3D Rotations and Complex Representations

Computer Graphics
CMU 15-462/15-662
Reminder: Mini HW2 due Monday before class
Rotations in 3D

- What is a rotation, intuitively?

- How do you know a rotation when you see it?
 - length/distance is preserved (no stretching/shearing)
 - orientation is preserved (e.g., text remains readable)
 - origin is preserved (otherwise it’s a rotation + translation)
3D Rotations—Degrees of Freedom

- How many numbers do we need to specify a rotation in 3D?
- For instance, we could use rotations around X, Y, Z. But do we need all three?
- Well, to rotate Pittsburgh to another city (say, São Paulo), we have to specify two numbers: latitude & longitude:
- Do we really need both latitude and longitude? Or will one suffice?
- Is that the only rotation from Pittsburgh to São Paulo? (How many more numbers do we need?)

NO: We can keep São Paulo fixed as we rotate the globe.

Hence, we MUST have three degrees of freedom.
Commutativity of Rotations—2D

In 2D, order of rotations doesn’t matter:

Same result! (“2D rotations commute”)
Commutativity of Rotations—3D

- What about in 3D?
- Try it at home—grab a water bottle!
 - Rotate 90° around Y, then 90° around Z, then 90° around X
 - Rotate 90° around Z, then 90° around Y, then 90° around X
 - (Was there any difference?)

CONCLUSION: bad things can happen if we’re not careful about the order in which we apply rotations!
First things first: how do we get a rotation matrix in 2D? (Don’t just regurgitate the formula!)

Suppose I have a function $S(\theta)$ that for a given angle θ gives me the point (x,y) around a circle (CCW).

- Right now, I do not care how this function is expressed!*

What’s e_1 rotated by θ? $\tilde{e}_1 = S(\theta)$

What’s e_2 rotated by θ? $\tilde{e}_2 = S(\theta + \pi/2)$

How about $u := a e_1 + b e_2$?

$$u := a S(\theta) + b S(\theta + \pi/2)$$

What then must the matrix look like?

$$\begin{bmatrix} S(\theta) & S(\theta + \pi/2) \end{bmatrix} = \begin{bmatrix} \cos(\theta) & \cos(\theta + \pi/2) \\ \sin(\theta) & \sin(\theta + \pi/2) \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

*I.e., I don’t yet care about sines and cosines and so forth.
How do we express rotations in 3D?
One idea: we know how to do 2D rotations.
Why not simply apply rotations around the three axes? (X,Y,Z)
Scheme is called Euler angles
“Gimbal Lock”
Gimbal Lock

- When using Euler angles θ_x, θ_y, θ_z, may reach a configuration where there is no way to rotate around one of the three axes!

- Recall rotation matrices around three axes:

\[
R_x = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \theta_x & -\sin \theta_x \\
0 & \sin \theta_x & \cos \theta_x \\
\end{bmatrix} \quad R_y = \begin{bmatrix}
\cos \theta_y & 0 & \sin \theta_y \\
0 & 1 & 0 \\
-\sin \theta_y & 0 & \cos \theta_y \\
\end{bmatrix} \quad R_z = \begin{bmatrix}
\cos \theta_z & -\sin \theta_z & 0 \\
\sin \theta_z & \cos \theta_z & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

- Product of these matrices represents rotation by Euler angles:

\[
R_x R_y R_z = \begin{bmatrix}
\cos \theta_y \cos \theta_z & -\cos \theta_y \sin \theta_z & \sin \theta_y \\
\cos \theta_z \sin \theta_x \sin \theta_y + \cos \theta_x \sin \theta_z & \cos \theta_x \cos \theta_z - \sin \theta_x \sin \theta_y \sin \theta_z & -\cos \theta_y \sin \theta_x \\
-\cos \theta_x \cos \theta_z \sin \theta_y + \sin \theta_x \sin \theta_z & \cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_y \sin \theta_z & \cos \theta_x \cos \theta_y \\
\end{bmatrix}
\]

- Consider special case $\theta_y = \pi/2$ (so, $\cos \theta_y = 0$, $\sin \theta_y = 1$):

\[
\Rightarrow \begin{bmatrix}
0 & 0 & 1 \\
\cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_z & \cos \theta_x \cos \theta_z - \sin \theta_x \sin \theta_z & 0 \\
-\cos \theta_x \cos \theta_z + \sin \theta_x \sin \theta_z & \cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_z & 0 \\
\end{bmatrix}
\]
Gimbal Lock, continued

- Simplifying matrix from previous slide, we get

\[
\begin{bmatrix}
0 & 0 & 1 \\
\sin(\theta_x + \theta_z) & \cos(\theta_x + \theta_z) & 0 \\
-\cos(\theta_x + \theta_z) & \sin(\theta_x + \theta_z) & 0 \\
\end{bmatrix}
\]

Q: What does this matrix do?

