Meshes and Geometry Processing
Last time: overview of geometry

- Many types of geometry in nature
- Demand sophisticated representations
- Two major categories:
 - IMPLICIT - “tests” if a point is in shape
 - EXPLICIT - directly “lists” points
- Lots of representations for both
- Introduction to manifold geometry

Today:
- nuts & bolts of polygon meshes
- geometry processing / resampling
From Monday: A manifold polygon mesh has fans, not fins

- For polygonal surfaces just two easy conditions to check:
 1. Every edge is contained in only two polygons (no “fins”)
 2. The polygons containing each vertex make a single “fan”
Ok, but why is the manifold assumption useful?
Keep it Simple!

- Same motivation as for images:
 - make some assumptions about our geometry to keep data structures/algorithms simple and efficient
 - in many common cases, doesn’t fundamentally limit what we can do with geometry

<table>
<thead>
<tr>
<th></th>
<th>(i,j-1)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(i-1,j)</td>
<td>(i,j)</td>
<td>(i+1,j)</td>
</tr>
<tr>
<td></td>
<td>(i,j+1)</td>
<td></td>
</tr>
</tbody>
</table>
How do we actually encode all this data?
Warm up: storing numbers

Q: What data structures can we use to store a list of numbers?
- One idea: use an array (constant time lookup, coherent access)

| 1.7 | 2.9 | 0.3 | 7.5 | 9.2 | 4.8 | 6.0 | 0.1 |

Alternative: use a linked list (linear lookup, incoherent access)

Q: Why bother with the linked list?
- A: For one, we can easily insert numbers wherever we like...
Polygon Soup

- Most basic idea:
 - For each triangle, just store three coordinates
 - No other information about connectivity
 - Not much different from point cloud! ("Triangle cloud??")

- Pros:
 - Really stupidly simple

- Cons:
 - Redundant storage
 - Hard to do much beyond simply drawing the mesh on screen
 - Need spatial data structures (later) to find neighbors
Adjacency List (Array-like)

- Store triples of coordinates \((x,y,z)\), tuples of indices
- E.g., tetrahedron:

<table>
<thead>
<tr>
<th>VERTICES</th>
<th>POLYgons</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(i)</td>
</tr>
<tr>
<td>0: -1</td>
<td>-1</td>
</tr>
<tr>
<td>1: 1</td>
<td>-1</td>
</tr>
<tr>
<td>2: 1</td>
<td>1</td>
</tr>
<tr>
<td>3: -1</td>
<td>1</td>
</tr>
</tbody>
</table>

Q: How do we find all the polygons touching vertex 2?

0k, now consider a more complicated mesh:

Very expensive to find the neighboring polygons! (What’s the cost?)
Incidence Matrices

- If we want to know who our neighbors are, why not just store a list of neighbors?
- Can encode all neighbor information via incidence matrices
- E.g., tetrahedron:

<table>
<thead>
<tr>
<th>VERTEX ↔ EDGE</th>
<th>EDGE ↔ FACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>v0 v1 v2 v3</td>
<td>e0 e1 e2 e3 e4 e5</td>
</tr>
<tr>
<td>e0 1 1 0 0</td>
<td>f0 1 0 0 1 0 1</td>
</tr>
<tr>
<td>e1 0 1 1 0</td>
<td>f1 0 1 0 0 1 1</td>
</tr>
<tr>
<td>e2 1 0 1 0</td>
<td>f2 1 1 1 0 0 0</td>
</tr>
<tr>
<td>e3 1 0 0 1</td>
<td>f3 0 0 1 1 1 0</td>
</tr>
<tr>
<td>e4 0 0 1 1</td>
<td></td>
</tr>
<tr>
<td>e5 0 1 0 1</td>
<td></td>
</tr>
</tbody>
</table>

 1 means “touches”; 0 means “does not touch”

- Instead of storing lots of 0’s, use sparse matrices
- Still large storage cost, but finding neighbors is now $O(1)$
- Hard to change connectivity, since we used fixed indices
- Bonus feature: mesh does not have to be manifold
Halfedge Data Structure (Linked-list-like)

- Store some information about neighbors
- Don’t need an exhaustive list; just a few key pointers
- Key idea: two halfedges act as “glue” between mesh elements:

```c
struct Halfedge
{
    Halfedge* twin;
    Halfedge* next;
    Vertex* vertex;
    Edge* edge;
    Face* face;
};
```

- Each vertex, edge face points to just one of its halfedges.
Halfedge makes mesh traversal easy

