
CMU 15-462/662

Recitation will begin Shortly
‣ Make sure your microphone is on mute

‣ Get used to the raise hand feature on zoom, I will be
paying attention to this so you can ask questions

- Please make sure your name is set
on zoom so I can call on you

- You can also ask questions in the text
chat

Computer Graphics
CMU 15-462/662

Assignment 3 Part 2
Overview

CMU 15-462/662

Introduction

‣ Assignment 3, Part 2 is extremely theory heavy!

- Majority of your debugging time will be debugging math
errors, not debugging crashes.

- The majority of points to be lost are math-related.

๏ Important: Include known errors in your writeup

๏ We will look at your code, “it looks right” isn’t enough

‣ Today we’ll review much of the theory we went over in
class, and give some implementation tips.

CMU 15-462/662

Overview of Tasks
‣ Task 1: Generate the initial

rays to send from the camera

‣ Task 2: Compute ray-primitive intersection

- You need to support triangles and spheres

‣ Task 3: Accelerate ray-scene
intersection queries using a Bounding
Volume Hierarchy (BVH)

‣ Task 4: Implement direct lighting
with shadows

CMU 15-462/662

Overview of Tasks
‣ Task 5: Support indirect

illumination via path tracing

‣ Task 6: Support non-diffuse
materials (mirror, glass)

‣ Task 7: Support environment
lighting via a texture

CMU 15-462/662

Sampling

CMU 15-462/662

PDF and CDF
‣ Probability Mass function (PMF): Probability that a discrete

random variable has value ()

‣ Probability Density Function (PDF): Continuous version of the
PMF (for some continuous random variable)

‣ Cumulative Distribution Function (CDF): Probability that a
Random variable is less than some value

-

- by definition of a PDF / PMF

- Continuous (given PDF):

- Discrete (given PMF):

X x pX(x) ∈ [0,1]

fX(x) ∈ [0,1] X

FX(x) = P(X ≤ x)

FX(∞) = 1

fx FX(x) = ∫
x

−∞
fx(x′)dx′

px FX(x) = ∑
x′ ≤x

px(x′)

CMU 15-462/662

PDF and CDF Example
fX(x) = 0.6(x − 1)3 − 0.3x2 − 0.1x + 1 FX(x) = ∫

x

0
fx(x) =

3
20

x4 −
7
10

x3 +
17
20

x2 +
4
10

x
x

0(Defined between 0 and 2)

Note, for any probability (discrete or
continuous) distribution (sum of probabilities is 1).
Also CDF is monotonically increasing.

FX(∞) = 1

CMU 15-462/662

Inversion Sampling
Goal: We are given a PDF for some random variable .
We want to generate so that it follows

fX(x) X
X fX(x)

Basic Steps:

1. Evaluate the CDF on the distribution

2. Invert the CDF to find the quantile function . This
should satisfy

3. Generate a random number uniformly between 0 and 1

4. Apply to the uniform sample

FX(x)

QX(q)
QX(FX(x)) = x

QX

CMU 15-462/662

Inversion Sampling (Discrete)

‣ For discrete RV (PMF), you can imagine
the CDF as stacking “blocks”

- One block for each possible event,
each block has height equal to PMF

- Then we uniformly choose a random
“height”. Higher probability events will
get picked more often (that’s our goal!)

CMU 15-462/662

Inversion Sampling (Continuous)
fX(x) = 0.6(x − 1)3 − 0.3x2 − 0.1x + 1 FX(x) = ∫

x

0
fX(x) =

3
20

x4 −
7
10

x3 +
17
20

x2 +
4
10

x
x

0

For continuous RV (PDF), we have the same idea, but we
integrate instead. The CDF rises more quickly in a

region that has a high PDF, just like before.

(Defined between 0 and 2)

CMU 15-462/662

Example: Sampling between two concentric circles

‣ Suppose we want to find a function such that
if are random numbers in then is a
random point between two concentric circles, both centered
around the origin, with radii and

‣ We can parameterize in polar coordinates,
as . So let be the distance of

 from the origin. Let be the
angle from the horizontal.

‣ Want to find the CDF

- Do we need to worry about ?

‣ The CDF is the ratio of areas: .

f(a, b) : ℝ2 → ℝ2

a, b [0,1] (x, y) = f(a, b)

r1, r2 r1 < r2

(x, y)
(Θ, R) R ∈ [r1, r2]

(x, y) Θ ∈ [0,2π]

FR(r) = P(| |R | | ≤ r)

FΘ(θ)

FR(r) =
r2 − r2

1

r2
2 − r2

1

r1

r2

r

(x, y)

No, it’s constant wrt .θ

CMU 15-462/662

Concentric Circles Continued

‣ To find the inverse CDF, solve for :

-

‣ So, we have the inverse CDF

‣ Say we have a uniformly random variables . How
do we generate the final point ?

