) = \mathbf{x}^{\mathsf{T}} A \mathbf{x} + \mathbf{u}^{\mathsf{T}} \mathbf{x} + g$

(will have this same form for any *n*) (compare with $2A\mathbf{x} + \mathbf{u} = 0$ our 1D solution) $\mathbf{x} = -\frac{1}{2}A^{-1}\mathbf{u}$ x = -b/2a

Q: How do we find a critical point (min/max/saddle)? **A: Set derivative to zero!**

(Can you show this is true, at least in 2D?)

Positive Definite Quadratic Form

- Just like our 1D parabola, critical point is not always a min!
- Q: In 2D, 3D, nD, when do we get a minimum?
- A: When matrix A is positive-definite:

$$\mathbf{x}^{\mathsf{T}}A \ \mathbf{x} > 0 \qquad \forall$$

2D: Graph of function looks like a "bowl":

positive definite

Positive-definiteness extremely important in computer graphics: means we can find minimizers by solving linear equations. Starting point for many algorithms (geometry processing, simulation, ...)

Minimizing Quadric Error

- Find "best" point for edge collapse by minimizing quadratic form min $\mathbf{u}^T K \mathbf{u}$ $\mathbf{u} \in \mathbb{R}^4$
- Already know fourth (homogeneous) coordinate for a point is 1 So, break up our quadratic function into two pieces:

$$\mathbf{x}^{\mathsf{T}} \quad 1 \quad] \begin{bmatrix} B & \mathbf{w} \\ \mathbf{w}^{\mathsf{T}} & d^2 \end{bmatrix}$$

$$= \mathbf{x}' B \mathbf{x} + 2 \mathbf{w}' \mathbf{x} + d^2$$

Now we have a quadratic polynomial in the unknown position $\mathbf{x} \in \mathbb{R}^3$ **Can minimize as before:**

Q: Why should *B* be positive-definite?

$\Rightarrow \qquad \mathbf{x} = -B^{-1}\mathbf{w}$

Quadric Error Simplification: Final Algorithm

- Compute K for each triangle (squared distance to plane)
- Set K_i at each vertex to sum of Ks from incident triangles
- For each edge e_{ij} :
 - set $K_{ij} = K_i + K_j$
 - find point **x** minimizing error, set cost to $K_{ij}(\mathbf{x})$
- Until we reach target number of triangles:
- collapse edge e_{ij} with smallest cost to optimal point ${f x}$
- set quadric at new vertex to K_{ii}
- update cost of edges touching new vertex
- More details in assignment writeup!

Quadric Simplification—Flipped Triangles Depending on where we put the new vertex, one of the new triangles might be "flipped" (normal points in instead of out):

Easy solution: for each triangle *ijk* touching collapsed vertex *i*, consider normals N_{ijk} and N_{kjl} (where kjl is other triangle containing edge jk) • If $\langle N_{ijk}, N_{kjl} \rangle$ is negative, don't collapse this edge!

What if we're happy with the number of triangles, but want to improve quality?

How do we make a mesh "more Delaunay"?

- Already have a good tool: edge flips!
- If $\alpha + \beta > \pi$, flip it!

- FACT: in 2D, flipping edges eventually yields Delaunay mesh
- Theory: worst case $O(n^2)$; doesn't always work for surfaces in 3D
- Practice: simple, effective way to improve mesh quality

lds Delaunay mesh ys work for surfaces in 3D e mesh quality

Alternatively: how do we improve degree?

- Same tool: edge flips!
- If total deviation from degree-6 gets smaller, flip it!

total deviation: $|d_i - 6| + |d_j - 6| + |d_k - 6| + |d_l - 6|$

- FACT: average degree approaches 6 as number of elements increases Iterative edge flipping acts like "discrete diffusion" of degree
- No (known) guarantees; works well in practice

How do we make a triangles "more round"?

- **Delaunay doesn't guarantee triangles are "round" (angles near 60°)**
- **Can often improve shape by centering vertices:**

- Simple version of technique called "Laplacian smoothing"
- On surface: move only in tangent direction
- How? Remove normal component from update vector

Isotropic Remeshing Algorithm

- Try to make triangles uniform shape & size
- **Repeat four steps:**
 - Split any edge over 4/3rds mean edge length
 - Collapse any edge less than 4/5ths mean edge length
 - Flip edges to improve vertex degree
 - Center vertices tangentially

Based on: Botsch & Kobbelt, "A Remeshing Approach to Multiresolution Modeling"

What can go wrong when you resample a signal?

