» Make sure your microphone is on mute

Recitation will begin Shortly

» Get used to the raise hand feature on zoom, | will be
paying attention to this so you can ask questions

- Please make sure your name is set

on zoom so | can call on you

- You can also ask questions in the text

chat

Adrian Biagioli

Account No.

Q_ Search

Adrian Biagioli

abiagiol@andrew.cmu.edu

Add a Personal Note

£ Settings

® Available

Y Away

® Do Not Disturb

My Profile

Try Top Features
Help

Check for Updates

Switch to Portrait View

Switch Account

Sign Out

CMU 15-462/662

Assignment 3 Part 2
Overview

Computer Graphics
CMU 15-462/662

Introduction

» Assignment 3, Part 2 is extremely theory heavy!

- Majority of your debugging time will be debugging math
errors, not debugging crashes.

- The majority of points to be lost are math-related.
@ Important: Include known errors in your writeup
e We will look at your code, “it looks right” isn't enough

» Today we’ll review much of the theory we went over in
class, and give some implementation tips.

CMU 15-462/662

Overview of Tasks

» Task 1: Generate the initial
rays to send from the camera

» Task 2: Compute ray-primitive intersection
- You need to support triangles and spheres/'
» Task 3: Accelerate ray-scene

intersection queries using a Bounding e
Volume Hierarchy (BVH)

» Task 4: Implement direct lighting
with shadows

CMU 15-462/662

Overview of Tasks

» Task 5: Support indirect
illumination via path tracing

» Task 6: Support non-diffuse
materials (mirror, glass)

» Task 7: Support environment
lighting via a texture

CMU 15-462/662

Sampling

PDF and CDF

» Probability Mass function (PMF): Probability that a discrete
random variable X has value x (p,(x) € [0,1])

» Probability Density Function (PDF): Continuous version of the
PMF (f,(x) € [0,1] for some continuous random variable X)

» Cumulative Distribution Function (CDF): Probability that a
Random variable is less than some value

- Fy(x) = P(X < x)
- F,(c0) = 1 by definition of a PDF / PMF

- Continuous (given PDF f.): Fy(x) = [f.(x"dx'

_ Discrete (given PMF p,): Fy(x) = Z p.(x')

x'<x

CMU 15-462/662

PDF and CDF Example

3 7 17 4

— _1\3 _ 2 F — — A 32y T
fx(x) =0.6(x—-1)"—-03x"—-0.1x+ 1 x(X) L Ji(x) 0 X 10x + 20x + le
(Defined between 0 and 2)

Note, F,(c0) = 1 for any probability (discrete or
continuous) distribution (sum of probabilities is 1).
Also CDF is monotonically increasing.

CMU 15-462/662

Inversion Sampling

Goal: We are given a PDF f,(x) for some random variable X.
We want to generate X so that it follows f,(x)

Basic Steps:
Evaluate the CDF Fy(x) on the distribution

Invert the CDF to find the quantile function Q,(g). This
should satisfy Oy (Fy(x)) = x

Generate a random number uniformly between 0 and 1

. Apply Oy to the uniform sample

CMU 15-462/662

Inversion Sampling (Discrete)

» For discrete RV (PMF), you can imagine
the CDF as stacking “blocks”

- One block for each possible event,
each block has height equal to PMF

- Then we uniformly choose a random
“height”. Higher probability events will
get picked more often (that's our goal!)

CMU 15-462/662

Inversion Sampling (Continuous)

" 3 7 17 4
f4@®) =0.6(x — 1)> = 0.3x* = 0.1x + 1 Fy(x) = [£l = —x* — —x3+ —x2 + —x
0

X

20 10 20 10

(Defined between 0 and 2)

For continuous RV (PDF), we have the same idea, but we
integrate instead. The CDF rises more quickly in a
region that has a high PDF, just like before.

CMU 15-462/662

Example: Sampling between two concentric circles

» Suppose we want to find a function f(a, b) : R* - R* such that
if a, b are random numbers in [0,1] then (x,y) = f(a, b) is a
random point between two concentric circles, both centered
around the origin, with radii r;,r, and r; < r,

» We can parameterize (x,y) in polar coordinates,
as (0,R). SoletR € [r,r,] be the distance of
(x,y) from the origin. Let ® € [0,27] be the
angle from the horizontal.

» Want to find the CDF Fr(r) = P(||R]|| £ 1)

- Do we need to worry about Fy(0)? No, it’s constant wrt 6.

