3D Rotations and Complex Representations

Computer Graphics
CMU 15-462/15-662
Rotations in 3D

- What is a rotation, intuitively?

- How do you know a rotation when you see it?
 - length/distance is preserved (no stretching/shearing)
 - orientation is preserved (e.g., text remains readable)
3D Rotations—Degrees of Freedom

- How many numbers do we need to specify a rotation in 3D?
- For instance, we could use rotations around X, Y, Z. But do we need all three?
- Well, to rotate Pittsburgh to another city (say, São Paulo), we have to specify two numbers: latitude & longitude:
- Do we really need both latitude and longitude? Or will one suffice?
- Is that the only rotation from Pittsburgh to São Paulo? (How many more numbers do we need?)

No: We can keep São Paulo fixed as we rotate the globe.

Hence, we MUST have three degrees of freedom.
Commutativity of Rotations—2D

- In 2D, order of rotations doesn’t matter:

 rotate by 40°
 rotate by 20°

 rotate by 20°
 rotate by 40°

Same result! (“2D rotations commute”)
Commutativity of Rotations—3D

What about in 3D?

IN-CLASS ACTIVITY:

- Rotate 90° around Y, then 90° around Z, then 90° around X
- Rotate 90° around Z, then 90° around Y, then 90° around X
- (Was there any difference?)

CONCLUSION: bad things can happen if we’re not careful about the order in which we apply rotations!
First things first: how do we get a rotation matrix in 2D? (Don't just regurgitate the formula!)

Suppose I have a function \(S(\theta) \) that for a given angle \(\theta \) gives me the point \((x,y)\) around a circle (CCW).

- Right now, I do not care how this function is expressed!*

What's \(\mathbf{e}_1 \) rotated by \(\theta \)? \(\tilde{\mathbf{e}}_1 = S(\theta) \)

What's \(\mathbf{e}_2 \) rotated by \(\theta \)? \(\tilde{\mathbf{e}}_2 = S(\theta + \pi/2) \)

How about \(\mathbf{u} := a\mathbf{e}_1 + b\mathbf{e}_2 \)?

\[
\mathbf{u} := aS(\theta) + bS(\theta + \pi/2)
\]

What then must the matrix look like?

\[
\begin{bmatrix}
S(\theta) & S(\theta + \pi/2) \\
\end{bmatrix} =
\begin{bmatrix}
\cos(\theta) & \cos(\theta + \pi/2) \\
\sin(\theta) & \sin(\theta + \pi/2) \\
\end{bmatrix} =
\begin{bmatrix}
\cos(\theta) & -\sin(\theta) \\
\sin(\theta) & \cos(\theta) \\
\end{bmatrix}
\]

*I.e., I don't yet care about sines and cosines and so forth.
Representing Rotations in 3D—Euler Angles

- How do we express rotations in 3D?
- One idea: we know how to do 2D rotations.
- Why not simply apply rotations around the three axes? (X,Y,Z)
- Scheme is called Euler angles
- PROBLEM: “Gimbal Lock” [DEMO]
Gimbal Lock

- When using Euler angles $\theta_x, \theta_y, \theta_z$, may reach a configuration where there is no way to rotate around one of the three axes!

- Recall rotation matrices around three axes:

$$R_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_x & -\sin \theta_x \\ 0 & \sin \theta_x & \cos \theta_x \end{bmatrix}, \quad R_y = \begin{bmatrix} \cos \theta_y & 0 & \sin \theta_y \\ 0 & 1 & 0 \\ -\sin \theta_y & 0 & \cos \theta_y \end{bmatrix}, \quad R_z = \begin{bmatrix} \cos \theta_z & -\sin \theta_z & 0 \\ \sin \theta_z & \cos \theta_z & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- Product of these matrices represents rotation by Euler angles:

$$R_x R_y R_z = \begin{bmatrix} \cos \theta_y \cos \theta_z & -\cos \theta_y \sin \theta_z & \sin \theta_y \\ \cos \theta_z \sin \theta_x \sin \theta_y + \cos \theta_x \sin \theta_z & \cos \theta_x \cos \theta_z - \sin \theta_x \sin \theta_y \sin \theta_z & -\cos \theta_y \sin \theta_x \\ -\cos \theta_x \cos \theta_z \sin \theta_y + \sin \theta_x \sin \theta_z & \cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_y \sin \theta_z & \cos \theta_x \cos \theta_y \end{bmatrix}$$

- Consider special case $\theta_y = \pi/2$ (so, $\cos \theta_y = 0$, $\sin \theta_y = 1$):

$$\Rightarrow \begin{bmatrix} 0 & 0 & 1 \\ \cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_z & \cos \theta_x \cos \theta_z - \sin \theta_x \sin \theta_z & 0 \\ -\cos \theta_x \cos \theta_z + \sin \theta_x \sin \theta_z & \cos \theta_z \sin \theta_x + \cos \theta_x \sin \theta_z & 0 \end{bmatrix}$$
Gimbal Lock, continued

- Simplifying matrix from previous slide, we get

\[
\begin{bmatrix}
0 & 0 & 1 \\
\sin(\theta_x + \theta_z) & \cos(\theta_x + \theta_z) & 0 \\
-\cos(\theta_x + \theta_z) & \sin(\theta_x + \theta_z) & 0
\end{bmatrix}
\]

no matter how we adjust \(\theta_x, \theta_z\),

- can only rotate in one plane!