- We are now “locked” into a single axis of rotation
- Not a great design for airplane controls!
Rotation from Axis/Angle

Alternatively, there is a general expression for a matrix that performs a rotation around a given axis \(u \) by a given angle \(\theta \):

\[
\begin{bmatrix}
\cos \theta + u_x^2 (1 - \cos \theta) & u_x u_y (1 - \cos \theta) - u_z \sin \theta & u_x u_z (1 - \cos \theta) + u_y \sin \theta \\
u_y u_x (1 - \cos \theta) + u_z \sin \theta & \cos \theta + u_y^2 (1 - \cos \theta) & u_y u_z (1 - \cos \theta) - u_x \sin \theta \\
u_z u_x (1 - \cos \theta) - u_y \sin \theta & u_z u_y (1 - \cos \theta) + u_x \sin \theta & \cos \theta + u_z^2 (1 - \cos \theta)
\end{bmatrix}
\]

Just memorize this matrix! :-)

...we’ll see a much easier way, later on.
Complex Analysis—Motivation

- Natural way to encode geometric transformations in 2D
- Simplifies code / notation / debugging / thinking
- Moderate reduction in computational cost/bandwidth/storage
- Fluency with complex analysis can lead into deeper/novel solutions to problems...

Truly: no good reason to use 2D vectors instead of complex numbers...
DON’T: Think of these numbers as “complex.”

DO: Imagine we’re simply defining additional operations (like dot and cross).
Imaginary Unit

\[i \neq \sqrt{-1} \]

nonsense!

More importantly: obscures geometric meaning.
Imaginary unit is just a quarter-turn in the counter-clockwise direction.
Complex Numbers

- Complex numbers are then just 2-vectors
- Instead of e_1,e_1, use "1" and "ι" to denote the two bases
- Otherwise, behaves exactly like a real 2-dimensional space

...except that we’re also going to get a very useful new notion of the product between two vectors.
Complex Arithmetic

- Same operations as before, plus one more:
 - scalar multiplication
 - vector addition
 - complex multiplication

Complex multiplication:
- angles add
- magnitudes multiply

“POLAR FORM”*:

\[z_1 := (r_1, \theta_1) \]
\[z_2 := (r_2, \theta_2) \]
\[z_1 z_2 = (r_1 r_2, \theta_1 + \theta_2) \]

*Not quite how it really works, but basic idea is right.
Complex Product—Rectangular Form

- Complex product in “rectangular” coordinates \((1, i)\):

\[
\begin{align*}
z_1 &= (a + bi) \\
z_2 &= (c + di) \\
z_1z_2 &= ac + adi + bci + bdi^2 = \boxed{(ac - bd) + (ad + bc)i}.
\end{align*}
\]

- We used a lot of “rules” here. Can you justify them geometrically?

- Does this product agree with our geometric description (last slide)?
Complex Product—Polar Form

- Perhaps most beautiful identity in math:
 \[e^{i\pi} + 1 = 0 \]

- Specialization of Euler’s formula:
 \[e^{i\theta} = \cos(\theta) + i \sin(\theta) \]

- Can use to “implement” complex product:
 \[z_1 = ae^{i\theta}, \quad z_2 = be^{i\phi} \]
 \[z_1 z_2 = abe^{i(\theta + \phi)} \]

 (as with real exponentiation, exponents add)

Q: How does this operation differ from our earlier, “fake” polar multiplication?
2D Rotations: Matrices vs. Complex

Suppose we want to rotate a vector \(u \) by an angle \(\theta \), then by an angle \(\phi \).

<table>
<thead>
<tr>
<th>REAL / RECTANGULAR</th>
<th>COMPLEX / POLAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u = (x, y))</td>
<td>(u = re^{i\alpha})</td>
</tr>
<tr>
<td>(A = \begin{bmatrix} \cos \theta & -\sin \theta \ \sin \theta & \cos \theta \end{bmatrix})</td>
<td>(a = e^{i\theta})</td>
</tr>
<tr>
<td>(B = \begin{bmatrix} \cos \phi & -\sin \phi \ \sin \phi & \cos \phi \end{bmatrix})</td>
<td>(b = e^{i\phi})</td>
</tr>
</tbody>
</table>
| \(Au = \begin{bmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{bmatrix} \) | \(abu = re^{i(\alpha+\theta+\phi)} \).
| \(BAu = \begin{bmatrix} (x \cos \theta - y \sin \theta) \cos \phi - (x \sin \theta + y \cos \theta) \sin \phi \\ (x \cos \theta - y \sin \theta) \sin \phi + (x \sin \theta + y \cos \theta) \cos \phi \end{bmatrix} \) | |
| \[= \cdots \text{some trigonometry} \cdots = \] |
| \(BAu = \begin{bmatrix} x \cos(\theta + \phi) - y \sin(\theta + \phi) \\ x \sin(\theta + \phi) + y \cos(\theta + \phi) \end{bmatrix} \). | |
Pervasive theme in graphics:

Sure, there are often many “equivalent” representations.

...But why not choose the one that makes life easiest*?

*Or most efficient, or most accurate...
Quaternions

- TLDR: Kind of like complex numbers but for 3D rotations
- **Weird situation:** can’t do 3D rotations w/ only 3 components!