2 _ 2

2 _ 27
ry —n

y The CDF is the ratio of areas: Fy(r) =

CMU 15-462/662

Concentric Circles Continued

Basic Steps:
1. Evaluate the CDF Fy(x) on the distribution

2. Invert the CDF to find Q,(¢). This should satisfy Q,(F,(x)) = x
3. Generate a random number uniformly between 0 and 1

4. Apply O, to the uniform sample

» To find the inverse CDF, solve g = Fy(r) for r:

r* —rf

- q= ;"...;"rz\/qr22+(1—q)r12

)
ry — 1

» SO, we have the inverse CDF Qx(g) = \/qrzz + (1 —y)r?

» Say we have a uniformly random variables X, Y € [0,1]. How
do we generate the final point (x, y)?

- First compute polar coords: (®,R) = 2x - X, Qx(Y))
= Finally: (x,y) = (Rcos ©, Rsin ©)

CMU 15-462/662

Example: Uniformly Sampling the Hemisphere

» Goal: Given 2 uniform RVs (X,Y) in [0,1], generate a point
uniformly randomly on the surface of a unit hemisphere.

» First, just like before, parameterize the hemisphere with two
variables (¢, 8) which represent latitude and longitude

X =smngcosd

y = sin ¢ sin @
7 =COS¢Q
(x,y,
AN
]

pSanity check: x> +y2+ 22 =1

»To derive: First find z from ¢, then project
down onto plane and Work in polar coords

ormal)

»As before, PDF is only dependent on ¢

»Then, what is that PDF f,(¢) = P[¢p < D]?

piece of hemisphere at latitude ¢
surface area of hemisphere

Jo(®) =

CMU 15-462/662

https://math.stackexchange.com/questions/35500/parameterizing-the-upper-hemisphere-of-a-sphere-with-an-upward-pointing-normal

Uniform Hemisphere Sampling Continued

. 0 (b = piece of hemisphere at latitude ¢
X = $In ¢ cos P77 surface area of hemisphere

y =5l ¢ sin & » Captures the idea that there are more
7 = COS ¢ points at lower latitudes.
et [+

(x, y J f®(¢) —)

= \/ sin” ¢ cos? @ + sin” ¢ sin”

— ... i 5 = \/ sin’ ¢p(cos’ @ + sin” 0)
| = sin ¢
Sanity check: » No dependence on 6 as expected
¢
/2 .
Then, CDF is F():J sin pd¢ = 1 — cos
0

CMU 15-462/662

Uniform Hemisphere Sampling Continued

4 We now have the CDF Fq)(gb) =1 — COS¢ X = Sin ¢ COS 9
» Inverse CDF is Qg(X) = cos™!(1 — X) y = sin ¢ sin @
?
» How to generate the actual result: 7 = COS ¢
- Pickarandom X, Y in [0,1]. Then set
¢ = QuX), 0 =2xY. Getx,y,z from)
parameterization of hemisphere.
- Recall that X is uniform between [0,1], i W
SO Qg(X) = cos™'(X) works as well.
Vector3D U?ifoPmHemisphePeSamplePSD::get_sample()
dodble Xi2 = (double)(atdssrand(y) / RANDMAX, Provided in the base
double theta = acos(Xil); COde, in Samp|er.cpp

double phi = 2.0 * PI * Xi2;

double xs = sinf(theta) * cosf(phi);

double ys = sinf(theta) * sinf(phi); ¢ and ¢ are switched)

double zs = cosf(theta);
Vector3D(xs, ys, zs); ‘\J

(exactly the same! Well,

CMU 15-462/662

Task 7: Image Based Lighting

» In task 7, you will be implementing a new type of light, an
Environment Light. We will use a general technique
common in CG called image based lighting, which enables
us to sample a high-resolution image as our light:

Note: Similar Parameterization to the previous example

CMU 15-462/662

Task 7: Importance Sampling environment Maps

» So far we've only talked about inversion
sampling with respect to a uniform PDF.
However, the PDF need not be uniform!

- Goal: Areas of the environment light with
higher radiance should be sampled more
often

» Build up a PMF over all pixels in the input image,
such that the probability of sampling a pixel is
proportional to its radiance

- “Block” analogy: create a stack of blocks, with =
one block per pixel. The height of each block |
is the radiance of that pixel. Then select over
all heights with uniform probability.

