Depth and Transparency

Computer Graphics
CMU 15-462/15-662

Today: Wrap up the rasterization pipeline!

Remember our goal:
- Start with INPUTS (triangles)
—possibly w/ other data (e.g., colors or texture coordinates)
- Apply a series of transformations: STAGES of pipeline
» Produce OUTPUT (final image)

INPUT RASTERIZATION OUTPUT
(TRIANGLES) PIPELINE (BITMAP IMAGE)

ERTICES

OQwp g
B = PP QA

T
(
2
(
(

S
- - - -
T
' e e e
T Q4" Mo
(X] (X) (X] (X]
N N SN N
| |
e
- - - -
1
o
- - - -
| I
o
' e e S

Y
-1,-
TRIANGLES

EHF, GFH, FGB, CBG,

GHC, DCH, ABD, CDB,
HED, ADE, EFA, BAF

CMU 15-462/662

What we know how to do so far...

_ T

% I = I e Lo e e e 2\

% L L & L L L L ®

(0,0) ™ . .
position objects in the world project objects onto the screen sample triangle coverage

(3D transformations) (perspective projection) (rasterization)
. m :
put samples into frame buffer sample texture maps interpolate vertex attributes
(depth & alpha) (filtering, mipmapping) (barycentric coodinates)

CMU 15-462/662

Occlusion

CMU 15-462/662

Occlusion: which triangle is visible at each

covered sample point?

50% transparent triangles

Opaque Triangles

CMU 15-462/662

Sampling Depth

Assume we have a triangle given by:
— the projected 2D coordinates (x;,yi) of each vertex
— the “depth” d; of each vertex (i.e., distance from the viewer)

(xi/ yt) d;

(K, Vi)
(%), yj) A

screen

Q: How do we compute the depth d at a given sample point (x,y)?

A: Interpolate it using barycentric coordinates (just like any other
attribute that varies linearly over the triangle)

CMU 15-462/662

The depth-buffer (Z-buffer)

For each coverage sample point, depth-buffer stores
the depth of the closest triangle seen so far.

Initial state of depth buffer =—p
before rendering any triangles
(all samples store farthest distance)

Grayscale value of sample point
used to indicate distance

Black = small distance O O O O O O O O O

White = large distance (“infinity”) o o o o o o o o ©

CMU 15-462/662

Depth buffer example

(MU 15-462/662

Example: rendering three opaque triangles

Occlusion using the depth-buffer (Z-buffer)

Processing yellow triangle:

depth=0.5

O O O

O O O

Color buffer contents

O

O

O

O

O

O

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

O O
O O
O O
O O
O O
O o
® o
O O
O O

O

O

O

O

O

O

Depth buffer contents

CMU 15-462/662

Occlusion using the depth-buffer (Z-buffer)

After processing yellow triangle:

O O O

O O O

Color buffer contents

O

O

O

O

O

O

O

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

O

O

O

O

O

O

O

O

O

O

O

O

Depth buffer contents

CMU 15-462/662

Occlusion using the depth-buffer (Z-buffer)

Process ing blue trianQIE: Grayscale value of sample point
depth=0.75 used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

O O O O O O O O O O O O O O O O O O
O O O O O O O O O O
O O O O O O O O O O
O O O O O O ® O
O O O O O O ® O
O O O O ® o
O O O ®
O O O O O O O O O O O O O O O
O O O O O O O O O O O O O O O O O O

Color buffer contents Depth buffer contents

CMU 15-462/662

Occlusion using the depth-buffer (Z-buffer)

After processing blue triangle:

O O
O O
O
O

O O O

Color buffer contents

O

O

O

O

O

O

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

O

O

O

O

O

O

O

O

O

O

O

O

O

O

Depth buffer contents

CMU 15-462/662

Occlusion using the depth-buffer (Z-buffer)

Processing red triangle:

depth =0.25

O ® ®

O O O

Color buffer contents

O

O

O

O

O

O

O

Grayscale value of sample point
used to indicate distance

White = large distance
Black = small distance

Red = sample passed depth test

O O O O O O O

O
o O
o o

Depth buffer contents

CMU 15-462/662

Occlusion using the depth-buffer (Z-buffer)

After processing red triangle:

