
Computer Graphics
CMU 15-462/15-662

Geometric Queries

 CMU 15-462/662

First, a review and wrap-up from Wednesday

dist2(x)

Q = 1

Q = 1
8

Q = 1
2

Q = 0

Quadric Error Metric
Approximate distance to a collection of triangles

Q: Distance to plane w/ normal passing through point ?

A:

Quadric error is then sum of squared point-to-plane distances:

n p
dist(x) = ⟨n, x⟩ − ⟨n, p⟩ = ⟨n, x − p⟩

n1

n2n3
n4

n5

p

p

x
n

⟨n, x − p⟩

Q(x) :=
k

∑
i=1

⟨ni, x − p⟩2

Quadric Error - Homogeneous Coordinates
Suppose in coordinates we have

- a query point

- a normal

- an offset
In homogeneous coordinates, let

-

-

Signed distance to plane is then just

Squared distance is

Matrix encodes squared distance to plane

x = (x, y, z)
n = (a, b, c)
d := − ⟨n, p⟩

u := (x, y, z,1)
v := (a, b, c, d)

⟨u, v⟩ = ax + by + cz + d
⟨u, v⟩2 = u$(vv$)u =: u$Ku

K = vvT

Key idea: sum of matrices ⟺ distance to union of planesK
u$K1u + u$K2u = u$(K1 + K2)u

p

x
n

m

 CMU 15-462/662

Quadric Error of Edge Collapse
How much does it cost to collapse an edge ?

Idea: compute midpoint , measure error

Error becomes “score” for , determining priority

eij

m Q(m) = m$(Ki + Kj)m
eij

collapse

Better idea: find point that minimizes error!

Ok, but how do we minimize quadric error?

x

eiji j

m

 CMU 15-462/662

Review: Minimizing a Quadratic Function
Suppose you have a function

Q: What does the graph of this function look like?
Could also look like this!
Q: How do we find the minimum?
A: Find where the function looks “flat” if we zoom
in really close

I.e., find point where 1st derivative vanishes:

f(x) = ax2 + bx + c

x

x

f(x)

x

f(x)

(What does describe for the second function?)x

 CMU 15-462/662

Minimizing Quadratic Polynomial
Not much harder to minimize a quadratic polynomial in variables
Can always write in terms of a symmetric matrix

E.g., in 2D:

n
A

f(x, y) = ax2 + bxy + cy2 + dx + ey + g

Q: How do we find a critical point (min/max/saddle)?
A: Set derivative to zero!

(will have this same form for any)n

(Can you show this is true, at least in 2D?)

f(x, y) = x$Ax + u$x + g

2Ax + u = 0
x = − 1

2 A−1u x = − b/2a

(compare with
our 1D solution)

 CMU 15-462/662

Positive Definite Quadratic Form
Just like our 1D parabola, critical point is not always a min!
Q: In 2D, 3D, nD, when do we get a minimum?
A: When matrix A is positive-definite:

1D: Must have . In other words: is positive!
2D: Graph of function looks like a “bowl”:

xax = ax2 > 0 a

Positive-definiteness extremely important in computer graphics:
means we can find minimizers by solving linear equations. Starting
point for many algorithms (geometry processing, simulation, ...)

positive definite positive semidefinite indefinite

 CMU 15-462/662

Minimizing Quadric Error
Find “best” point for edge collapse by minimizing quadratic form

Now we have a quadratic polynomial in the unknown position
Can minimize as before:

x ∈ ℝ3

Q: Why should be positive-definite?B

Already know fourth (homogeneous) coordinate for a point is 1
So, break up our quadratic function into two pieces:

min
u∈ℝ4

uTKu

= x$Bx + 2w$x + d2

2Bx + 2w = 0 x = − B−1w⟺

 CMU 15-462/662

Quadric Error Simplification: Final Algorithm
Compute for each triangle (squared distance to plane)
Set at each vertex to sum of s from incident triangles

For each edge :

- set

- find point minimizing error, set cost to

Until we reach target number of triangles:

- collapse edge with smallest cost to optimal point

- set quadric at new vertex to

- update cost of edges touching new vertex
More details in assignment writeup!