CMU 15-462/662

Monte Carlo
Methods

Review: Monte Carlo Methods

» Here's one characterization of a Monte Carlo Algorithm
you probably have seen: Noise!
— An algorithm A is a T'(n)-time Monte Carlo algorithm with error probability € if /

x for every input x € X*, A(x) gives the wrong answer with probability at most ¢, and
x for every input x € ¥*, A(x) has a worst-case running-time of at most 7'(|z|).

Source: 15-251 Recitation Packet

» Main takeaway: We're “gambling” with correctness, not
running time.

- Named after the grand casino at
Monte Carlo, a ward of Monaco @ . &

- Contrast with a Las Vegas algorithm, !
which gambles with running time 1

CMU 15-462/662

Review: Monte Carlo Integration

» General class of Monte Carlo algorithms that aim to
evaluate a (usually complex) integral numerically

- Algorithms perspective: A Monte Carlo analog to
Reimann Sums (Reimann sums are a deterministic algo)

- Statistical perspective: Setting up a random event such
that the Expected Value is the same as the integral

e Law of Large Numbers: When taking a large number
of samples of a probability distribution, the average
approaches the Expected Value as samples — oo.

1SPP 4 SPP PP P P 1024 SPP 32769 SPP
0.1678s 0.6216s 2.7209s 10.7106s 40.9914s 159.9709s 6943.6116s

* Images rendered at 400 x 300 on Machook Pro (2.7GHz Intel Core i5)

CMU 15-462/662

Computing r

» How might we compute = using a Monte Carlo algorithm?

- Area of a circle is zr2, so if we can find the area of a
circle with radius 1, then we have found

- Strategy: Use rejection sampling!

1.

Draw a Circle with » = 1, and a box centered
around the circle as tightly as possible (w = 2)

Uniformly sample the box
(we don't need to know to do this)

samples_:
crele js equal to

The quantity 4
samples; .

CMU 15-462/662

Computing r

» But what are we really doing here?

- Beautiful tool lurking in the background:
“law of the unconscious statistician":

- E[F(X)] = 2 F(X)Py(X) (for discrete RV)
E[F(X)] = JF(X)PX(X)dX (for continuous RV)

for random variable X and (deterministic) function F

CMU 15-462/662

CO m p u t i ng 71- Law of unconscious statistician:

E[F(X)] = JF(X)PX(X)dX

For computing z, we have

X = random point in the box

F(X) = 1 |fX|sm.the circle
0 otherwise

F(X) 1 1
So E[F(X)] = [dX = —J FX)dX = —A.. . = /4
B

circle
B AbOX 4 4

Recall Law of Large Numbers:

samples...
= E[F(X)] = P eircle 5 samples,,; = o0
samples, 4

CMU 15-462/662

More about Monte Carlo Algorithms and Sampling

» Scratchapixel has an excellent collection of

binomial distribution (discrete RV)

resources on this topic. t, 031
§ 0.23 | 0.23
» Scratchapixel, Mathematical Foundations of 5 oos .
Monte Carlo Method's 0018 | o0t
o 1 2 3 4 5 6

https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/

monte-carlo-methods-mathematical-foundations/quick-introduction-to-monte-carlo-
methods

normal distribution (continuous RV)

- Random Variables, PDF/CDF, Expected Value/
Variance, Law of Unconscious Statistician, =
Inversion Sampling

© www.scratchapixel.com

» Scratchapixel, Monte Carlo Methods in Practice

https://www.scratchapixel.com/lessons/mathematics-physics-for-
computer-graphics/monte-carlo-methods-in-practice/monte-carlo-
methods

- Monte Carlo Simulation & Integration,
Variance Reduction, Practical Examples /
Source Code

CMU 15-462/662

https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-mathematical-foundations/quick-introduction-to-monte-carlo-methods
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-mathematical-foundations/quick-introduction-to-monte-carlo-methods
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-mathematical-foundations/quick-introduction-to-monte-carlo-methods
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice/monte-carlo-methods
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice/monte-carlo-methods
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice/monte-carlo-methods

The Rendering
Equation

The Rendering Equation

@, (all orange rays)

/

L,(p,»,) = L,(p,®,)+ J JAp, w; = o,) L(p, ®;) cos Odw,
H?2

Output BRDF Incoming
Radiance Radiance

l

» Broadly, your task is to implement a Monte Carlo
estimator for the rendering equation.

» The basics: Your inputs are w, and p, the outgoing
ray direction and the point of intersection.

