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Recitation will begin Shortly
‣ Make sure your microphone is on mute 

‣ Get used to the raise hand feature on zoom, I will be 
paying attention to this so you can ask questions 

- Please make sure your name is set 
on zoom so I can call on you 

- You can also ask questions in the text 
chat
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Overview
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Introduction

‣ Assignment 3, Part 2 is extremely theory heavy! 

- Majority of your debugging time will be debugging math 
errors, not debugging crashes. 

- The majority of points to be lost are math-related. 

๏ Important: Include known errors in your writeup 

๏ We will look at your code, “it looks right” isn’t enough 

‣ Today we’ll review much of the theory we went over in 
class, and give some implementation tips.
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Overview of Tasks
‣ Task 1: Generate the initial 

rays to send from the camera 

‣ Task 2: Compute ray-primitive intersection 

- You need to support triangles and spheres 
  

‣ Task 3: Accelerate ray-scene  
intersection queries using a Bounding  
Volume Hierarchy (BVH) 

‣ Task 4: Implement direct lighting  
with shadows
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Overview of Tasks
‣ Task 5: Support indirect 

illumination via path tracing 
 
 

‣ Task 6: Support non-diffuse 
materials (mirror, glass) 
 
 

‣ Task 7: Support environment 
lighting via a texture
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Sampling
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PDF and CDF
‣ Probability Mass function (PMF): Probability that a discrete 

random variable  has value  ( ) 

‣ Probability Density Function (PDF): Continuous version of the 
PMF (  for some continuous random variable ) 

‣ Cumulative Distribution Function (CDF):  Probability that a 
Random variable is less than some value 

-  

-  by definition of a PDF / PMF 

- Continuous (given PDF ):  

- Discrete (given PMF ): 

X x pX(x) ∈ [0,1]

fX(x) ∈ [0,1] X

FX(x) = P(X ≤ x)

FX(∞) = 1

fx FX(x) = ∫
x

−∞
fx(x′ )dx′ 

px FX(x) = ∑
x′ ≤x

px(x′ )
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PDF and CDF Example
fX(x) = 0.6(x − 1)3 − 0.3x2 − 0.1x + 1 FX(x) = ∫

x

0
fx(x) =

3
20

x4 −
7
10

x3 +
17
20

x2 +
4
10

x
x

0(Defined between 0 and 2)

Note,  for any probability (discrete or 
continuous) distribution (sum of probabilities is 1).  
Also CDF is monotonically increasing.

FX(∞) = 1
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Inversion Sampling
Goal: We are given a PDF  for some random variable .  
We want to generate  so that it follows 

fX(x) X
X fX(x)

Basic Steps: 

1. Evaluate the CDF  on the distribution 

2. Invert the CDF to find the quantile function .  This 
should satisfy  

3. Generate a random number uniformly between 0 and 1 

4. Apply  to the uniform sample

FX(x)

QX(q)
QX(FX(x)) = x

QX
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Inversion Sampling (Discrete)

‣ For discrete RV (PMF), you can imagine 
the CDF as stacking “blocks”  

- One block for each possible event, 
each block has height equal to PMF 

- Then we uniformly choose a random 
“height”.  Higher probability events will 
get picked more often (that’s our goal!)
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Inversion Sampling (Continuous)
fX(x) = 0.6(x − 1)3 − 0.3x2 − 0.1x + 1 FX(x) = ∫

x

0
fX(x) =

3
20

x4 −
7
10

x3 +
17
20

x2 +
4
10

x
x

0

For continuous RV (PDF), we have the same idea, but we 
integrate instead.  The CDF rises more quickly in a 

region that has a high PDF, just like before.

(Defined between 0 and 2)
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Example: Sampling between two concentric circles

‣ Suppose we want to find a function  such that 
if  are random numbers in  then  is a 
random point between two concentric circles, both centered 
around the origin, with radii  and  

‣ We can parameterize  in polar coordinates, 
as .  So let  be the distance of 

 from the origin.  Let  be the 
angle from the horizontal. 

‣ Want to find the CDF  

- Do we need to worry about ? 