Q: What does this matrix do?

- We are now “locked” into a single axis of rotation
- Not a great design for airplane controls!
Rotation from Axis/Angle

- Alternatively, there is a general expression for a matrix that performs a rotation around a given axis u by a given angle θ:

$$
\begin{bmatrix}
\cos \theta + u_x^2 (1 - \cos \theta) & u_x u_y (1 - \cos \theta) - u_z \sin \theta & u_x u_z (1 - \cos \theta) + u_y \sin \theta \\
u_y u_x (1 - \cos \theta) + u_z \sin \theta & \cos \theta + u_y^2 (1 - \cos \theta) & u_y u_z (1 - \cos \theta) - u_x \sin \theta \\
u_z u_x (1 - \cos \theta) - u_y \sin \theta & u_z u_y (1 - \cos \theta) + u_x \sin \theta & \cos \theta + u_z^2 (1 - \cos \theta)
\end{bmatrix}
$$

Just memorize this matrix! :-)

...we’ll see a much easier way, later on.
Complex Analysis—Motivation

- Natural way to encode geometric transformations in 2D
- Simplifies code / notation / debugging / *thinking*
- *Moderate* reduction in computational cost/bandwidth/storage
- Fluency with complex analysis can lead into deeper/novel solutions to problems…

Truly: no good reason to use 2D vectors instead of complex numbers…
DON’T: Think of these numbers as “complex.”

DO: Imagine we’re simply defining additional operations (like dot and cross).
Imaginary Unit

More importantly: obscures geometric meaning.
Imaginary Unit—Geometric Description

Imaginary unit is just a quarter-turn in the counter-clockwise direction.
Complex Numbers

- Complex numbers are then just 2-vectors
- Instead of \(e_1, e_1 \), use “1” and “\(\imath \)” to denote the two bases
- Otherwise, behaves exactly like a real 2-dimensional space

\[\mathbb{R}^2 \quad \text{REAL} \]

\[\mathbb{C} \quad \text{COMPLEX} \]

\[(a, b) \]

\[a + bi \]

- \(\ldots \) except that we’re also going to get a very useful new notion of the \textit{product} between two vectors.
Complex Arithmetic

• Same operations as before, plus one more:

\[z_1 + z_2 \]

• Complex multiplication:
 • angles \textit{add}
 • magnitudes \textit{multiply}

“POLAR FORM”*

\[z_1 := (r_1, \theta_1) \]
\[z_2 := (r_2, \theta_2) \]
\[z_1 z_2 = (r_1 r_2, \theta_1 + \theta_2) \]

*Not quite how it really works, but basic idea is right.
Complex Product—Rectangular Form

- Complex product in “rectangular” coordinates $(1, \imath)$:

 \[z_1 = (a + b\imath) \]

 \[z_2 = (c + d\imath) \]

 \[z_1z_2 = ac + ad\imath + bc\imath + bd\imath^2 = \]

 \[
 (ac - bd) + (ad + bc)\imath.
 \]

 two quarter turns—same as -1

- We used a lot of “rules” here. Can you justify them geometrically?

- Does this product agree with our geometric description (last slide)?
Complex Product—Polar Form

- Perhaps most beautiful identity in math:
 \[e^{i\pi} + 1 = 0 \]

- Specialization of Euler’s formula:
 \[e^{i\theta} = \cos(\theta) + i\sin(\theta) \]

- Can use to “implement” complex product:
 \[z_1 = ae^{i\theta}, \quad z_2 = be^{i\phi} \]
 \[z_1 z_2 = abe^{i(\theta + \phi)} \]
 (as with real exponentiation, exponents add)

Q: How does this operation differ from our earlier, “fake” polar multiplication?
2D Rotations: Matrices vs. Complex

Suppose we want to rotate a vector \(u \) by an angle \(\theta \), then by an angle \(\phi \).

\[
\begin{align*}
\text{REAL / RECTANGULAR} & \\
\text{REAL / REC
Pervasive theme in graphics:

Sure, there are often many “equivalent” representations.

…but why not choose the one that makes life easiest*?