White = large distance
Black = small distance

Red = sample passed depth test

O O O O O O O O O O O O
O O O O O O O O
O O O O O O O O
O O O O O O O
O O O O O

O O O O

O O ®
O O O O O O O O

O O O O O O O O O O O O

Color buffer contents

O

O

O

O

O

O

O

O

Grayscale value of sample point
used to indicate distance

O

O

Depth buffer contents

CMU 15-462/662

Occlusion using the depth buffer

bool pass_depth_test(d1, d2) {
return d1 < d2;

}

depth_test(tri_d, tri_color, X, y) {
if (pass_depth_test(tri_d, zbuffer[x][y]) {

// triangle is closest object seen so far at this
// sample point. Update depth and color buffers.

zbuffer[x][y] =tri_d; // update zbuffer
color[x][y] = tri_color; // update color buffer

}
}

CMU 15-462/662

Does depth-buffer algorithm handle
interpenetrating surfaces?

Of course!

Occlusion test is based on depth of triangles at a given sample point. The
relative depth of triangles may be different at different sample points.

o * o % o * 4 ° e
® ¢ @ ¢ ® e o ¢ ® ®

® ° ® ° o ° e L o °
Green trianglein ° o Y Y . ® o ©
front of yellow g -
triangle ° ° ° _ ® ° ® °
Yellow triangle in S . o o .
front of green ° o o ® o
triangle ° ® ® ® ®

(MU 15-462/662

Does depth-buffer algorithm handle
interpenetrating surfaces?

Of course!

Occlusion test is based on depth of triangles at a given sample point. The
relative depth of triangles may be different at different sample points.

CMU 15-462/662

Does depth buffer work with super sampling?

Of course! Occlusion test is per sample, not per pixel!

This example: green triangle occludes yellow triangle

(MU 15-462/662

Color buffer contents

(MU 15-462/662

Color buffer contents (4 samples per pixel)

Final resampled result

Note anti-aliasing of edge due to filtering of green and yellow samples.

(MU 15-462/662

Summary: occlusion using a depth buffer

Store one depth value per coverage sample (not per pixel!)

Constant space per sample
- Implication: constant space for depth buffer

Constant time occlusion test per covered sample

- Read-modify write of depth buffer if “pass” depth test
- Just a read if “fail”

Not specific to triangles: only requires that surface depth can be
evaluated at a screen sample point

But what about semi-transparent surfaces?

CMU 15-462/662

Compositing

CMU 15-462/662

Representing opacity as alpha

Alpha describes the opacity of an object
- Fully opaque surface: a =1

- 50% transparent surface: o = 0.5

- Fully transparent surface: oz =0

Red triangle with decreasing opacity

A A

o=1 o=0.75 o

0.5 o =0.25 o =0

CMU 15-462/662

Alpha: additional channel of image (RGBA)

o of foreground object

CMU 15-462/662

Over operator:

Composite image B with opacity ag over image A with opacity aa

A

BoverA

kst X B s
. - J‘) 3
N : J- - A
IH S e ~mml"] @
! LR R
- | | | > .) =
-

A
A over B

|~ 4 t
v ',h' 'a == 3
. i [3 - 3
ol 15l B 1 === :
11l EIas
A i -
J 11
|
1|
N

A overB '= BoverA
“Over” is not commutative

Koala over NY(

CMU 15-462/662

Fringing

Poor treatment of color/alpha can yield dark “fringing”:
v

-

foreground alpha
=i\ N E W o s

1-2

1]"" ‘.r
5
Wy

%P]# :L'rrtl'l - ol & : | . ~ & Iﬂr'll :Llrrt,l. % [

ot
©
‘ L
;e_ :
ol

-

fringing

-

no fringing

gt

el

e :-!.‘-‘

TS e

% : o -
b 5

D Fat AR

2 ?@
background color
e

":‘;}'\wq
| SNy

.ﬁ\

E
Al

CMU 15-462/662

Inging

No fr

CMU 15-462/662

g T

ot

CMU 15-462/662

Fringing (...why does this happen?)

Over operator: non-premultiplied alpha

Composite image B with opacity ag over image A with opacity o,

A first attempt:
A=[A, A, A .
B=[B, B, B)" :
B overA
Appearance of semi-
. transparent A
Composited color: l

C=apB+(1—ap)asA

f !