- Use “twin” and “next” pointers to move around mesh
- Use “vertex”, “edge”, and “face” pointers to grab element
- Example: visit all vertices of a face:
  ```
  Halfedge* h = f->halfedge;
  do {
    h = h->next;
    // do something w/ h->vertex
  }
  while( h != f->halfedge );
  ```
- Example: visit all neighbors of a vertex:
  ```
  Halfedge* h = v->halfedge;
  do {
    h = h->twin->next;
  }
  while( h != v->halfedge );
  ```
- Note: only makes sense if mesh is manifold!
Halfedge connectivity is always manifold

- Consider simplified halfedge data structure
- Require only “common-sense” conditions

```c
struct Halfedge {
    Halfedge *next, *twin;
};
```

twin->twin == this
twin != this
every he is someone’s “next”

- Keep following `next`, and you’ll get faces.
- Keep following `twin` and you’ll get edges.
- Keep following `next->twin` and you’ll get vertices.

Q: Why, therefore, is it impossible to encode the red figures?
Connectivity vs. Geometry

- Recall manifold conditions (fans not fins):
 - every edge contained in two faces
 - every vertex contained in one fan

- These conditions say nothing about vertex positions! Just connectivity

- Hence, can have perfectly good (manifold) connectivity, even if geometry is awful

- In fact, sometimes you can have perfectly good manifold connectivity for which any vertex positions give “bad” geometry!

- Can lead to confusion when debugging: mesh looks “bad”, even though connectivity is fine
Halfedge meshes are easy to edit

- Remember key feature of linked list: insert/delete elements
- Same story with halfedge mesh (“linked list on steroids”)
- E.g., for triangle meshes, several atomic operations:

 ![Diagram showing atomic operations: flip, split, collapse]

- Must be careful to preserve manifoldness!
Edge Flip (Triangles)

- Triangles \((a,b,c), (b,d,c)\) become \((a,d,c), (a,b,d)\):

- Long list of pointer reassignments \((\text{edge} -> \text{halfedge} = \ldots)\)
- However, no elements created/destroyed.
- Q: What happens if we flip twice?
- Challenge: can you implement edge flip such that pointers are unchanged after two flips?
Edge Split (Triangles)

- Insert midpoint \(m \) of edge \((c,b)\), connect to get four triangles:

- This time, have to add new elements.
- Lots of pointer reassignments.
- Q: Can we “reverse” this operation?
Edge Collapse (Triangles)

- Replace edge \((b,c)\) with a single vertex \(m\):

![Diagram showing edge collapse](attachment:image)

- Now have to delete elements.
- Still lots of pointer assignments!
- Q: How would we implement this with an adjacency list?
- Any other good way to do it? (E.g., different data structure?)
Alternatives to Halfedge

- Many very similar data structures:
 - winged edge
 - corner table
 - quadedge
 - ...

- Each stores local neighborhood information

- Similar tradeoffs relative to simple polygon list:
 - **CONS**: additional storage, incoherent memory access
 - **PROS**: better access time for individual elements, intuitive traversal of local neighborhoods

- With some thought*, can design halfedge-type data structures with coherent data storage, support for non manifold connectivity, etc.

*see for instance http://geometry-central.net/
Comparison of Polygon Mesh Data Structures

<table>
<thead>
<tr>
<th></th>
<th>Adjacency List</th>
<th>Incidence Matrices</th>
<th>Halfedge Mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant-time neighborhood access?</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>easy to add/remove mesh elements?</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>nonmanifold geometry?</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
</tbody>
</table>

Conclusion: pick the right data structure for the job!
Ok, but what can we actually do with our fancy new data structures?
Subdivision Modeling

- Common modeling paradigm in modern 3D tools:
 - Coarse “control cage”
 - Perform local operations to control/edit shape
 - Global subdivision process determines final surface
Subdivision Modeling—Local Operations

For general polygon meshes, we can dream up lots of local mesh operations that might be useful for modeling:

...and many, many more!
What else can we do with geometric data?
Geometry Processing

- reconstruction
- remeshing
- shape analysis
- parameterization
- filtering
- compression
Geometry Processing: Reconstruction

- Given samples of geometry, reconstruct surface
- What are “samples”? Many possibilities:
 - points, points & normals, ...
 - image pairs / sets (multi-view stereo)
 - line density integrals (MRI/CT scans)
- How do you get a surface? Many techniques:
 - silhouette-based (visual hull)
 - Voronoi-based (e.g., power crust)
 - PDE-based (e.g., Poisson reconstruction)
 - Radon transform / isosurfacing (marching cubes)
Geometry Processing: Upsampling

- Increase resolution via interpolation
- Images: e.g., bilinear, bicubic interpolation
- Polygon meshes:
 - subdivision
 - bilateral upsampling
 - ...