‣ The CDF is the ratio of areas: .  

f(a, b) : ℝ2 → ℝ2

a, b [0,1] (x, y) = f(a, b)

r1, r2 r1 < r2

(x, y)
(Θ, R) R ∈ [r1, r2]

(x, y) Θ ∈ [0,2π]

FR(r) = P( | |R | | ≤ r)

FΘ(θ)

FR(r) =
r2 − r2

1

r2
2 − r2

1

r1

r2

r

(x, y)

No, it’s constant wrt .θ
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Concentric Circles Continued

‣ To find the inverse CDF, solve  for : 

-   

‣ So, we have the inverse CDF  

‣ Say we have a uniformly random variables .  How 
do we generate the final point ? 

- First compute polar coords:  

- Finally: 

q = FR(r) r

q =
r2 − r2

1

r2
2 − r2

1
⇒ … ⇒ r = qr2

2 + (1 − q)r2
1

QR(q) = qr2
2 + (1 − y)r2

1

X, Y ∈ [0,1]
(x, y)

(Θ, R) = (2π ⋅ X, QR(Y ))

(x, y) = (R cos Θ, R sin Θ)

Basic Steps: 

1. Evaluate the CDF  on the distribution 

2. Invert the CDF to find .  This should satisfy  

3. Generate a random number uniformly between 0 and 1 

4. Apply  to the uniform sample

FX(x)

QX(q) QX(FX(x)) = x

QX

r1

r2

r

(x, y)
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‣ Goal: Given 2 uniform RVs  in , generate a point 
uniformly randomly on the surface of a unit hemisphere. 

‣ First, just like before, parameterize  the hemisphere with two 
variables  which represent latitude and longitude 

‣Sanity check:  

‣To derive: First find  from , then project 
down onto plane and work in polar coords 
(https://math.stackexchange.com/questions/35500/parameterizing-the-upper-hemisphere-of-a-sphere-with-an-upward-pointing-normal) 

‣As before, PDF is only dependent on  

‣Then, what is that PDF ? 

(X, Y ) [0,1]

(ϕ, θ)

x2 + y2 + z2 = 1

z ϕ

ϕ

fΦ(ϕ) = P[ϕ ≤ Φ]

fΦ(ϕ) =
piece of hemisphere at latitude ϕ

surface area of hemisphere

Example: Uniformly Sampling the Hemisphere

x = sin ϕ cos θ
y = sin ϕ sin θ
z = cos ϕ

ϕ θ

(x, y, z)

https://math.stackexchange.com/questions/35500/parameterizing-the-upper-hemisphere-of-a-sphere-with-an-upward-pointing-normal
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Uniform Hemisphere Sampling Continued

‣ Captures the idea that there are more 
points at lower latitudes. 

 

‣ No dependence on  as expected 

‣ Then, CDF is 

fΦ(ϕ) =
2π x2 + y2

2π

= sin2 ϕ cos2 θ + sin2 ϕ sin2 θ

= sin2 ϕ(cos2 θ + sin2 θ)

= sin ϕ

θ

FΦ(ϕ) = ∫
ϕ

0
sin ϕdϕ = 1 − cos ϕ

fΦ(ϕ) =
piece of hemisphere at latitude ϕ

surface area of hemispherex = sin ϕ cos θ
y = sin ϕ sin θ
z = cos ϕ

ϕ θ

(x, y, z)

Circle with 
same latitude ϕ

Sanity check: 

∫
π/2

0
fΦ(ϕ)dϕ = 1
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Uniform Hemisphere Sampling Continued

‣ We now have the CDF  

‣ Inverse CDF is  

‣ How to generate the actual result? 

- Pick a random  in .  Then set 
, .  Get  from 

parameterization of hemisphere. 

- Recall that  is uniform between , 
so  works as well.