Appearance of =~ What B lets through
semi-transparent B

CMU 15-462/662

Over operator: premultiplied alpha

Composite image B with opacity ag over image A with opacity aa

Non-premultiplied alpha:

A=[A, A, A"

: T B A
B =B, By B
C = agpB (1 _ OéB)OéAA <+——— two multiplies, one add B over A

(referring to vector ops on colors)

Premultiplied alpha:

A’:[ozAAr asA, aady ozA]T

B/: [OzBBT OéBBg OJBBb CVB}T

C'= B + (1— QB)A’<— one multiply, one add

Composite alpha:
Notice premultiplied alpha composites alpha just like how it composites rgb.

¢ B+ B)as Non-premultiplied alpha composites alpha differently than rgb.

CMU 15-462/662

A problem with non-premultiplied alpha

B Suppose we upsample an image w/ an alpha mask, then composite it onto a background

B How should we compute the interpolated color/alpha values?

® [fweinterpolate color and alpha separately, then blend using the non-premultiplied
“over” operator, here’s what happens:

il)

original original
color alpha

upsampled upsampled
color alpha

Notice black “fringe” that occurs because
we're blending, e.g., 50% blue pixels using
50% alpha, rather than, say, 100% blue pixels

with 50% alpha.

composited onto
yellow background CMU 15-462/662

Eliminating fringe w/ premultiplied “over”

m [fweinstead use the premultiplied “over” operation, we get the correct alpha:

(1-alpha) background

upsampled color (1-alpha)*background composite image
w/ no fringe

CMU 15-462/662

Eliminating fringe w/ premultiplied “over”

m [fweinstead use the premultiplied “over” operation, we get the correct alpha:

composite image
WITH fringe

CMU 15-462/662

Similar problem with non-premultiplied alpha

Consider pre-filtering (downsampling) a texture with an alpha matte

Desired filtered result

H*IBH BH

input color input filtered color filtered o filtered result

Downsampling non-premultiplied alpha composited over white
image results in 50% opaque brown)

0.25%((0,1,0,1)+(0,1,0,1) +
Result of filtering >
(0,0,0,0)+(0,0,0,0))=(0,0.5,0,0.5) premultiplied image

CMU 15-462/662

More problems: applying “over” repeatedly

Composite image C with opacity ac over B with opacity g over image A with opacity o

Non-premultiplied alpha is not closed under composition:

A=T[A, A, A" 5 A

}T

B=[B. B, B,
C=apB+(1—ap)ajA

ac =ap+ (1 —ap)ag

Cover B overA
Consider result of compositing 50% red over 50% red:

O = [(),75 0O 0 Wait... this result is the premultiplied color!

o — 0.75 “Over” for non-premultiplied alpha takes non-premultiplied colors to premultiplied
¢ ' colors (“over” operation is not closed)

Cannot compose “over” operations on non-premultiplied values: over(C, over(B, A))

}T

Q: What would be the correct UN-premultiplied
RGBA for 50% red on top of 50% red?

CMU 15-462/662

Summary: advantages of premultiplied alpha

m Simple: compositing operation treats all channels (RGB and A)
the same

m More efficient than non-premultiplied representation: “over”
requires fewer math ops

B (losed under composition

m Better representation for filtering (upsampling/
downsampling) textures with alpha channel

CMU 15-462/662

Strategy for drawing semi-transparent primitives

Assuming all primitives are semi-transparent, and RGBA values are encoded
with premultiplied alpha, here’s one strategy for creating a correctly
rasterized image:

over(cl, c2) {
return cl.rgba + (l1l-cl.a) * c2.rgba;

}

update color buffer(x, y, sample color, sample depth)

{
if (pass_depth test(sample depth, zbuffer[x][y]) {

// (how) should we update depth buffer here??
color[x][y] = over(sample_color, color[x][y]);

Q: What is the assumption made by this implementation?
Triangles must be rendered in back to front order!

CMU 15-462/662

Putting it all together

Now what if we have a mixture of opaque and transparent triangles?

Step 1: render opaque primitives (in any order) using depth-buffered occlusion
If pass depth test, triangle overwrites value in color buffer at sample

Step 2: disable depth buffer update, render semi-transparent surfaces in back-to-front order.
If pass depth test, triangle is composited OVER contents of color buffer at sample

CMU 15-462/662

End-to-end rasterization pipeline
(“real-time graphics pipeline”)

Goal: turn these inputs into an image!