![Images and diagrams related to upsampling techniques.](image-url)
Geometry Processing: Downsampling

- Decrease resolution; try to preserve shape/appearance
- Images: nearest-neighbor, bilinear, bicubic interpolation
- Point clouds: subsampling (just take fewer points!)
- Polygon meshes:
 - iterative decimation, variational shape approximation, ...
Geometry Processing: Resampling

- Modify sample distribution to improve quality
- Images: not an issue! (Pixels always stored on a regular grid)
- Meshes: shape of polygons is extremely important!
 - different notion of “quality” depending on task
 - e.g., visualization vs. solving equations
Geometry Processing: Filtering

- Remove noise, or emphasize important features (e.g., edges)
- Images: blurring, bilateral filter, edge detection, ...
- Polygon meshes:
 - curvature flow
 - bilateral filter
 - spectral filter
Geometry Processing: Compression

- Reduce storage size by eliminating redundant data/approximating unimportant data

- Images:
 - run-length, Huffman coding - lossless
 - cosine/wavelet (JPEG/MPEG) - lossy

- Polygon meshes:
 - compress geometry and connectivity
 - many techniques (lossy & lossless)
Geometry Processing: Shape Analysis

- Identify/understand important semantic features
- Images: computer vision, segmentation, face detection, ...
- Polygon meshes:
 - segmentation, correspondence, symmetry detection, ...

Extrinsic symmetry

Intrinsic symmetry
Enough overview—
Let’s process some geometry!
Remeshing as resampling

- Remember our discussion of aliasing
- Bad sampling makes signal appear different than it really is
- E.g., undersampled curve looks flat
- Geometry is no different!
 - undersampling destroys features
 - oversampling bad for performance
What makes a “good” mesh?

- One idea: good approximation of original shape!
- Keep only elements that contribute information about shape
- Add additional information where, e.g., curvature is large
Approximation of position is not enough!

- Just because the vertices of a mesh are close to the surface it approximates does not mean it's a good approximation!
- Can still have wrong appearance, wrong area, wrong...
- Need to consider other factors*, e.g., close approximation of surface normals

What else makes a “good” triangle mesh?

- Another rule of thumb: triangle

 - E.g., all angles close to 60 degrees
 - More sophisticated condition: Delaunay (empty circumcircles)
 - often helps with numerical accuracy/stability
 - coincides with shockingly many other desirable properties
 (maximizes minimum angle, provides smoothest interpolation, guarantees maximum principle…)
 - Tradeoffs w/ good geometric approximation*
 - e.g., long & skinny might be “more efficient”

*see Shewchuk, “What is a Good Linear Element”
What else constitutes a “good” mesh?

- Another rule of thumb: regular vertex degree
- Degree 6 for triangle mesh, 4 for quad mesh

“GOOD”

“OK”

“BAD”

Why? Better polygon shape; more regular computation; smoother subdivision:

Fact: in general, can’t have regular vertex degree everywhere!
How do we upsample a mesh?
Upsampling via Subdivision

- Repeatedly split each element into smaller pieces
- Replace vertex positions with weighted average of neighbors

Main considerations:
- interpolating vs. approximating
- limit surface continuity ($C^1, C^2, ...$)
- behavior at irregular vertices

Many options:
- Quad: Catmull-Clark
- Triangle: Loop, Butterfly, Sqrt(3)
Catmull-Clark Subdivision

- **Step 0:** split every polygon (any # of sides) into quadrilaterals:

- **New vertex positions are weighted combination of old ones:**

 STEP 1: Face coords
 \[p_i \]
 \[\frac{1}{n} \sum_{i} p_i \]

 STEP 2: Edge coords
 \[(a+b+c+d)/4 \]

 STEP 3: Vertex coords

 New vertex coords:
 \[\frac{Q + 2R + (n-3)S}{n} \]

 - \(n \) – vertex degree
 - \(Q \) – average of face coords around vertex
 - \(R \) – average of edge coords around vertex
 - \(S \) – original vertex position
Catmull-Clark on quad mesh

few irregular vertices

⇒ smoothly-varying surface normals

smooth reflection lines

smooth caustics
Catmull-Clark on triangle mesh

- many irregular vertices
 ⇒ erratic surface normals
- jagged reflection lines
- jagged caustics
Loop Subdivision