Danger of Resampling Q: What happens if we repeatedly resample an image?

A: Signal quality degrades!

Danger of Resampling

Q: What happens if we repeatedly resample a mesh?

A: Signal also degrades!

But wait: we have the original signal (mesh). Why not just project each new sample point onto the closest point of the original mesh?

How do we project onto the original surface?

- Q: Given a point, in space, how do we find the closest point on a surface? Are we inside or outside the surface? How do we find intersection of two triangles? Etc.
- Do implicit/explicit representations make such tasks easier?
- What's the cost of the naïve algorithm, and how do we accelerate such queries for large meshes?

Geometric Queries—Motivation

Many types of geometric queries

- Already identified need for "closest point" query
- Plenty of other things we might like to know:
 - Do two triangles intersect?
 - Are we inside or outside an object?
 - **Does one object contain another?**
- Data structures we've seen so far not really designed for this...
- **Need some new ideas!**
- **TODAY: come up with simple (read: slow) algorithms.**
- **NEXT TIME: intelligent ways to accelerate geometric queries.**

Warm up: closest point on point

- Goal is to find the point on a mesh closest to a given point.
- Much simpler question: given a query point (p1,p2), how do we find the closest point on the point (a1,a2)?

Bonus question: what's the distance?

```` (a1, a2)

Slightly harder: closest point on line

- Now suppose I have a line $N^T x = c$, where N is the unit normal
- How do I find the point closest to my query point p?

 $\Rightarrow \mathbf{p} + t\mathbf{N} = |\mathbf{p} + (c - \mathbf{N}^T \mathbf{p})\mathbf{N}|$

Harder: closest point on line segment

- **Two cases: endpoint or interior**
- Already have basic components:
 - point-to-point
 - point-to-line
 - **Algorithm?**
 - find closest point on line
 - check if it's between endpoints
 - if not, take closest endpoint
 - How do we know if it's between endpoints?
 - write closest point on line as a+t(b-a)
 - if t is between 0 and 1, it's inside the segment!

р

Even harder: closest point on triangle

- What are all the possibilities for the closest point?
- Almost just minimum distance to three segments:

Q: What about a point inside the triangle?

Closest point on triangle in 3D

- Not so different from 2D case **Algorithm?**
 - project onto plane of triangle
 - use half-space tests to classify point (vs. half plane)
 - if inside the triangle, we're done!
 - otherwise, find closest point on associated vertex or edge
- By the way, how do we find closest point on plane?
- Same expression as closest point on a line! **E.g.**, **p** + (**c** - **N**^T**p**) **N**

Closest point on triangle mesh in 3D?

- **Conceptually easy:**
 - loop over all triangles
 - compute closest point to current triangle
 - keep globally closest point
 - Q: What's the cost?
- What if we have billions of faces?
- **NEXT TIME: Better data structures!**

Closest point to implicit surface?

- If we change our representation of geometry, algorithms can change completely
- E.g., how might we compute the closest point on an implicit surface described via its distance function?
- **One idea:**
 - start at the query point
 - compute gradient of distance (using, e.g., finite differences)
 - take a little step (decrease distance)
 - repeat until we're at the surface (zero distance)
 - Better yet: just store closest point for each grid cell! (speed/memory trade off)

Different query: ray-mesh intersection

- A "ray" is an oriented line starting at a point
- Think about a ray of light traveling from the sun
- Want to know where a ray pierces a surface
 Why?
 - GEOMETRY: inside-outside test
 - RENDERING: visibility, ray tracing
 - ANIMATION: collision detection
 - Might pierce surface in many places!

Intersecting a ray with an implicit surface