William Rowan Hamilton
(1805-1865)
Quaternions in Coordinates

- Hamilton’s insight: in order to do 3D rotations in a way that mimics complex numbers for 2D, actually need FOUR coords.
- One real, three imaginary:

\[\mathbb{H} := \text{span}(\{1, i, j, k\}) \]

\[q = a + bi + cj + dk \in \mathbb{H} \]

- Quaternion product determined by

\[i^2 = j^2 = k^2 = ijk = -1 \]

together w/ “natural” rules (distributivity, associativity, etc.)

- **WARNING**: product no longer commutes!

For \(q, p \in \mathbb{H}, \quad qp \neq pq \)

(Why might it make sense that it doesn’t commute?)
Quatertion Product in Components

- Given two quaternions
 \[q = a_1 + b_1i + c_1j + d_1k \]
 \[p = a_2 + b_2i + c_2j + d_2k \]

- Can express their product as
 \[
 qp = a_1a_2 - b_1b_2 - c_1c_2 - d_1d_2 \\
 + (a_1b_2 + b_1a_2 + c_1d_2 - d_1c_2)i \\
 + (a_1c_2 - b_1d_2 + c_1a_2 + d_1b_2)j \\
 + (a_1d_2 + b_1c_2 - c_1b_2 + d_1a_2)k
 \]

...fortunately there is a (much) nicer expression.
Quaternions—Scalar + Vector Form

- If we have four components, how do we talk about pts in 3D?
- Natural idea: we have three imaginary parts—why not use these to encode 3D vectors?

\[(x, y, z) \mapsto 0 + xi + yj + zk\]

- Alternatively, can think of a quaternion as a pair

\[(\text{scalar}, \text{vector}) \in \mathbb{H} \times \mathbb{R}^3\]

- Quaternion product then has simple(r) form:

\[(a, u)(b, v) = (ab - u \cdot v, av + bu + u \times v)\]

- For vectors in R3, gets even simpler:

\[uv = u \times v - u \cdot v\]
3D Transformations via Quaternions

- Main use for quaternions in graphics? Rotations.
- Consider vector x ("pure imaginary") and unit quaternion q:

$$x \in \text{Im}(\mathbb{H})$$

$$q \in \mathbb{H}, \quad |q|^2 = 1$$

always expresses some rotation
Rotation from Axis/Angle, Revisited

- Given axis u, angle θ, quaternion q representing rotation is

$$q = \cos(\theta/2) + \sin(\theta/2)u$$

- Much easier to remember (and manipulate) than matrix!

$$
\begin{bmatrix}
\cos \theta + u_x^2 (1 - \cos \theta) & u_x u_y (1 - \cos \theta) - u_z \sin \theta & u_x u_z (1 - \cos \theta) + u_y \sin \theta \\
u_y u_x (1 - \cos \theta) + u_z \sin \theta & \cos \theta + u_y^2 (1 - \cos \theta) & u_y u_z (1 - \cos \theta) - u_x \sin \theta \\
u_z u_x (1 - \cos \theta) - u_y \sin \theta & u_z u_y (1 - \cos \theta) + u_x \sin \theta & \cos \theta + u_z^2 (1 - \cos \theta)
\end{bmatrix}
$$
Interpolating Rotations

- Suppose we want to smoothly interpolate between two rotations (e.g., orientations of an airplane)
- Interpolating Euler angles can yield strange-looking paths, non-uniform rotation speed, …
- Simple solution* w/ quaternions: “SLERP” (spherical linear interpolation):
 \[
 \text{Slerp}(q_0, q_1, t) = q_0(q_0^{-1}q_1)^t, \quad t \in [0, 1]
 \]

*Shoemake 1985, “Animating Rotation with Quaternion Curves”
Where else are (hyper-)complex numbers useful in computer graphics?
Generating Coordinates for Texture Maps

Complex numbers are natural language for angle-preserving ("conformal") maps

Preserving angles in texture well-tuned to human perception...
Useless-But-Beautiful Example: Fractals

- Defined in terms of iteration on (hyper)complex numbers:

(Will see exactly how this works later in class.)
Not Covered: Lie algebras/Lie Groups

- Another super nice/useful perspective on rotations is via “Lie groups” and “Lie algebras”
- More than we have time to cover!
- Many benefits similar to quaternions (easy axis/angle representation, no gimbal lock, …)
- Nice for encoding angles bigger than 2π
- Also very useful for taking averages of rotations

(Very) short story:
- exponential map takes you from axis/angle to rotation matrix
- logarithmic map takes you from rotation matrix to axis/angle
Rotations and Complex Representations—Summary

- Rotations are surprisingly complicated in 3D!
- Today, looked at how complex representations help understand/work with rotations in 3D (& 2D)
- In general, many possible representations:
 - Euler angles
 - axis-angle
 - quaternions
 - Lie group/algebra (not covered)
 - geometric algebra (not covered)
- There’s no “right” or “best” way—the more you know, the more you’ll be able to do!
Next time: Perspective & Texture Mapping