K
Ki K

eij

Kij = Ki + Kj

x Kij(x)

eij x
Kij

Ki

Kij

K

x

 CMU 15-462/662

Quadric Simplification—Flipped Triangles
Depending on where we put the new vertex, one of the new triangles
might be “flipped” (normal points in instead of out):

Easy solution: for each triangle touching collapsed vertex , consider
normals and (where is other triangle containing edge)

If is negative, don’t collapse this edge!

ijk i
Nijk Nkjl kjl jk

⟨Nijk, Nkjl⟩

l

kj

i
❌

i
j

k
l

✔

 CMU 15-462/662

What if we’re happy with the number of
triangles, but want to improve quality?

 CMU 15-462/662

Already have a good tool: edge flips!

If , flip it!α + β > π

How do we make a mesh “more Delaunay”?

FACT: in 2D, flipping edges eventually yields Delaunay mesh

Theory: worst case ; doesn’t always work for surfaces in 3D

Practice: simple, effective way to improve mesh quality

O(n2)

 CMU 15-462/662

Same tool: edge flips!
If total deviation from degree-6 gets smaller, flip it!

Alternatively: how do we improve degree?

flip

FACT: average degree approaches 6 as number of elements increases
Iterative edge flipping acts like “discrete diffusion” of degree
No (known) guarantees; works well in practice

i
j

k

l

total deviation: |di − 6 | + |dj − 6 | + |dk − 6 | + |dl − 6 |

 CMU 15-462/662

How do we make a triangles “more round”?
Delaunay doesn’t guarantee triangles are “round” (angles near 60°)
Can often improve shape by centering vertices:

average

Simple version of technique called “Laplacian smoothing”
On surface: move only in tangent direction
How? Remove normal component from update vector

 CMU 15-462/662

Isotropic Remeshing Algorithm
Try to make triangles uniform shape & size
Repeat four steps:
- Split any edge over 4/3rds mean edge length
- Collapse any edge less than 4/5ths mean edge length
- Flip edges to improve vertex degree
- Center vertices tangentially

Based on: Botsch & Kobbelt, “A Remeshing Approach to Multiresolution Modeling”

 CMU 15-462/662

What can go wrong when
you resample a signal?

 CMU 15-462/662

Danger of Resampling

downsample

upsa
mple

downsample
upsa

mple

downsample

upsa
mple

Q: What happens if we repeatedly resample an image?

A: Signal quality degrades!

 CMU 15-462/662

Danger of Resampling

downsample upsample

…

Q: What happens if we repeatedly resample a mesh?

A: Signal also degrades!

 CMU 15-462/662

But wait: we have the original signal (mesh).
Why not just project each new sample point
onto the closest point of the original mesh?

 CMU 15-462/662

How do we project onto the original surface?
Q: Given a point, in space, how do we find the closest point on
a surface? Are we inside or outside the surface? How do we
find intersection of two triangles? Etc.
Do implicit/explicit representations make such tasks easier?
What’s the cost of the naïve algorithm, and how do we
accelerate such queries for large meshes?
So many questions!

p

???

 CMU 15-462/662

Geometric Queries—Motivation

 CMU 15-462/662

Many types of geometric queries
Already identified need for “closest point” query
Plenty of other things we might like to know:
- Do two triangles intersect?
- Are we inside or outside an object?
- Does one object contain another?
- ...
Data structures we’ve seen so far not really designed for this...
Need some new ideas!
TODAY: come up with simple (read: slow) algorithms.
NEXT TIME: intelligent ways to accelerate geometric queries.

 CMU 15-462/662

Warm up: closest point on point
Goal is to find the point on a mesh closest to a given point.
Much simpler question: given a query point (p1,p2), how do
we find the closest point on the point (a1,a2)?

(p1, p2)

(a1, a2)

Bonus question: what’s the distance?

 CMU 15-462/662

Slightly harder: closest point on line
Now suppose I have a line NTx = c, where N is the unit normal
How do I find the point closest to my query point p?

p
NTx = cN

Many ways to do it:

 CMU 15-462/662

p
p

p

p

p

p

p
p p

Harder: closest point on line segment
Two cases: endpoint or interior
Already have basic components:
- point-to-point
- point-to-line
Algorithm?
- find closest point on line
- check if it’s between endpoints
- if not, take closest endpoint
How do we know if it’s between endpoints?
- write closest point on line as a+t(b-a)
- if t is between 0 and 1, it’s inside the segment!

a

b

 CMU 15-462/662

Even harder: closest point on triangle
What are all the possibilities for the closest point?
Almost just minimum distance to three segments:

Q: What about a point inside the triangle?