- Alternative subdivision scheme for triangle meshes
- Curvature is continuous away from irregular vertices ("C^2")

Algorithm:
- Split each triangle into four
- Assign new vertex positions according to weights:

\[u = \begin{cases} \frac{3}{16} & \text{if } n = 3, \\ \frac{3}{8n} & \text{otherwise} \end{cases} \]

\[1 - nu \]

n: vertex degree
u: 3/16 if n=3, 3/(8n) otherwise
Loop Subdivision via Edge Operations

- First, split edges of original mesh in any order:

- Next, flip new edges that touch a new & old vertex:

(Don’t forget to update vertex positions!)

Images cribbed from Denis Zorin.
What if we want fewer triangles?
Simplification via Edge Collapse

- One popular scheme: iteratively collapse edges
- Greedy algorithm:
 - assign each edge a cost
 - collapse edge with least cost
 - repeat until target number of elements is reached
- Particularly effective cost function: quadric error metric*

*invented at CMU (Garland & Heckbert 1997)
Quadric Error Metric

- Approximate distance to a collection of triangles
- Q: Distance to plane w/ normal n passing through point p?
- A: $\text{dist}(x) = \langle n, x \rangle - \langle n, p \rangle = \langle n, x - p \rangle$
- Quadric error is then sum of squared point-to-plane distances:

$$Q(x) := \sum_{i=1}^{k} \langle n_i, x - p \rangle^2$$
Quadric Error - Homogeneous Coordinates

- Suppose in coordinates we have
 - a query point \(\mathbf{x} = (x, y, z) \)
 - a normal \(\mathbf{n} = (a, b, c) \)
 - an offset \(d := -\langle \mathbf{n}, \mathbf{p} \rangle \)
- In homogeneous coordinates, let
 - \(\mathbf{u} := (x, y, z, 1) \)
 - \(\mathbf{v} := (a, b, c, d) \)
- Signed distance to plane is then just \(\langle \mathbf{u}, \mathbf{v} \rangle = ax + by + cz + d \)
- Squared distance is \(\langle \mathbf{u}, \mathbf{v} \rangle^2 = \mathbf{u}^T(\mathbf{v}\mathbf{v}^T)\mathbf{u} =: \mathbf{u}^T\mathbf{K}\mathbf{u} \)
- Matrix \(\mathbf{K} = \mathbf{v}\mathbf{v}^T \) encodes squared distance to plane

Key idea: sum of matrices \(\mathbf{K} \) \iff distance to union of planes

\[
\mathbf{u}^T\mathbf{K}_1\mathbf{u} + \mathbf{u}^T\mathbf{K}_2\mathbf{u} = \mathbf{u}^T(\mathbf{K}_1 + \mathbf{K}_2)\mathbf{u}
\]
Quadric Error of Edge Collapse

- How much does it cost to collapse an edge e_{ij}?
- Idea: compute midpoint m, measure error $Q(m) = m^T(K_i + K_j)m$
- Error becomes “score” for e_{ij}, determining priority

Better idea: find point x that minimizes error!

Ok, but how do we minimize quadric error?
Review: Minimizing a Quadratic Function

- Suppose you have a function $f(x) = ax^2 + bx + c$
- Q: What does the graph of this function look like?
- Could also look like this!
- Q: How do we find the minimum?
- A: Find where the function looks “flat” if we zoom in really close
- I.e., find point x where 1st derivative vanishes:

 \[
 f'(x) = 0 \quad 2ax + b = 0 \quad x = -b/2a
 \]

(What does x describe for the second function?)
Minimizing Quadratic Polynomial

- Not much harder to minimize a quadratic polynomial in n variables
- Can always write in terms of a symmetric matrix A
- E.g., in 2D: $f(x, y) = ax^2 + bxy + cy^2 + dx + ey + g$

$x = \begin{bmatrix} x \\ y \end{bmatrix}$ \quad $A = \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix}$ \quad $u = \begin{bmatrix} d \\ e \end{bmatrix}$

$f(x, y) = x^\top A x + u^\top x + g$

(will have this same form for any n)

Q: How do we find a critical point (min/max/saddle)?

A: Set derivative to zero!

