Geometric Queries

Computer Graphics
 CMU 15-462/15-662

First, a review and wrap-up from Wednesday

Quadric Error Metric

- Approximate distance to a collection of triangles

■ Q: Distance to plane w/ normal n passing through point \mathbf{p} ?

- $\mathbf{A}: \operatorname{dist}(\mathbf{x})=\langle\mathbf{n}, \mathbf{x}\rangle-\langle\mathbf{n}, \mathbf{p}\rangle=\langle\mathbf{n}, \mathbf{x}-\mathbf{p}\rangle$

■ Quadric error is then sum of squared point-to-plane distances:

Quadric Error - Homogeneous Coordinates

- Suppose in coordinates we have
- a query point $\mathbf{x}=(x, y, z)$
- \mathbf{a} normal $\mathbf{n}=(a, b, c)$
- an offset $d:=-\langle\mathbf{n}, \mathbf{p}\rangle$
- In homogeneous coordinates, let
- $\mathbf{u}:=(x, y, z, 1)$
$-\mathbf{v}:=(a, b, c, d)$

$$
K=\left[\begin{array}{llll}
a^{2} & a b & a c & a d \\
a b & b^{2} & b c & b d \\
a c & b c & c^{2} & c d \\
a d & b d & c d & d^{2}
\end{array}\right]
$$

- Signed distance to plane is then just $\langle\mathbf{u}, \mathbf{v}\rangle=a x+b y+c z+d$
- Squared distance is $\langle\mathbf{u}, \mathbf{v}\rangle^{2}=\mathbf{u}^{\top}\left(\mathbf{v} \mathbf{v}^{\top}\right) \mathbf{u}=: \mathbf{u}^{\top} K \mathbf{u}$
- Matrix $K=\mathbf{v} \mathbf{v}^{T}$ encodes squared distance to plane

Key idea: sum of matrices $K \Leftrightarrow$ distance to union of planes

$$
\mathbf{u}^{\top} K_{1} \mathbf{u}+\mathbf{u}^{\top} K_{2} \mathbf{u}=\mathbf{u}^{\top}\left(K_{1}+K_{2}\right) \mathbf{u}
$$

Quadric Error of Edge Collapse

■ How much does it cost to collapse an edge $e_{i j}$?

- Idea: compute midpoint \mathbf{m}, measure error $Q(\mathbf{m})=\mathbf{m}^{\top}\left(K_{i}+K_{j}\right) \mathbf{m}$
- Error becomes "score" for $e_{i j}$, determining priority

- Better idea: find point \mathbf{x} that minimizes error!
- Ok, but how do we minimize quadric error?

Review: Minimizing a Quadratic Function

- Suppose you have a function $f(x)=a x^{2}+b x+c$

■ Q: What does the graph of this function look like?

- Could also look like this!
- Q: How do we find the minimum?
- A: Find where the function looks "flat" if we zoom in really close

(What does x describe for the second function?)

Minimizing Quadratic Polynomial

- Not much harder to minimize a quadratic polynomial in n variables
- Can always write in terms of a symmetric matrix A
- E.g., in 2D: $f(x, y)=a x^{2}+b x y+c y^{2}+d x+e y+g$

$$
\begin{gathered}
\mathbf{x}=\left[\begin{array}{l}
x \\
y
\end{array}\right] \quad A=\left[\begin{array}{cc}
a & b / 2 \\
b / 2 & c
\end{array}\right] \quad \mathbf{u}=\left[\begin{array}{l}
d \\
e
\end{array}\right] \\
f(x, y)=\mathbf{x}^{\top} A \mathbf{x}+\mathbf{u}^{\top} \mathbf{x}+g
\end{gathered}
$$

(will have this same form for any n)

- Q: How do we find a critical point ($\mathrm{min} / \mathrm{max} / \mathrm{saddle}$)?
- A: Set derivative to zero!

$$
\begin{aligned}
& 2 A \mathbf{x}+\mathbf{u}=0 \\
& \mathbf{x}=-\frac{1}{2} A^{-1} \mathbf{u}
\end{aligned}
$$

Positive Definite Quadratic Form

■ Just like our 1D parabola, critical point is not always a min!