 CMU 15-462/662

Closest point on triangle in 3D
Not so different from 2D case
Algorithm?
- project onto plane of triangle
- use half-space tests to classify point (vs. half plane)
- if inside the triangle, we’re done!
- otherwise, find closest point on associated vertex or edge
By the way, how do we find closest point on plane?
Same expression as closest point on a line!
E.g., p + (c - NTp) N

 CMU 15-462/662

p

Closest point on triangle mesh in 3D?
Conceptually easy:
- loop over all triangles
- compute closest point to current triangle
- keep globally closest point
Q: What’s the cost?
What if we have billions of faces?
NEXT TIME: Better data structures!

 CMU 15-462/662

Closest point to implicit surface?
If we change our representation of geometry, algorithms can
change completely
E.g., how might we compute the closest point on an implicit
surface described via its distance function?

One idea:
- start at the query point
- compute gradient of distance

(using, e.g., finite differences)
- take a little step (decrease

distance)
- repeat until we’re at the

surface (zero distance)
Better yet: just store closest point
for each grid cell! (speed/memory
trade off)

 CMU 15-462/662

Different query: ray-mesh intersection
A “ray” is an oriented line starting at a point
Think about a ray of light traveling from the sun
Want to know where a ray pierces a surface
Why?
- GEOMETRY: inside-outside test
- RENDERING: visibility, ray tracing
- ANIMATION: collision detection
Might pierce surface in many places!

 CMU 15-462/662

Ray equation
Can express ray as

“time”
point along ray

origin unit direction

 CMU 15-462/662

Intersecting a ray with an implicit surface
Recall implicit surfaces: all points x such that f(x) = 0
Q: How do we find points where a ray pierces this surface?
Well, we know all points along the ray: r(t) = o + td
Idea: replace “x” with “r” in 1st equation, and solve for t
Example: unit sphere

quadratic formula:

Why two solutions?
o

d

 CMU 15-462/662

Ray-plane intersection
Suppose we have a plane NTx = c
- N - unit normal
- c - offset
How do we find intersection with ray r(t) = o + td?
Key idea: again, replace the point x with the ray equation t:

Now solve for t:

And plug t back into ray equation:

 CMU 15-462/662

Ray-triangle intersection
Triangle is in a plane...
Not much more to say!
- Compute ray-plane intersection
- Q: What do we do now?
- A: Why not compute barycentric coordinates of hit point?
- If barycentric coordinates are all positive, point in triangle
Actually, a lot more to say... if you care about performance!

 CMU 15-462/662

Why care about performance?

Intel Embree

NVIDIA OptiX

 CMU 15-462/662

Why care about performance?

“Brigade 3” real time path tracing demo

 CMU 15-462/662

One more query: mesh-mesh intersection
GEOMETRY: How do we know if a mesh intersects itself?
ANIMATION: How do we know if a collision occurred?

 CMU 15-462/662

Warm up: point-point intersection
Q: How do we know if p intersects a?
A: ...check if they’re the same point!

(p1, p2)

(a1, a2)

Sadly, life is not always so easy.

 CMU 15-462/662

Slightly harder: point-line intersection
Q: How do we know if a point intersects a given line?
A: ...plug it into the line equation!

p
NTx = c

I promise, life isn’t always so easy.

 CMU 15-462/662

Finally interesting: line-line intersection
Two lines: ax=b and cx=d
Q: How do we find the intersection?
A: See if there is a simultaneous solution
Leads to linear system:

 CMU 15-462/662

Degenerate line-line intersection?
What if lines are almost parallel?
Small change in normal can lead to big change in intersection!
Instability very common, very important with geometric
predicates. Demands special care (e.g., analysis of matrix).

See for example Shewchuk, “Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates”

 CMU 15-462/662

Triangle-Triangle Intersection?
Lots of ways to do it
Basic idea:
- Q: Any ideas?
- One way: reduce to edge-triangle intersection
- Check if each line passes through plane
- Then do interval test
What if triangle is moving?
- Important case for animation
- Can think of triangles as prisms in time
- Turns dynamic problem (nD + time) into purely

geometric problem in (n+1)-dimensions

 CMU 15-462/662

Up Next: Spatial Acceleration Data Strucutres
Testing every element is slow!
E.g., linearly scanning through a list vs. binary search
Can apply this same kind of thinking to geometric queries