- First compute polar coords:

- Finally:

q = FR(r) r

q =
r2 − r2

1

r2
2 − r2

1
⇒ … ⇒ r = qr2

2 + (1 − q)r2
1

QR(q) = qr2
2 + (1 − y)r2

1

X, Y ∈ [0,1]
(x, y)

(Θ, R) = (2π ⋅ X, QR(Y))

(x, y) = (R cos Θ, R sin Θ)

Basic Steps:

1. Evaluate the CDF on the distribution

2. Invert the CDF to find . This should satisfy

3. Generate a random number uniformly between 0 and 1

4. Apply to the uniform sample

FX(x)

QX(q) QX(FX(x)) = x

QX

r1

r2

r

(x, y)

CMU 15-462/662

‣ Goal: Given 2 uniform RVs in , generate a point
uniformly randomly on the surface of a unit hemisphere.

‣ First, just like before, parameterize the hemisphere with two
variables which represent latitude and longitude

‣Sanity check:

‣To derive: First find from , then project
down onto plane and work in polar coords
(https://math.stackexchange.com/questions/35500/parameterizing-the-upper-hemisphere-of-a-sphere-with-an-upward-pointing-normal)

‣As before, PDF is only dependent on

‣Then, what is that PDF ?

(X, Y) [0,1]

(ϕ, θ)

x2 + y2 + z2 = 1

z ϕ

ϕ

fΦ(ϕ) = P[ϕ ≤ Φ]

fΦ(ϕ) =
piece of hemisphere at latitude ϕ

surface area of hemisphere

Example: Uniformly Sampling the Hemisphere

x = sin ϕ cos θ
y = sin ϕ sin θ
z = cos ϕ

ϕ θ

(x, y, z)

https://math.stackexchange.com/questions/35500/parameterizing-the-upper-hemisphere-of-a-sphere-with-an-upward-pointing-normal

CMU 15-462/662

Uniform Hemisphere Sampling Continued

‣ Captures the idea that there are more
points at lower latitudes.

‣ No dependence on as expected

‣ Then, CDF is

fΦ(ϕ) =
2π x2 + y2

2π

= sin2 ϕ cos2 θ + sin2 ϕ sin2 θ

= sin2 ϕ(cos2 θ + sin2 θ)

= sin ϕ

θ

FΦ(ϕ) = ∫
ϕ

0
sin ϕdϕ = 1 − cos ϕ

fΦ(ϕ) =
piece of hemisphere at latitude ϕ

surface area of hemispherex = sin ϕ cos θ
y = sin ϕ sin θ
z = cos ϕ

ϕ θ

(x, y, z)

Circle with
same latitude ϕ

Sanity check:

∫
π/2

0
fΦ(ϕ)dϕ = 1

CMU 15-462/662

Uniform Hemisphere Sampling Continued

‣ We now have the CDF

‣ Inverse CDF is

‣ How to generate the actual result?

- Pick a random in . Then set
, . Get from

parameterization of hemisphere.

- Recall that is uniform between ,
so works as well.

FΦ(ϕ) = 1 − cos ϕ

QΦ(X) = cos−1(1 − X)

X, Y [0,1]
ϕ = Qϕ(X) θ = 2πY x, y, z

X [0,1]
QΦ(X) = cos−1(X)

x = sin ϕ cos θ
y = sin ϕ sin θ
z = cos ϕ

ϕ θ

(x, y, z)

Provided in the base
code, in sampler.cpp

(exactly the same! Well,
 and are switched)ϕ θ

CMU 15-462/662

Task 7: Image Based Lighting
‣ In task 7, you will be implementing a new type of light, an

Environment Light. We will use a general technique
common in CG called image based lighting, which enables
us to sample a high-resolution image as our light:

Note: Similar Parameterization to the previous example

CMU 15-462/662

Task 7: Importance Sampling environment Maps

‣ So far we’ve only talked about inversion
sampling with respect to a uniform PDF.
However, the PDF need not be uniform!

- Goal: Areas of the environment light with
higher radiance should be sampled more
often

‣ Build up a PMF over all pixels in the input image,
such that the probability of sampling a pixel is
proportional to its radiance

- “Block” analogy: create a stack of blocks, with
one block per pixel. The height of each block
is the radiance of that pixel. Then select over
all heights with uniform probability.

CMU 15-462/662

Monte Carlo
Methods

CMU 15-462/662

Review: Monte Carlo Methods
‣ Here’s one characterization of a Monte Carlo Algorithm

you probably have seen:

Source: 15-251 Recitation Packet

‣ Main takeaway: We’re “gambling” with correctness, not
running time.

- Named after the grand casino at
Monte Carlo, a ward of Monaco

- Contrast with a Las Vegas algorithm,
which gambles with running time

Noise!