FΦ(ϕ) = 1 − cos ϕ

QΦ(X) = cos−1(1 − X)

X, Y [0,1]
ϕ = Qϕ(X) θ = 2πY x, y, z

X [0,1]
QΦ(X) = cos−1(X)

x = sin ϕ cos θ
y = sin ϕ sin θ
z = cos ϕ

ϕ θ

(x, y, z)

Provided in the base 
code, in sampler.cpp 

(exactly the same!  Well, 
 and  are switched)ϕ θ
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Task 7: Image Based Lighting
‣ In task 7, you will be implementing a new type of light, an 

Environment Light.  We will use a general technique 
common in CG called image based lighting, which enables 
us to sample a high-resolution image as our light:

Note: Similar Parameterization to the previous example
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Task 7: Importance Sampling environment Maps

‣ So far we’ve only talked about inversion 
sampling with respect to a uniform PDF.  
However, the PDF need not be uniform! 

- Goal: Areas of the environment light with 
higher radiance should be sampled more 
often 

‣ Build up a PMF over all pixels in the input image, 
such that the probability of sampling a pixel is 
proportional to its radiance 

- “Block” analogy: create a stack of blocks, with 
one block per pixel.  The height of each block 
is the radiance of that pixel.  Then select over 
all heights with uniform probability.
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Monte Carlo 
Methods
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Review: Monte Carlo Methods
‣ Here’s one characterization of a Monte Carlo Algorithm 

you probably have seen:

Source: 15-251 Recitation Packet 

‣ Main takeaway: We’re “gambling” with correctness, not 
running time. 

- Named after the grand casino at 
Monte Carlo, a ward of Monaco 

- Contrast with a Las Vegas algorithm, 
which gambles with running time

Noise!
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Review: Monte Carlo Integration
‣ General class of Monte Carlo algorithms that aim to 

evaluate a (usually complex) integral numerically 

- Algorithms perspective: A Monte Carlo analog to 
Reimann Sums (Reimann sums are a deterministic algo) 

- Statistical perspective: Setting up a random event such 
that the Expected Value is the same as the integral 

๏ Law of Large Numbers: When taking a large number 
of samples of a probability distribution, the average 
approaches the Expected Value as .samples → ∞
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Computing  π

‣ How might we compute  using a Monte Carlo algorithm? 

- Area of a circle is , so if we can find the area of a 
circle with radius 1, then we have found  

- Strategy: Use rejection sampling! 

1. Draw a Circle with , and a box centered 
around the circle as tightly as possible ( ) 

2. Uniformly sample the box  
(we don’t need to know  to do this) 

3. The quantity  is equal to 

π

πr2

π

r = 1
w = 2

π

4
samplescircle

samplestotal
π
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Computing π

‣ But what are we really doing here? 

- Beautiful tool lurking in the background:  
“law of the unconscious statistician”: 

-              (for discrete RV) 

            (for continuous RV) 

for random variable  and (deterministic) function 

E[F(X)] = ∑ F(X)PX(X)

E[F(X)] = ∫ F(X)PX(X)dX

X F
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Computing π
For computing , we have  

random point in the box 

 

 

So  

Recall Law of Large Numbers:  

 as 

π

X =

F(X) = {1 if X is in the circle
0 otherwise

PX(X) =
1

Abox
=

1
4

E[F(X)] = ∫B

F(X)
Abox

dX =
1
4 ∫B

F(X)dX =
1
4

Acircle = π/4

⇒ E[F(X)] =
samplescircle

samplestotal
samplestotal → ∞

E[F(X)] = ∫ F(X)PX(X)dX

Law of unconscious statistician:
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More about Monte Carlo Algorithms and Sampling

‣ Scratchapixel has an excellent collection of 
resources on this topic. 

‣ Scratchapixel, Mathematical Foundations of 
Monte Carlo Methods 
- https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/

monte-carlo-methods-mathematical-foundations/quick-introduction-to-monte-carlo-
methods 

- Random Variables, PDF/CDF, Expected Value/
Variance, Law of Unconscious Statistician, 
Inversion Sampling 

‣ Scratchapixel, Monte Carlo Methods in Practice 
- https://www.scratchapixel.com/lessons/mathematics-physics-for-

computer-graphics/monte-carlo-methods-in-practice/monte-carlo-
methods 

- Monte Carlo Simulation & Integration, 
Variance Reduction, Practical Examples / 
Source Code

https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-mathematical-foundations/quick-introduction-to-monte-carlo-methods
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-mathematical-foundations/quick-introduction-to-monte-carlo-methods
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-mathematical-foundations/quick-introduction-to-monte-carlo-methods
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice/monte-carlo-methods
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice/monte-carlo-methods
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice/monte-carlo-methods
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The Rendering 
Equation
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The Rendering Equation

‣ Broadly, your task is to implement a Monte Carlo 
estimator for the rendering equation. 

