Transformations

Computer Graphics
CMU 15-462/15-662
Recitation Monday (2/10): Graphics APIs

- Review some basic OpenGL needed for A1
- Thursday from 5pm - 6:30pm
- GHC 4215
The Rasterization Pipeline

Rough sketch of rasterization pipeline:

1. Transform/position objects in the world
2. Project objects onto the screen
3. Sample triangle coverage
4. Sample texture maps / evaluate shaders
5. Interpolate triangle attributes at covered samples
6. Combine samples into final image (depth, alpha, ...)

CMU 15-462/662
Cube

(-1, -1, -1) (1, -1, -1) (1, -1, 1) (-1, -1, 1)

(-1, 1, -1) (1, 1, -1) (1, 1, 1) (-1, 1, 1)
Cube man
Transformations in Rigging
Transformations in Instancing
Basic idea: f transforms x to $f(x)$
What can we do with linear transformations?

- (What did linear mean?)

\[f(x + y) = f(x) + f(y) \]

\[f(ax) = af(x) \]

- Cheap to compute
- Composition of linear transformations is linear
 - Leads to uniform representation of transformations
 - E.g., in graphics card (GPU) or graphics APIs
Scale

Uniform scale:

\[S_a(x) = ax \]

Non-uniform scale??
Is scale a linear transform?

Yes!
Rotation

\[R_{\theta} = \text{rotate counter-clockwise by } \theta \]
Rotation as Circular Motion

R_θ = rotate counter-clockwise by θ

As angle changes, points move along circular trajectories.

Hence, rotations preserve length of vectors: $|R_\theta(x)| = |x|$
Is rotation linear?

Yes!
Translation

$T_b \text{ — “translate by } b\text{”}$

$T_b(x) = x + b$
Is translation linear?

No. Translation is affine.
Reflection

$Re_y = \text{reflection about } y$

$Re_x = \text{reflection about } x$
Shear (in x direction)
Composte basic transformations to construct more complicated ones

Note: order of composition matters

Top-right: scale, then translate
Bottom-right: translate, then scale

\[f(x) = T_{3,1}(S_{0.5}(x)) \]

\[f(x) = S_{0.5}(T_{3,1}(x)) \]
How would you perform these transformations?

Usually more than one way to do it!
Common task: rotate about a point x

Step 1: translate by $-x$

Step 2: rotate

Step 3: rotate

Step 4: translate by x
Summary of basic transformations

Linear:

\[f(x + y) = f(x) + f(y) \]
\[f(ax) = af(x) \]

Scale
Rotation
Reflection
Shear

Affine:

Composition of linear transform + translation
(all examples on previous two slides)

\[f(x) = g(x) + b \]

Not affine: perspective projection (will discuss later)

Euclidean: (Isometries)

Preserve distance between points (preserves length)

\[|f(x) - f(y)| = |x - y| \]

Translation
Rotation
Reflection

“Rigid body” transformations are distance-preserving motions
that also preserve orientation (i.e., does not include reflection)
Representing Transformations in Coordinates
Review: representing points in a coordinate space

Consider coordinate space defined by orthogonal vectors \(\mathbf{e}_1 \) and \(\mathbf{e}_2 \)

\[
x = 2\mathbf{e}_1 + 2\mathbf{e}_2
\]

\[
x = \begin{bmatrix} 2 & 2 \end{bmatrix}
\]

\[
x = \begin{bmatrix} 0.5 & 1 \end{bmatrix}
\]

in coordinate space defined by \(\mathbf{e}_1 \) and \(\mathbf{e}_2 \), with origin at (1.5, 1)

\[
x = \begin{bmatrix} \sqrt{8} & 0 \end{bmatrix}
\]

in coordinate space defined by \(\mathbf{e}_3 \) and \(\mathbf{e}_4 \), with origin at (0, 0)
Review: 2D matrix multiplication

\[
\begin{bmatrix}
 a & b \\
 c & d
\end{bmatrix}
\begin{bmatrix}
 x \\
 y
\end{bmatrix} =
\]

\[
x\begin{bmatrix}
 a \\
 c
\end{bmatrix} + y\begin{bmatrix}
 b \\
 d
\end{bmatrix} =
\]

\[
\begin{bmatrix}
 ax + by \\
 cx + dy
\end{bmatrix}
\]

- Matrix multiplication is linear combination of columns
- Encodes a linear map!
Linear transformations in 2D can be represented as 2x2 matrices

Consider non-uniform scale: \(S_s = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \)

Scaling amounts in each direction: \(s = \begin{bmatrix} 0.5 & 2 \end{bmatrix}^T \)

Matrix representing scale transform: \(S_s = \begin{bmatrix} 0.5 & 0 \\ 0 & 2 \end{bmatrix} \)
Rotation matrix (2D)

Question: what happens to (1, 0) and (0,1) after rotation by θ?