$2Ax + u = 0$

$x = -\frac{1}{2}A^{-1}u$

(compare with our 1D solution)

$x = -\frac{b}{2a}$

(Can you show this is true, at least in 2D?)
Positive Definite Quadratic Form

- Just like our 1D parabola, critical point is not always a min!
- Q: In 2D, 3D, nD, when do we get a minimum?
- A: When matrix A is positive-definite:

$$ x^T A x > 0 \quad \forall x $$

- 1D: Must have $x ax = ax^2 > 0$. In other words: a is positive!
- 2D: Graph of function looks like a “bowl”:

Positive-definiteness extremely important in computer graphics: means we can find minimizers by solving linear equations. Starting point for many algorithms (geometry processing, simulation, ...)
Minimizing Quadric Error

- Find “best” point for edge collapse by minimizing quadratic form
 \[\min_{u \in \mathbb{R}^4} u^T K u \]
- Already know fourth (homogeneous) coordinate for a point is 1
- So, break up our quadratic function into two pieces:
 \[
 \begin{bmatrix}
 x^T & 1
 \end{bmatrix}
 \begin{bmatrix}
 B & w \\
 w^T & d^2
 \end{bmatrix}
 \begin{bmatrix}
 x \\
 1
 \end{bmatrix}
 = x^T B x + 2 w^T x + d^2
 \]
- Now we have a quadratic polynomial in the unknown position \(x \in \mathbb{R}^3 \)
- Can minimize as before:
 \[2 B x + 2 w = 0 \quad \iff \quad x = - B^{-1} w \]

Q: Why should \(B \) be positive-definite?
Quadric Error Simplification: Final Algorithm

- Compute K for each triangle (squared distance to plane)
- Set K_i at each vertex to sum of Ks from incident triangles
- For each edge e_{ij}:
 - set $K_{ij} = K_i + K_j$
 - find point x minimizing error, set cost to $K_{ij}(x)$
- Until we reach target number of triangles:
 - collapse edge e_{ij} with smallest cost to optimal point x
 - set quadric at new vertex to K_{ij}
 - update cost of edges touching new vertex
- More details in assignment writeup!
Quadric Simplification—Flipped Triangles

Depending on where we put the new vertex, one of the new triangles might be “flipped” (normal points in instead of out):

- Easy solution: for each triangle ijk touching collapsed vertex i, consider normals N_{ijk} and N_{kjl} (where kjl is other triangle containing edge jk)
- If $\langle N_{ijk}, N_{kjl} \rangle$ is negative, don’t collapse this edge!
What if we’re happy with the number of triangles, but want to improve quality?
How do we make a mesh “more Delaunay”?

- Already have a good tool: edge flips!
- If $\alpha + \beta > \pi$, flip it!

FACT: in 2D, flipping edges eventually yields Delaunay mesh

Theory: worst case $O(n^2)$; doesn’t always work for surfaces in 3D

Practice: simple, effective way to improve mesh quality
Alternatively: how do we improve degree?

- Same tool: edge flips!
- If total deviation from degree-6 gets smaller, flip it!

![Diagram showing edge flipping]

FACT: average degree approaches 6 as number of elements increases

- Iterative edge flipping acts like “discrete diffusion” of degree
- No (known) guarantees; works well in practice

total deviation: \[|d_i - 6| + |d_j - 6| + |d_k - 6| + |d_l - 6|\]
How do we make a triangles “more round”?

- Delaunay doesn’t guarantee triangles are “round” (angles near 60°)
- Can often improve shape by centering vertices:

 ![Diagram showing Delaunay triangulation before and after centering vertices]

- Simple version of technique called “Laplacian smoothing”
- On surface: move only in tangent direction
- How? Remove normal component from update vector
Isotropic Remeshing Algorithm

- Try to make triangles uniform shape & size
- Repeat four steps:
 - Split any edge over 4/3rds mean edge length
 - Collapse any edge less than 4/5ths mean edge length
 - Flip edges to improve vertex degree
 - Center vertices tangentially

Based on: Botsch & Kobbelt, “A Remeshing Approach to Multiresolution Modeling”
What can go wrong when you resample a signal?
Danger of Resampling

Q: What happens if we repeatedly resample an image?

A: Signal quality degrades!
Danger of Resampling

Q: What happens if we repeatedly resample a mesh?

A: Signal also degrades!
But wait: we have the original signal (mesh). Why not just project each new sample point onto the closest point of the original mesh?
Next Time: Geometric Queries

- Q: Given a point, in space, how do we find the closest point on a surface? Are we inside or outside the surface? How do we find intersection of two triangles? Etc.
- Do implicit/explicit representations make such tasks easier?
- What’s the cost of the naïve algorithm, and how do we accelerate such queries for large meshes?
- So many questions!