- Q: In 2D, 3D, nD, when do we get a minimum?

■ A: When matrix A is positive-definite:

$$
\mathbf{x}^{\top} A \mathbf{x}>0 \quad \forall \mathbf{x}
$$

- 1D: Must have $x a x=a x^{2}>0$. In other words: a is positive!
- 2D: Graph of function looks like a "bowl":

positive definite

Positive-definiteness extremely important in computer graphics: means we can find minimizers by solving linear equations. Starting point for many algorithms (geometry processing, simulation, ...)

Minimizing Quadric Error

- Find "best" point for edge collapse by minimizing quadratic form

$$
\min _{\mathbf{u} \in \mathbb{R}^{4}} \mathbf{u}^{T} K \mathbf{u}
$$

■ Already know fourth (homogeneous) coordinate for a point is 1

- So, break up our quadratic function into two pieces:

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\mathbf{x}^{\top} & 1
\end{array}\right]\left[\begin{array}{cc}
B & \mathbf{w} \\
\mathbf{w}^{\top} & d^{2}
\end{array}\right]\left[\begin{array}{c}
\mathbf{x} \\
1
\end{array}\right]} \\
& \quad=\mathbf{x}^{\top} B \mathbf{x}+2 \mathbf{w}^{\top} \mathbf{x}+d^{2}
\end{aligned}
$$

- Now we have a quadratic polynomial in the unknown position $x \in \mathbb{R}^{3}$
- Can minimize as before:

$$
2 B \mathbf{x}+2 \mathbf{w}=0 \quad \Longleftrightarrow \quad \mathbf{x}=-B^{-1} \mathbf{w}
$$

Q: Why should B be positive-definite?

Quadric Error Simplification: Final Algorithm

- Compute K for each triangle (squared distance to plane)
- Set K_{i} at each vertex to sum of K s from incident triangles
- For each edge $e_{i j}$:
- set $K_{i j}=K_{i}+K_{j}$
- find point x minimizing error, set cost to $K_{i j}(\mathbf{x})$
- Until we reach target number of triangles:
- collapse edge $e_{i j}$ with smallest cost to optimal point \mathbf{x}
- set quadric at new vertex to $K_{i j}$
- update cost of edges touching new vertex

■ More details in assignment writeup!

Quadric Simplification—Flipped Triangles

- Depending on where we put the new vertex, one of the new triangles might be "flipped" (normal points in instead of out):

- Easy solution: for each triangle $i j k$ touching collapsed vertex i, consider normals $N_{i j k}$ and $N_{k j l}$ (where $k j l$ is other triangle containing edge $j k$)
- If $\left\langle N_{i j k}, N_{k j}\right\rangle$ is negative, don't collapse this edge!

What if we're happy with the number of triangles, but want to improve quality?

How do we make a mesh "more Delaunay"?

- Already have a good tool: edge flips!
- If $\alpha+\beta>\pi$, flip it!

- FACT: in 2D, flipping edges eventually yields Delaunay mesh
- Theory: worst case $O\left(n^{2}\right)$; doesn't always work for surfaces in 3D

■ Practice: simple, effective way to improve mesh quality

Alternatively: how do we improve degree?

- Same tool: edge flips!
- If total deviation from degree-6 gets smaller, flip it!

total deviation: $\left|d_{i}-6\right|+\left|d_{j}-6\right|+\left|d_{k}-6\right|+\left|d_{l}-6\right|$
- FACT: average degree approaches 6 as number of elements increases
- Iterative edge flipping acts like "discrete diffusion" of degree
- No (known) guarantees; works well in practice

How do we make a triangles "more round"?

- Delaunay doesn't guarantee triangles are "round" (angles near 60°)
- Can often improve shape by centering vertices:

- Simple version of technique called "Laplacian smoothing"
- On surface: move only in tangent direction
- How? Remove normal component from update vector

Isotropic Remeshing Algorithm

- Try to make triangles uniform shape \& size
- Repeat four steps:
- Split any edge over 4/3rds mean edge length
- Collapse any edge less than 4/5ths mean edge length
- Flip edges to improve vertex degree
- Center vertices tangentially

What can go wrong when you resample a signal?