‣ The basics: Your inputs are  and , the outgoing 
ray direction and the point of intersection. 

- Common mistake: Remember that rays start from 
the camera!  You implemented this in Part 1 :)

ωo p

Lo(p, ωo) = Le(p, ωo) + ∫H2

fr(p, ωi → ωo) Li(p, ωi) cos θdωi

ωi

p

 (all orange rays)ωo

BRDF Incoming 
Radiance

Output 
Radiance
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The Rendering Equation

‣ Important: In a pathtracer, rays don’t start at the light, they 
start at a camera!  How is this possible? 

- Helmholtz Reciprocity:  for 
most surfaces™ that you find in nature. 

- Counterexample: Lenticular prints that  
change depending on view direction

fr(p, ωi → ωo) = fr(p, ωo → ωi)

Lo(p, ωo) = Le(p, ωo) + ∫H2

fr(p, ωi → ωo) Li(p, ωi) cos θdωi

ωi

p

 (all orange rays)ωo

Source: https://gph.is/13Yglvr

BRDF Incoming 
Radiance

Output 
Radiance

https://gph.is/13Yglvr
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Lighting via “Direct Lighting” (Task 4)

‣ In task 4, you added shadows to 
an existing implementation of 
direct lighting 

- Idea: Sample/integrate over the 
light’s surface: set  to the 
radiance of the light, accounting 
for change of terms in integral

Li(p, ωi)

Direct Lighting 
Added Here

Lo(p, ωo) = Le(p, ωo) + ∫H2

fr(p, ωi → ωo) Li(p, ωi) cos θdωi

ωi

p

 (all orange rays)ωoArea 
Light

p′ 

Sample from the rays 
that hit the light
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Lighting via Emitted Radiance

‣ , the emitted radiance, is nonzero when the 
surface itself is a light. 

‣ Above,  and  

‣ No surfaces in the provided Scotty3D demo files 
use an emissive material — still, try to support 
emission (it is possible in Scotty3D). 

- Useful if you want to both reflect and emit light

Le

Le(p, ωo) = 0 Le(p′ , − ωi) > 0

Emitted 
Radiance

Lo(p, ωo) = Le(p, ωo) + ∫H2

fr(p, ωi → ωo) Li(p, ωi) cos θdωi

ωi

p

 (all orange rays)ωoEmissive 
Surface

p′ 
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The Rendering Equation
Lo(p, ωo) = Le(p, ωo) + ∫H2

fr(p, ωi → ωo) Li(p, ωi) cos θdωi
What’s this??

‣ Note: This cosine is due to parameterization of sphere 

‣ Note: Concerns solid angles, not areas (Lambert’s law)
https://spie.org/publications/fg11_p04_solid_angle_and_projected

https://spie.org/publications/fg11_p04_solid_angle_and_projected
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“Delta” BRDFs

‣ For a Mirror, we could define the BRDF as:

 

‣ Written in lecture as a Dirac delta function 

where  are the angles between  and the normal 

‣ Wait a minute… how do we sample that?! 

- Our sampler would have to perfectly guess the incoming 
vector  up to floating point precision 

- Instead we manually provide the reflected vector 

‣ These “Delta BRDFs” also don’t use direct lighting.

fi(p, ωi → ωo) = {1/cos(θi) if ωo = reflect(ωi)
0 otherwise

δ(cos θi − cos θo)
cos θi

θi, θo ωi, ωo

ωi

Lo(p, ωo) = Le(p, ωo) + ∫H2

fr(p, ωi → ωo) Li(p, ωi) cos θdωi
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Rendering Equation in Direct Lighting