Inputs:

list_of positions = { list_of_texcoords = { L e
vOXx, vOy, v0z, vOu, vOv,
vix, vly, vix, viu, vy, R e
v2x, V2y, v2z, v2u, v2v,
v3x, v3y, v3x, v3u, v3v, s - on
v4x, V4V, viz, vdu, v4v, Texture map
v5X, V5y, v5x }; vbu, VoV };

Object-to-camera-space transform: T

Perspective projection transform P
Size of output image (W, H)

At this point we should have all the tools we need, but let’s review...

CMU 15-462/662

Step 1:

Transform triangle vertices into camera space

CMU 15-462/662

Step 2:

Apply perspective projection transform to transform triangle vertices
into normalized coordinate space

X Pinhole

Camera

X6

Camera-space positions: 3D Normalized space positions

CMU 15-462/662

Step 3: clipping

m Discard triangles that lie complete outside the unit cube (culling)
- They are off screen, don't bother processing them further

® (lip triangles that extend beyond the unit cube to the cube
- (possibly generating new triangles)

Triangles before clipping Triangles after dipping
(MU 15-462/662

Step 4: transform to screen coordinates

Perform homogeneous divide, transform vertex xy positions from
normalized coordinates into screen coordinates (based on screen w,h)

(w, h)

(0,0)

CMU 15-462/662

Step 5: setup triangle (triangle preprocessing)

Before rasterizing triangle, can compute a bunch
of data that will be used by all fragments, e.g.,

- triangle edge equations
- triangle attribute equations

. etc.

CMU 15-462/662

sample coverage

Step 6

Evaluate attributes z, u, v at all covered samples

CMU 15-462/662

Step 6: compute triangle color at sample point

e.g., sample texture map *

O O ® @) O
u(x,y), v(x,y)
® ® O O O

*So far, we've only described computing triangle’s color at a point by interpolating per-vertex colors, or by sampling a
texture map. Laterin the course, we'll discuss more advanced algorithms for computing its color based on material

properties and scene lighting conditions.
CMU 15-462/662

Step 7: perform depth test (if enabled)

Also update depth value at covered samples (if necessary)

®

FAIL
®

FAIL

o
FAIL
@
FAIL
o
FAIL
o
FAIL

PASS

o o
PASS PASS

PASS PASS

o o o
PASS PASS PASS

o o
PASS PASS PASS

PASS PASS PASS

CMU 15-462/662

Step 8: update color buffer* (if depth test passed)

* Possibly using OVER operation for transparency; in general there are more
compositing/raster operations that can be used to compute the new color value. MU 15.462/662

OpenGL/Direct3D graphics pipeline *

Structures rendering computation as a series of operations on vertices, primitives,

fragments, and screen samples 03
l— ! °4 Input: vertices in 3D space
°2
J EFIEXILrocessing
Vertex stream . o
l ° .+ Vertices in positioned in 3D normalized

Primitive Processing § coordinate space

Primitive stream S 5

Fragment Generation
(Rasterization)

Fragment stream

%ﬂ Fragments (one fragment per covered sample)
Fragmentibrocessing

% ?- Shaded fragments
Screen sample operations

(depth and color) R :

Shaded fragment streaml

Output: image (pixels)

* Several stages of the modern OpenGL pipeline are omitted CMU 15-462/662

* several stages of the modern OpenGL pipeline are omitted

OpenGL/Direct3D graphics pipeline *

°1 .
°4 Input vertices in 3D space
| ©2
Operations on fapa diuesdl) <€ transform matrices

SR S

vertices Vertex streaml
Operations on Primitive Processing """
primitives =

(triangles, lines, etc,) Primitive stream textures
Fragment Generation
(Rasterization)
Operations on Fragment stream Pipeline inputs:
fragments -
[Fragment Processing] — Input vertex data (positions, colors, UVs)
Shaded fragment stream | — Parameters needed to compute vertex coordinates
in 3D space (e.g., transform matrices)

Operations on > “e‘(*:esat':';': d°foe|:$i°“s — Parameters needed to compute color of fragments
screen samples P (e.g., textures)

— “Shader” programs that define behavior of vertex
and fragment stages

CMU 15-462/662

Programmable Shaders

Define behavior of vertex processing and fragment processing stages
Describe operation on a single vertex (or single fragment)

Example GLSL fragment shader program

Shader function executes once

uniform sampler2D myTextAure; constant parameters ner fragment.