Danger of Resampling

Q: What happens if we repeatedly resample an image?

A: Signal quality degrades!

Danger of Resampling

Q: What happens if we repeatedly resample a mesh?

A: Signal also degrades!

But wait: we have the original signal (mesh). Why not just project each new sample point onto the closest point of the original mesh?

How do we project onto the original surface?

- Q: Given a point, in space, how do we find the closest point on a surface? Are we inside or outside the surface? How do we find intersection of two triangles? Etc.
- Do implicit/explicit representations make such tasks easier?
- What's the cost of the naïve algorithm, and how do we accelerate such queries for large meshes?
- So many questions!

Geometric Queries—Motivation

Many types of geometric queries

- Already identified need for "closest point" query
- Plenty of other things we might like to know:
- Do two triangles intersect?
- Are we inside or outside an object?
- Does one object contain another?
- Data structures we've seen so far not really designed for this...
- Need some new ideas!
- TODAY: come up with simple (read: slow) algorithms.
- NEXT TIME: intelligent ways to accelerate geometric queries.

Warm up: closest point on point

- Goal is to find the point on a mesh closest to a given point.
- Much simpler question: given a query point (p1,p2), how do we find the closest point on the point (a1,a2)?

Bonus question: what's the distance?

Slightly harder: closest point on line

■ Now suppose I have a line $N^{\top} x=c$, where N is the unit normal

- How do I find the point closest to my query point p?

Harder: closest point on line segment

- Two cases: endpoint or interior
- Already have basic components:
- point-to-point
- point-to-line
- Algorithm?
- find closest point on line
- check if it's between endpoints
- if not, take closest endpoint

■ How do we know if it's between endpoints?

- write closest point on line as $a+t(b-a)$

- if t is between 0 and 1 , it 's inside the segment!

Even harder: closest point on triangle

- What are all the possibilities for the closest point?
- Almost just minimum distance to three segments:

Q: What about a point inside the triangle?

Closest point on triangle in 3D

- Not so different from 2D case
- Algorithm?
- project onto plane of triangle
- use half-space tests to classify point (vs. half plane)
- if inside the triangle, we're done!
- otherwise, find closest point on associated vertex or edge
- By the way, how do we find closest point on plane?
- Same expression as closest point on a line!
- E.g., p + (c - $N^{\top} p$) N

Closest point on triangle mesh in 3D?

- Conceptually easy:
- loop over all triangles
- compute closest point to current triangle
- keep globally closest point
- Q: What's the cost?
- What if we have billions of faces?

■ NEXT TIME: Better data structures!

Closest point to implicit surface?

- If we change our representation of geometry, algorithms can change completely
- E.g. how might we compute the closest point on an implicit surface described via its distance function?
- One idea:
- start at the query point
- compute gradient of distance (using, e.g., finite differences)
- take a little step (decrease distance)
- repeat until we're at the surface (zero distance)
- Better yet:just store closest point for each grid cell! (speed/memory
 trade off)

Different query: ray-mesh intersection

- A "ray" is an oriented line starting at a point
- Think about a ray of light traveling from the sun

■ Want to know where a ray pierces a surface

- Why?
- GEOMETRY: inside-outside test
- RENDERING: visibility, ray tracing
- ANIMATION: collision detection
- Might pierce surface in many places!