Lo(p, ωo) = Le(p, ωo) + ∫H2

fr(p, ωi → ωo) Li(p, ωi) cos θdωi

Generates a random ray 
dir_to_light from  to 
somewhere on the surface 
of the light.

p

Need to account for the 
probability of hitting this 
patch of the area light, 
which would bias sampling

E[F(X)] = ∫ F(X)PX(X)dX

Law of unconscious statistician:

(No delta surfaces)
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Writing BRDFs in Scotty3D (Task 5, 6)
‣ There are actually two functions to implement each BRDF: 

 
- Spectrum f(const Vector3D &wo, const Vector3D &wi)

๏ Input: Ray directions ,  

๏ Output: Classical BRDF  that returns radiance 

๏ Called only during direct lighting 
- Spectrum sample_f(const Vector3D &wo, Vector3D &wi, float* pdf)

๏ Input: Only outgoing ray direction  

๏ Output: Generate a random sample , its probability (in the variable 
pdf), and return  

๏ You should call this when computing indirect lighting (Task 5)

ωi ωo

f(ωi → ωo)

ωo

ωi
f(ωi → ωo)
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Writing BRDFs in Scotty3D (Tasks 5,6)
‣ Common point of confusion: in f() and sample_f(),  and  

both point away from the intersection point .  
Additionally, the outward normal is defined to be the -axis.

ωo ωi
p

z

ωi

p

 (all orange rays)ωo

z = n

‣ Additionally, in the case of refraction, the  coordinate of 
 will be negative (  is defined as the outward normal)

z
ωi z

Towards the top of 
trace_ray in pathtracer.cpp
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Task 5,6 Hints and Tips
‣ Diffuse BRDF 

- Think carefully about the pdf value. 

- You may optionally implement a Cosine Weighted sampler, which 
should be straightforward after today. 

- Remember to use the DiffuseBSDF::albedo variable. 

‣ Mirror BRDF 

- Remember to use the MirrorBSDF::reflectance variable 

‣ Glass BRDF 

- Remember to use GlassBSDF::reflectance and GlassBSDF::transmittance 

- The PDF is not 1.0 

- I highly recommend using Schlick’s approximation (there is a link on the 
wiki) which is easier to implement and more robust way to compute the 
fresnel term Fr
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Task 6 Grading
‣ For Task 6, I will be running your code remotely on the 

Andrew Unix cluster to render the Cornell box with your 
pathtracer at demanding settings: 

./scotty3d -w output.png -t 8 -m 4 -s 1024 -d 800x600 ../media/pathtracer/CBspheres.dae

‣ 8 threads, max 4 light bounces, 1024 samples, 800x600 

‣ I am giving each submission 30 minutes to render (more 
than double our reference).  If your submission doesn’t 
finish in time you will receive a penalty. 

‣ It is important that you test your code!  New changes to the 
base code allow you to remotely render via SSH 

- See Piazza
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Performance Improvement Suggestions

‣ Use a Profiler!  This will save you loads of headache and can 
help diagnose slow code, at the level of an individual function 
call.  Come to OH for help, or intro to C++ lecture 

- Most serious performance issues have to do with something 
silly, like not passing by reference 

‣ Avoid trig functions, use dot and cross products if possible 

‣ Avoid very recursive code (ex: BVH traversal), and convert to a 
sequential algorithm 

‣ Use the helper functions at the top of bsdf.h 

‣ Remember: Millions of rays will be cast in a large render, so 
make sure your code is as fast as possible with respect to each 
raycast.
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Correctness Improvement Suggestions

‣ Don’t clamp radiances, ever.  Your answer will be wrong 

- A common reason for this is that you are seeing white 
“speckles” in your renders.  Try turning up the sample 
rate first, if that doesn’t fix it you have a math error. 

- Note that a Spectrum can have color values > 1 

‣ Make sure that your PDF integrates to 1.  Otherwise your 
rays may gain energy on each bounce and you get this: 

‣ Manage your cosines: if the edges of some objects are 
too dark, then you have missed a divide by cosine 
somewhere 

‣ Banging your head against code will not prove fruitful, 
especially for Task 6.  You may want to work out the 
math on pen and paper.
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Questions?