uniform vec3 lightDir; ,
per-fragment attributes

(interpolated by rasterizer) Qutputs color of surface at
sample point corresponding to

varying vec2 uv;
varying vec3 norm;

fragment.
void diffuseShader() 9
(this shader performs a texture lookup to
{ / grab color from texture obtain the surface’s material color at this point,
vec3 kd; then performs a simple lighting computation)

kd = texture2d(myTexture, uv);
kd *= clamp(dot(-lightDir, norm), 0.0, 1.0);
gl_FragColor = vec4(kd, 1.0);

'

output surface color at 100% opacity (1.0) modulate color according to light/normal direction

CMU 15-462/662

Goal: render very high complexity 3D scenes

100’s of thousands to millions of triangles in a scene
Complex vertex and fragment shader computations

High resolution screen outputs (~10Mpixel + supersampling)
30-120 fps

CMU 15-462/662

Graphics pipeline implementation: GPUs

Specialized processors for executing graphics pipeline computations

T

. | . . System | =

ST g ! h | B i :

AN | ' : 1 | - Agent & |
| ! L s ; : Sk %= Memory |

| -'.'."*—';,."l Enntmlien-

; ‘.,‘ hu... - : ”l . 'L.-lr : : e I""" T1A |
Prntessnr : | : - s ..g

Discrete GPU card T e R R e i |
(NVIDIA GeForce Titan X) Py & pEmEpreewe o

b ;
and Misc. 0]

. IntegratedGPU part of modern InteI CPU die .

CMU 15-462/662

GPU: heterogeneous, multi-core processor

Modern GPUs offer ~13 TFLOPs of performance for
generic vertex/fragment programs (“compute”)

This part (mostly) not used by CUDA/OpenCL; raw
graphics horsepower still greater than compute!

still enormous amount of fixed-
function compute over here

===

Memory

Tessellate Tessellate
Tessellate Tessellate
Clip/Cull Clip/Cull
Rasterize Rasterize
Clip/Cull Clip/Cull
Rasterize Rasterize
Zbuffer / Zbuffer / Zbuffer /
Blend Blend Blend
Zbuffer / Zbuffer / Zbuffer /
Blend Blend Blend

Scheduler / Work Distributor

GPU

CMU 15-462/662

- more programmable stages

- replace fixed function vertex, fragment processing
- add geometry, tessellation shaders
- generic“compute” shaders (whole other story...)

- more flexible scheduling of stages

(DirectX 12 Pipeline)

Memory Resources
(Buffer, Texture, Constant Buffer)

Input-Assembler

Tassellation Stages |

Tessellator

Modern Rasterization Pipeline

B Trend toward more generic (but still highly parallel!) computation:

Stream Qutput £~

Rasterizer

CMU 15-462/662

Ray Tracing in Graphics Pipeline

m New pipelines coming down the pipe...

[Ray Generation J

TraceRay() h
) Y [Any Hit]

"'||

Acceleration
Structure f

Traversal
/ [Intersection J

L\
: <}l

[iss] [Closest Hi]

https://devblogs.nvidia.com/introduction-nvidia-rtx-directx-ray-tracing/

CMU 15-462/662

GPU Ray Tracing Demo (“Reflections”)

Great video on how thiswas done: https://vyoutu.be/JAKXySYfLWo

CMU 15-462/662

Summary

B Occlusion resolved independently at each screen sample using the depth buffer

® Alpha compositing for semi-transparent surfaces
- Premultiplied alpha forms simply repeated composition

- “Over” compositing operations is not commutative: requires triangles to be
processed in back-to-front (or front-to-back) order

® Graphics pipeline:

- Structures rendering computation as a sequence of operations performed
on vertices, primitives (e.g., triangles), fragments, and screen samples

- Behavior of parts of the pipeline is application-defined using shader
programs.

- Pipeline operations implemented by highly, optimized parallel processors
and fixed-function hardware (GPUs)

CMU 15-462/662

What else do we need to know to generate
images like these?

GEOMETRY

How do we describe
complex shapes (so far
just triangles...)

RENDERING

How does lightinteract & &
w/ materials to produce “" w5
color?

ANIMATION

How do we describe the
way things move?

(“Moana’; Disney 2016)

CMU 15-462/662

Course roadmap

Introduction

Drawing a triangle (by sampling)
DraWing Thlng S Transforms and coordinate spaces

Perspective projection and texture sampling

Today: putting it all together: end-to-end
rasterization pipeline

"Geometry

Next time!

Materials and Lighting

CMU 15-462/662