Ray equation

- Can express ray as

Intersecting a ray with an implicit surface

- Recall implicit surfaces: all points x such that $\mathrm{f}(\mathrm{x})=0$
- Q: How do we find points where a ray pierces this surface?
- Well, we know all points along the ray: $r(t)=0+t d$
- Idea: replace " x " with " r " in 1st equation, and solve for t
- Example: unit sphere

$$
\begin{aligned}
& f(\mathbf{x})=|\mathbf{x}|^{2}-1 \\
& \Rightarrow f(\mathbf{r}(t))=|\mathbf{o}+t \mathbf{d}|^{2}-1 \\
& \underbrace{|\mathbf{d}|^{2}}_{a} t^{2}+\underbrace{2(\mathbf{o} \cdot \mathbf{d})}_{b} t+\underbrace{|\mathbf{o}|^{2}-1}_{c}=0
\end{aligned}
$$

$$
t=\boxed{-\mathbf{o} \cdot \mathbf{d} \pm \sqrt{(\mathbf{o} \cdot \mathbf{d})^{2}-|\mathbf{o}|^{2}+1}}
$$

quadratic formula:

$$
t=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Why two solutions?

Ray-plane intersection

- Suppose we have a plane $\mathrm{N}^{\top} \mathrm{x}=\mathrm{c}$
- N-unit normal
- c-offset

- How do we find intersection with ray $\mathrm{r}(\mathrm{t})=0+\mathrm{td}$?
- Key idea: again, replace the point x with the ray equation t :

$$
\mathbf{N}^{\top} \mathbf{r}(t)=c
$$

- Now solve for t:

$$
\mathbf{N}^{\top}(\mathbf{o}+t \mathbf{d})=c \quad \Rightarrow t=\frac{c-\mathbf{N}^{\top} \mathbf{o}}{\mathbf{N}^{\top} \mathbf{d}}
$$

- And plug t back into ray equation:

$$
r(t)=\mathbf{o}+\frac{c-\mathbf{N}^{\top} \mathbf{o}}{\mathbf{N}^{\top} \mathbf{d}} \mathbf{d}
$$

Ray-triangle intersection

- Triangle is in a plane...
- Not much more to say!
- Compute ray-plane intersection

- Q: What do we do now?
- A: Why not compute barycentric coordinates of hit point?
- If barycentric coordinates are all positive, point in triangle
- Actually, a lot more to say... if you care about performance!

> Google

\square
${ }^{75}$ Optimizing Ray-Triangle Intersection via Automated Search wwies utah edd-aporenoacheriangle pof * Urivernty of Utah * by A Koniler. Cled by 33 . Revirned atsices

Frn Comparative Study of Ray-Triangle Intersection Algorithms
Www graphicen futemproceedingr2012 - ge2012Shumsiypd! -
by V blurakiy-Coedty 1 - Alatasd articen

Why care about performance?

Intel Embree

NVIDIA OptiX

Why care about performance?

"Brigade 3" real time path tracing demo

One more query: mesh-mesh intersection

■ GEOMETRY: How do we know if a mesh intersects itself?

- ANIMATION: How do we know if a collision occurred?

Warm up: point-point intersection

- Q: How do we know if pintersects a?
- A: ...check if they're the same point!
(p1, p2)
(a1, a2)

Sadly, life is not always so easy.

Slightly harder: point-line intersection

- Q: How do we know if a point intersects a given line?
- A: ...plug it into the line equation!

Finally interesting: line-line intersection

- Two lines: $a x=b$ and $c x=d$

■ Q: How do we find the intersection?

- A: See if there is a simultaneous solution
\square Leads to linear system: $\left[\begin{array}{ll}a_{1} & a_{2} \\ c_{1} & c_{2}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=$

Degenerate line-line intersection?

- What if lines are almost parallel?
- Small change in normal can lead to big change in intersection!
- Instability very common, very important with geometric predicates. Demands special care (e.g., analysis of matrix).

Triangle-Triangle Intersection?

- Lots of ways to do it
- Basic idea:
- Q: Any ideas?

- One way: reduce to edge-triangle intersection
- Check if each line passes through plane
- Then do interval test
- What if triangle is moving?
- Important case for animation

- Can think of triangles as prisms in time
- Turns dynamic problem (nD + time) into purely geometric problem in ($n+1$)-dimensions

Up Next: Spatial Acceleration Data Strucutres

- Testing every element is slow!
- E.g., linearly scanning through a list vs. binary search
- Can apply this same kind of thinking to geometric queries