Reminder: rotation moves points along circular trajectories.

(Recall that $\cos \theta$ and $\sin \theta$ are the coordinates of a point on the unit circle.)

Answer:

$$R_\theta (1, 0) = (\cos(\theta), \sin(\theta))$$

$$R_\theta (0, 1) = (\cos(\theta + \pi/2), \sin(\theta + \pi/2))$$

Which means the matrix must look like:

$$R_\theta = \begin{bmatrix} \cos(\theta) & \cos(\theta + \pi/2) \\ \sin(\theta) & \sin(\theta + \pi/2) \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$
Rotation matrix (2D): another way...

\[R_\theta = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \]
Shear

Shear in x:
\[H_{xs} = \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix} \]

Shear in y:
\[H_{ys} = \begin{bmatrix} 1 & 0 \\ s & 1 \end{bmatrix} \]

Arbitrary shear:
\[H_{st} = \begin{bmatrix} 1 & s \\ t & 1 \end{bmatrix} \]
How do we compose linear transformations?

Compose linear transformations via matrix multiplication. This example: uniform scale, followed by rotation

\[f(\mathbf{x}) = R_{\pi/4} S_{[1.5,1.5]} \mathbf{x} \]

Enables simple, efficient implementation: reduce complex chain of transformations to a single matrix multiplication.
How do we deal with translation? (Not linear)

\[T_b(x) = x + b \]

Recall: translation is not a linear transform

→ Output coefficients are not a linear combination of input coefficients
→ Translation operation cannot be represented by a 2x2 matrix

\[x_{out x} = x_x + b_x \]
\[x_{out y} = x_y + b_y \]

Translation math
2D homogeneous coordinates (2D-H)

Interesting idea: represent 2D points with THREE values (“homogeneous coordinates”)

So the point \((x, y)\) is represented as the 3-vector: \([x \ y \ 1]^T\)

And transformations are represented a 3x3 matrices that transform these vectors.

Recover final 2D coordinates by dividing by “extra” (third) coordinate

\[
\begin{bmatrix}
 x \\
 y \\
 w
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
 x/w \\
 y/w
\end{bmatrix}
\]

(More on this later…)
Example: Scale & Rotation in 2D-H Coords

For transformations that are already linear, not much changes:

\[
S_s = \begin{bmatrix}
S_x & 0 & 0 \\
0 & S_y & 0 \\
0 & 0 & 1 \\
\end{bmatrix} \quad R_\theta = \begin{bmatrix}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

Notice that the last row/column doesn’t do anything interesting. E.g., for scaling:

\[
S_s \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} S_{xx} \\ S_{yy} \\ 1 \end{bmatrix}
\]

Now we divide by the 3rd coordinate to get our final 2D coordinates (not too exciting!)

\[
\begin{bmatrix} S_{xx} \\ S_{yy} \\ 1 \end{bmatrix} \Rightarrow \begin{bmatrix} S_{xx}/1 \\ S_{yy}/1 \end{bmatrix} = \begin{bmatrix} S_{xx} \\ S_{yy} \end{bmatrix}
\]

(Will get more interesting when we talk about perspective…)
Translation in 2D homogeneous coordinates

Translation expressed as 3x3 matrix multiplication:

\[
T_b = \begin{bmatrix}
1 & 0 & b_x \\
0 & 1 & b_y \\
0 & 0 & 1
\end{bmatrix}
\]

\[
T_b x = \begin{bmatrix}
1 & 0 & b_x \\
0 & 1 & b_y \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix} x_x \\ x_y \\ 1 \end{bmatrix} = \begin{bmatrix} x_x + b_x \\ x_y + b_y \\ 1 \end{bmatrix}
\]

(remember: linear combination of columns!)