- Recall implicit surfaces: all points x such that f(x) = 0
- Q: How do we find points where a ray pierces this surface?
- Well, we know all points along the ray: r(t) = o + td
- Idea: replace "x" with "r" in 1st equation, and solve for t **Example: unit sphere**

$$f(\mathbf{x}) = |\mathbf{x}|^2 - 1$$

$$\Rightarrow f(\mathbf{r}(t)) = |\mathbf{o} + t\mathbf{d}|^2 - 1$$

$$\underbrace{|\mathbf{d}|^2}_{a} t^2 + \underbrace{2(\mathbf{o} \cdot \mathbf{d})}_{b} t + \underbrace{|\mathbf{o}|^2 - 1}_{c} = 0$$

$$t = \begin{vmatrix} -\mathbf{o} \cdot \mathbf{d} \pm \sqrt{(\mathbf{o} \cdot \mathbf{d})^2 - |\mathbf{o}|^2 + 1} \end{vmatrix}$$

quadratic formula:

Ray-plane intersection

- Suppose we have a plane $N^T x = c$
 - N unit normal
 - c offset
- How do we find intersection with ray r(t) = o + td? Key idea: again, replace the point x with the ray equation t: $\mathbf{N}^{\mathsf{T}}\mathbf{r}(t) = c$
- Now solve for t: $\mathbf{N}^{\mathsf{T}}(\mathbf{o} + t\mathbf{d}) = c$ And plug t back into ray equation: $r(t) = \mathbf{o} + \frac{c - \mathbf{N}^{\mathsf{T}}\mathbf{o}}{\mathbf{N}^{\mathsf{T}}\mathbf{d}}$

$\Rightarrow t = \frac{c - \mathbf{N}^{\mathsf{T}} \mathbf{o}}{\mathbf{N}^{\mathsf{T}} \mathbf{I}^{\mathsf{J}}}$

Ray-triangle intersection

- Triangle is in a plane...
- Not much more to say!
 - Compute ray-plane intersection
 - Q: What do we do now?
 - A: Why not compute barycentric coordinates of hit point?
 - If barycentric coordinates are all positive, point in triangle
 - Actually, a lot more to say... if you care about performance!

^{port} Optimizing Ray-Triangle Intersection via Automated Search www.cs.utah.edul-aek/research/briangle.pdf + University of Utah + by A Kenisler - Cited by 33 - Related articles

method is used to further optimize the code produced via the filness function. ... For these 3D methods we optimize ray-triangle intersection in two different ways.

Peri Comparative Study of Ray-Triangle Intersection Algorithms www.graphicon.ru/html/proceedings/2012/_/gc20125humskly.pdf +

optimized SIMD ray-triangle intersection method evaluated on. GPU for path-tracing

Why care about performance?

Intel Embree

CMU 15-462/662

NVIDIA OptiX

Why care about performance?

"Brigade 3" real time path tracing demo

One more query: mesh-mesh intersection

GEOMETRY: How do we know if a mesh intersects itself?
 ANIMATION: How do we know if a collision occurred?

intersection htersects itself? on occurred?

Warm up: point-point intersection

- Q: How do we know if p intersects a?
- A: ...check if they're the same point!

(p1, p2)

Sadly, life is not always so easy.

(a1, a2)

Slightly harder: point-line intersection

Q: How do we know if a point intersects a given line?

A: ...plug it into the line equation!

p

Finally interesting: line-line intersection

- Two lines: ax=b and cx=d
- **Q: How do we find the intersection?**
- A: See if there is a simultaneous solution

Degenerate line-line intersection?

- What if lines are almost parallel?
- Small change in normal can lead to big change in intersection!
- Instability very common, very important with geometric predicates. Demands special care (e.g., analysis of matrix).

See for example Shewchuk, "Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates"

Triangle-Triangle Intersection?

- Lots of ways to do it
- **Basic idea:**
 - Q: Any ideas?
 - One way: reduce to edge-triangle intersection
 - Check if each line passes through plane
 - Then do interval test
 - What if triangle is moving?
 - Important case for animation

- Can think of triangles as prisms in time
- Turns dynamic problem (nD + time) into purely geometric problem in (n+1)-dimensions

a deforming vertex

Up Next: Spatial Acceleration Data Strucutres

- Testing every element is slow!
- E.g., linearly scanning through a list vs. binary search
- Can apply this same kind of thinking to geometric queries

binary search geometric queries