So it would be the case that if (u, v) = (0.1, 0.1). Then if we calculate the i, j according to the formula: i<0 j<0, so it seems we should assign s=1 and t=1 and (u, v) would be the color f11, right?

nsp

In this case, I would start with i=-1, j=-1. Then we would be interpolating between colors of a different set of pixels. If f00 is the lower left hand corner of the image, we'd have to think about what we do if we run off the boundary of the texture. In this case, let's assume we just copy the nearest color when we are outside the boundary. In that case, we have an f_{-1,-1}, f_{-1,0}, f_{0,-1}, and f_{0,0}, all of which are the same color. It wouldn't matter in that case, however, just to finish the example, we would set s=0.1-(-1+1/2)=0.6 and t=0.6 and carry through the interpolation with (1-t)((1-s)f_{-1,-1} + sf__{0,-1}) + t((1-s)f_{-1,0}+sf_{0,0})

So it would be the case that if (u, v) = (0.1, 0.1). Then if we calculate the i, j according to the formula: i<0 j<0, so it seems we should assign s=1 and t=1 and (u, v) would be the color f11, right?

In this case, I would start with i=-1, j=-1. Then we would be interpolating between colors of a different set of pixels. If f00 is the lower left hand corner of the image, we'd have to think about what we do if we run off the boundary of the texture. In this case, let's assume we just copy the nearest color when we are outside the boundary. In that case, we have an f_{-1,-1}, f_{-1,0}, f_{0,-1}, and f_{0,0}, all of which are the same color. It wouldn't matter in that case, however, just to finish the example, we would set s=0.1-(-1+1/2)=0.6 and t=0.6 and carry through the interpolation with (1-t)((1-s)f_{-1,-1} + sf__{0,-1}) + t((1-s)f_{-1,0}+sf_{0,0})