- Common mistake: Remember that rays start from
the camera! You implemented this in Part 1 :)

CMU 15-462/662

The Rendering Equation

@, (all orange rays)

/

L,(p,»,) = L,(p,®,)+ J JAp, w; = o,) L(p, ®;) cos Odw,
H?2

Output BRDF Incoming
Radiance Radiance

» Important: In a pathtracer, rays don't start at the light, they
start at a camera! How is this possible?

l

- Helmholtz Reciprocity: f.(p, w; —» w,) = f.(p, v, — w,) for
most surfaces™ that you find in nature. |

- Counterexample: Lenticular prints that
change depending on view direction

Source: https://gph.is/13YgIvr cmu 15-462/662

https://gph.is/13Yglvr

Lighting via “Direct Lighting” (Task 4)

Sample from the rays
that hit the light

/ @, (all orange rays)

Area
Light

H? Direct Lighting
Added Here
» In task 4, you added shadows to Direct lighting: area integral
an existing implementation of T DL P R ———
o o ° COS@COSH
direct lighting

E(p)Z/AL(p W) V(p, d A’ +— Changeofvar bl

ttgt

/ |p p-p2 mbpe
ig
dA’cosG

/ i 2

Ip pl ~|p'—pl
T
p p
/

Idea: Sample/integrate over the
light's surface: set L(p, w,) to the
radiance of the light, accounting
for change of terms in integral

Binary visibility functio
1fp isible fro mp0th
(ac tf light occlusion)

Outgoing radiance from light
pointp, in direction w’ towards p

CMU 15-462/662

Lighting via Emitted Radiance

Emissive \
‘4

Surface

@, (all orange rays)

L,(p,»,) = L,(p,®,)+ J JAp, w; = o,) L(p, ®;) cos Odw,
Emitted H?
Radiance

» L, the emitted radiance, is nonzero when the
surface itself is a light.

» Above, L (p,w,) =0 and L,(p’,—w,) >0

» No surfaces in the provided Scotty3D demo files
use an emissive material — still, try to support
emission (it is possible in Scotty3D).

- Useful if you want to both reflect and emit light

CMU 15-462/662

The Rendering Equation

L, w,)=L{Pp, o, +
H?2

f(p,w; = w,) L(p,w;) cosOdw,

What's this??
» Note: This cosine is due to parameterization of sphere

» Note: Concerns solid angles, not areas (Lambert's law)
https://spie.org/publications/fg11_p04 _solid_angle_and_projected

Aside: A Tale of Two Cosines

m (Confusing point first time you study photorealistic rendering:
“cos 0” shows up for two completely unrelated reasons

SPHERICAL INTEGRALS

L faA

LAMBERT’S LAW

—7m/2

2t p1/2 -
/0 / f(6,¢) cos6dbdg
0 /

Recap: What is radiance?

m Radiance at point p in direction N is radiant energy (“#hits”)
per unit time, per solid angle, per unit area perpendicular to N.

R
90 0A cosb

& — radiant flux
()—solid angle
A cos 0 — projected area*

*Confusing point: this cosine has to do W/ parameterization of sphere, not Lambert’s law 154662

CMU 15-462/662

https://spie.org/publications/fg11_p04_solid_angle_and_projected

“Delta” BRDFs

L,(p,»,) = L,(p,w,) + J (P, o; = w,) L(p, w;) cosOdw;
H?2

» For a Mirror, we could define the BRDF as:
1/cos(8.) if o = reflect(w:
f(p,w;, —) = { (0 0 =1 (w;)
0 otherwise
o(cos0; — cos0))

y Written in lecture as a Dirac delta function ;
COS 0

where 0,6, are the angles between w,, », and the normal

» Wait a minute... how do we sample that?!

- Our sampler would have to perfectly guess the incoming
vector w; up to floating point precision

- Instead we manually provide the reflected vector

» These “Delta BRDFs" also don't use direct lighting.

CMU 15-462/662

Rendering Equation in Direct Lighting

(!isect.bsdf->is_delta()) {
Vector3D dir_to_light;
float dist_to_light;

Sample from the rays
float pr;

that hit the light
« w, (all orange rays)

Area

(Scenelight* light : scene->lights) § Light

int num_light_samples = light->is_delta_light() ? 1 : ns_area_light;

(int 1 = 0; i < num_light_samples; i++) §

Generates a random ray
dir_to_light from p to
somewhere on the surface
of the light.