Cool: homogeneous coordinates let us encode translations as linear transformations!
Homogeneous coordinates: some intuition

Many points in 2D-H correspond to same point in 2D
\(x \) and \(w x \) correspond to the same 2D point
(divide by \(w \) to convert 2D-H back to 2D)

Translation is a shear in \(x \) and \(y \) in 2D-H space

\[
T_{b x} = \begin{bmatrix} 1 & 0 & b_x \\ 0 & 1 & b_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} w x_x \\ w x_y \\ w \end{bmatrix} = \begin{bmatrix} w x_x + w b_x \\ w x_y + w b_y \\ w \end{bmatrix}
\]
Homogeneous coordinates: points vs. vectors

2D-H points with \(w = 0 \) represent 2D vectors (think: directions are points at infinity)

Unlike 2D, points and directions are distinguishable by their representation in 2D-H

Note: translation does not modify directions:

\[
T_b \mathbf{v} = \begin{bmatrix}
1 & 0 & b_x \\
0 & 1 & b_y \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
\mathbf{v}_x \\
\mathbf{v}_y \\
0
\end{bmatrix} =
\begin{bmatrix}
\mathbf{v}_x \\
\mathbf{v}_y \\
0
\end{bmatrix}
\]
Visualizing 2D transformations in 2D-H

Original shape in 2D can be viewed as many copies, uniformly scaled by w.

2D scale ↔ scale x and y; preserve w
(Question: what happens to 2D shape if you scale x, y, and w uniformly?)

2D rotation ↔ rotate around w

2D translate ↔ shear in 2D-H
(LINEAR!)
Moving to 3D (and 3D-H)

Represent 3D transformations as 3x3 matrices and 3D-H transformations as 4x4 matrices

Scale:

\[
S_s = \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & S_z \end{bmatrix} \quad S_s = \begin{bmatrix} S_x & 0 & 0 & 0 \\ 0 & S_y & 0 & 0 \\ 0 & 0 & S_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
\]

Shear (in x, based on y,z position):

\[
H_{x,d} = \begin{bmatrix} 1 & d_y & d_z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad H_{x,d} = \begin{bmatrix} 1 & d_y & d_z & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
\]

Translate:

\[
T_b = \begin{bmatrix} 1 & 0 & 0 & b_x \\ 0 & 1 & 0 & b_y \\ 0 & 0 & 1 & b_z \\ 0 & 0 & 0 & 1 \end{bmatrix}
\]

Much more about rotations in next lecture!
Another way to think about transformations: change of coordinates

Interpretation of transformations so far in this lecture: points get moved

Point x moved to new position $f(x)$

Alternative interpretation:

Transformations induce a change of coordinates: representation of x changes since point is now expressed in new coordinates
Screen transformation *

Convert points in normalized coordinate space to screen pixel coordinates

Example:

All points within (-1,1) to (1,1) region are on screen
(1,1) in normalized space maps to (W,0) in screen

Step 1: reflect about x
Step 2: translate by (1,1)
Step 3: scale by (W/2,H/2)

* Adopting convention that top-left of screen is (0,0) to match SVG convention in Assignment 1. Many 3D graphics systems like OpenGL place (0,0) in bottom-left. In this case what would the transform be?
Example: simple camera transform

- Consider object in world at (10, 2, 0)
- Consider camera at (4, 2, 0), looking down x axis

 Translating object vertex positions by (-4, -2, 0) yields position relative to camera.
 Rotation about y by $- \pi / 2$ gives position of object in coordinate system where camera’s view direction is aligned with the z axis.

* The convenience of such a coordinate system will become clear on the next slide!
Basic perspective projection

Desired perspective projected result (2D point):

\[p_{2D} = \begin{bmatrix} x_x/x_z & x_y/x_z \end{bmatrix}^T \]

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix}
\]

Input: point in 3D-H

After applying \(P \): point in 3D-H

After homogeneous divide:

\[x = \begin{bmatrix} x_x & x_y & x_z & 1 \end{bmatrix} \]

\[P \begin{bmatrix} x_x & x_y & x_z & x_z \end{bmatrix}^T \]

\[\begin{bmatrix} x_x/x_z & x_y/x_z & 1 \end{bmatrix}^T \]

(throw out third component)

Assumption:
Pinhole camera at (0,0) looking down z

Much more about perspective in later lecture!
Transformations summary

- Transformations can be interpreted as operations that move points in space
 - e.g., for modeling, animation

- Or as a change of coordinate system
 - e.g., screen and view transforms

- Construct complex transformations as compositions of basic transforms

- Homogeneous coordinate representation allows for expression of non-linear transforms (e.g., affine, perspective projection) as matrix operations (linear transforms) in higher-dimensional space
 - Matrix representation affords simple implementation and efficient composition