*Or most efficient, or most accurate…
Quaternions

- **TLDR:** Kind of like complex numbers but for 3D rotations
- **Weird situation:** can’t do 3D rotations w/ only 3 components!

William Rowan Hamilton
(1805-1865)
Quaternions in Coordinates

- Hamilton’s insight: in order to do 3D rotations in a way that mimics complex numbers for 2D, actually need FOUR coords.

- One real, three imaginary:

\[\mathbb{H} := \text{span}(\{1, i, j, k\}) \]

\[q = a + bi + cj + dk \in \mathbb{H} \]

- Quaternion product determined by:

\[i^2 = j^2 = k^2 = ijk = -1 \]

together w/ “natural” rules (distributivity, associativity, etc.)

- **WARNING**: product no longer commutes!

For \(q, p \in \mathbb{H} \), \(qp \neq pq \)

(Why might it make sense that it doesn’t commute?)
Quaternion Product in Components

- Given two quaternions

\[q = a_1 + b_1 i + c_1 j + d_1 k \]
\[p = a_2 + b_2 i + c_2 j + d_2 k \]

- Can express their product as

\[qp = a_1 a_2 - b_1 b_2 - c_1 c_2 - d_1 d_2 \]
\[+ (a_1 b_2 + b_1 a_2 + c_1 d_2 - d_1 c_2) i \]
\[+ (a_1 c_2 - b_1 d_2 + c_1 a_2 + d_1 b_2) j \]
\[+ (a_1 d_2 + b_1 c_2 - c_1 b_2 + d_1 a_2) k \]

...fortunately there is a (much) nicer expression.
Quaternions—Scalar + Vector Form

- If we have four components, how do we talk about pts in 3D?
- Natural idea: we have three imaginary parts—why not use these to encode 3D vectors?

\[(x, y, z) \mapsto 0 + xi + yj + zk\]

- Alternatively, can think of a quaternion as a pair

\[(\text{scalar, vector}) \in \mathbb{H} \]
\[\cong \mathbb{R} \oplus \mathbb{R}^3\]

- Quaternion product then has simple(r) form:

\[(a, \mathbf{u})(b, \mathbf{v}) = (ab - \mathbf{u} \cdot \mathbf{v}, a\mathbf{v} + b\mathbf{u} + \mathbf{u} \times \mathbf{v})\]

- For vectors in \(\mathbb{R}^3\), gets even simpler:

\[\mathbf{u} \mathbf{v} = \mathbf{u} \times \mathbf{v} - \mathbf{u} \cdot \mathbf{v}\]
3D Transformations via Quaternions

- Main use for quaternions in graphics? *Rotations.*
- Consider vector x ("pure imaginary") and *unit* quaternion q:

\[
x \in \text{Im}(\mathbb{H})
\]
\[
q \in \mathbb{H}, \quad |q|^2 = 1
\]

always expresses *some* rotation
Rotation from Axis/Angle, Revisited

- Given axis \mathbf{u}, angle θ, quaternion q representing rotation is

$$ q = \cos(\theta/2) + \sin(\theta/2) \mathbf{u} $$

- Much easier to remember (and manipulate) than matrix!

$$
\begin{bmatrix}
\cos \theta + u_x^2 (1 - \cos \theta) & u_x u_y (1 - \cos \theta) - u_z \sin \theta & u_x u_z (1 - \cos \theta) + u_y \sin \theta \\
 u_y u_x (1 - \cos \theta) + u_z \sin \theta & \cos \theta + u_y^2 (1 - \cos \theta) & u_y u_z (1 - \cos \theta) - u_x \sin \theta \\
 u_z u_x (1 - \cos \theta) - u_y \sin \theta & u_z u_y (1 - \cos \theta) + u_x \sin \theta & \cos \theta + u_z^2 (1 - \cos \theta)
\end{bmatrix}
$$
Interpolating Rotations

- Suppose we want to smoothly interpolate between two rotations (e.g., orientations of an airplane)
- Interpolating Euler angles can yield strange-looking paths, non-uniform rotation speed, ...
- Simple solution* w/ quaternions: “SLERP” (spherical linear interpolation):
 \[\text{Slerp}(q_0, q_1, t) = q_0(q_0^{-1}q_1)^t, \quad t \in [0, 1] \]

*Shoemake 1985, “Animating Rotation with Quaternion Curves”
Where else are (hyper-)complex numbers useful in computer graphics?
Generating Coordinates for Texture Maps

Complex numbers are natural language for angle-preserving ("conformal") maps

Preserving angles in texture well-tuned to human perception...
Useless-But-Beautiful Example: Fractals

- Defined in terms of iteration on (hyper)complex numbers:

(Will see exactly how this works later in class.)
Next time: Perspective & Texture Mapping