Spectrum& light_L = light->sample_L(hit_p, &dir_to_light, &dist_to_light, &pr);

Vector3D& w_in = w20 * dir_to_light;

u_in.z < 8) : Need to account for the
probability of hitting this
patch of the area light,
which would bias sampling

double cos_theta = w_in.z;

Spectrum& f = isect.bsdf->f(w_out, w_in);

' Law of unconscious statistician:

| EFOO] = | FOOPY(X0AX |

L_out += (cos_theta / (num_light_samples * pr)) * f * light_L;

L,(p.w,) =L(p.®,) + | f(p. o, = w,) L(p,w) cosOdo,

H? CMU 15-462/662

Writing BRDFs in Scotty3D (Task 5, 6)

» There are actually two functions to implement each BRDF:

Spectrum DiffuseBSDF::f(Vector3D& wo, Vector3D& wi) §
albedo * (1.0 / PI);
3

Vector3D& wo, Vector3D* wi, float* pdf) §

Spectrum DiffuseBSDF::sample_f(

Spectrum();

— Spectrum f(const Vector3D &wo, const Vector3D &wi)
® |nput: Ray directions w, w,

® Qutput: Classical BRDF f(w; —» w,) that returns radiance

® Called only during direct lighting
— Spectrum sample_f(const Vector3D &wo, Vector3D &wi, float* pdf)

® |nput: Only outgoing ray direction w,

® QOutput: Generate a random sample w, its probability (in the variable
pdf), and return f(w, - w,)

® You should call this when computing indirect lighting (Task 5)

CMU 15-462/662

Writing BRDFs in Scotty3D (Tasks 5,6)

» Common point of confusion: in f() and sample_f(), , and w,
both point away from the intersection point p.

Additionally, the outward normal is defined to be the z-axis.
Az=n

@, (all orange rays)

» Additionally, in the case of refraction, the z coordinate of
w; Will be negative (z is defined as the outward normal)

with N aligned with the Z direction Towa rds the top Of
Matrix3x3 o2w; .
make_coord_space(o2w, isect.n); trace_ray in pathtracer.cpp

Matrix3x3 w2o = 02w.T(); \ J

CMU 15-462/662

Task 5,6 Hints and Tips

» Diffuse BRDF
- Think carefully about the pdf value.

- You may optionally implement a Cosine Weighted sampler, which
should be straightforward after today.

- Remember to use the DiffuseBSDF::albedo variable.

» Mirror BRDF

- Remember to use the MirrorBSDF::reflectance variable

» Glass BRDF
- Remember to use GlassBSDF::reflectance and GlassBSDF::transmittance

- The PDFis not 1.0

- | highly recommend using Schlick’s approximation (there is a link on the
wiki) which is easier to implement and more robust way to compute the

fresnel term F,

CMU 15-462/662

Task 6 Grading

» For Task 6, | will be running your code remotely on the
Andrew Unix cluster to render the Cornell box with your
pathtracer at demanding settings:

./scotty3d -w output.png -t 8 -m 4 -s 1024 -d 800x600 ../media/pathtracer/CBspheres.dae

» 8 threads, max 4 light bounces, 1024 samples, 800x600

» | am giving each submission 30 minutes to render (more
than double our reference). If your submission doesn't
finish in time you will receive a penalty.

» It is important that you test your code! New changes to the
base code allow you to remotely render via SSH

- See Piazza

CMU 15-462/662

Performance Improvement Suggestions

» Use a Profiler! This will save you loads of headache and can
help diagnose slow code, at the level of an individual function
call. Come to OH for help, or intro to C++ lecture

- Most serious performance issues have to do with something
silly, like not passing by reference

» Avoid trig functions, use dot and cross products if possible

» Avoid very recursive code (ex: BVH traversal), and convert to a
sequential algorithm

Use the helper functions at the top of bsdf.h

Remember: Millions of rays will be cast in a large render, so
make sure your code is as fast as possible with respect to each
raycast.

CMU 15-462/662

Correctness Improvement Suggestions

» Don't clamp radiances, ever. Your answer will be wrong

- A common reason for this is that you are seeing white
“speckles” in your renders. Try turning up the sample
rate first, if that doesn’t fix it you have a math error.

- Note that a Spectrum can have color values > 1

» Make sure that your PDF integrates to 1. Otherwise your
rays may gain energy on each bounce and you get this:

» Manage your cosines: if the edges of some objects are
too dark, then you have missed a divide by cosine
somewhere

» Banging your head against code will not prove fruitful,
especially for Task 6. You may want to work out the
math on pen and paper.

CMU 15-462/662

Questions?