CMU 15-462/662

Review: Monte Carlo Integration
‣ General class of Monte Carlo algorithms that aim to

evaluate a (usually complex) integral numerically

- Algorithms perspective: A Monte Carlo analog to
Reimann Sums (Reimann sums are a deterministic algo)

- Statistical perspective: Setting up a random event such
that the Expected Value is the same as the integral

๏ Law of Large Numbers: When taking a large number
of samples of a probability distribution, the average
approaches the Expected Value as .samples → ∞

CMU 15-462/662

Computing π

‣ How might we compute using a Monte Carlo algorithm?

- Area of a circle is , so if we can find the area of a
circle with radius 1, then we have found

- Strategy: Use rejection sampling!

1. Draw a Circle with , and a box centered
around the circle as tightly as possible ()

2. Uniformly sample the box
(we don’t need to know to do this)

3. The quantity is equal to

π

πr2

π

r = 1
w = 2

π

4
samplescircle

samplestotal
π

CMU 15-462/662

Computing π

‣ But what are we really doing here?

- Beautiful tool lurking in the background:
“law of the unconscious statistician”:

- (for discrete RV)

 (for continuous RV)

for random variable and (deterministic) function

E[F(X)] = ∑ F(X)PX(X)

E[F(X)] = ∫ F(X)PX(X)dX

X F

CMU 15-462/662

Computing π
For computing , we have

random point in the box

So

Recall Law of Large Numbers:

 as

π

X =

F(X) = {1 if X is in the circle
0 otherwise

PX(X) =
1

Abox
=

1
4

E[F(X)] = ∫B

F(X)
Abox

dX =
1
4 ∫B

F(X)dX =
1
4

Acircle = π/4

⇒ E[F(X)] =
samplescircle

samplestotal
samplestotal → ∞

E[F(X)] = ∫ F(X)PX(X)dX

Law of unconscious statistician:

CMU 15-462/662

More about Monte Carlo Algorithms and Sampling

‣ Scratchapixel has an excellent collection of
resources on this topic.

‣ Scratchapixel, Mathematical Foundations of
Monte Carlo Methods
- https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/

monte-carlo-methods-mathematical-foundations/quick-introduction-to-monte-carlo-
methods

- Random Variables, PDF/CDF, Expected Value/
Variance, Law of Unconscious Statistician,
Inversion Sampling

‣ Scratchapixel, Monte Carlo Methods in Practice
- https://www.scratchapixel.com/lessons/mathematics-physics-for-

computer-graphics/monte-carlo-methods-in-practice/monte-carlo-
methods

- Monte Carlo Simulation & Integration,
Variance Reduction, Practical Examples /
Source Code

https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-mathematical-foundations/quick-introduction-to-monte-carlo-methods
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-mathematical-foundations/quick-introduction-to-monte-carlo-methods
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-mathematical-foundations/quick-introduction-to-monte-carlo-methods
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice/monte-carlo-methods
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice/monte-carlo-methods
https://www.scratchapixel.com/lessons/mathematics-physics-for-computer-graphics/monte-carlo-methods-in-practice/monte-carlo-methods

CMU 15-462/662

The Rendering
Equation

CMU 15-462/662

The Rendering Equation

‣ Broadly, your task is to implement a Monte Carlo
estimator for the rendering equation.

‣ The basics: Your inputs are and , the outgoing
ray direction and the point of intersection.

- Common mistake: Remember that rays start from
the camera! You implemented this in Part 1 :)

ωo p

Lo(p, ωo) = Le(p, ωo) + ∫H2

fr(p, ωi → ωo) Li(p, ωi) cos θdωi

ωi

p

 (all orange rays)ωo

BRDF Incoming
Radiance

Output
Radiance

CMU 15-462/662

The Rendering Equation

‣ Important: In a pathtracer, rays don’t start at the light, they
start at a camera! How is this possible?

- Helmholtz Reciprocity: for
most surfaces™ that you find in nature.

- Counterexample: Lenticular prints that
change depending on view direction

fr(p, ωi → ωo) = fr(p, ωo → ωi)

Lo(p, ωo) = Le(p, ωo) + ∫H2

fr(p, ωi → ωo) Li(p, ωi) cos θdωi

ωi

p

 (all orange rays)ωo

Source: https://gph.is/13Yglvr

BRDF Incoming
Radiance

Output
Radiance

https://gph.is/13Yglvr

CMU 15-462/662

Lighting via “Direct Lighting” (Task 4)

‣ In task 4, you added shadows to
an existing implementation of
direct lighting

- Idea: Sample/integrate over the
light’s surface: set to the
radiance of the light, accounting
for change of terms in integral

Li(p, ωi)

Direct Lighting
Added Here

Lo(p, ωo) = Le(p, ωo) + ∫H2

fr(p, ωi → ωo) Li(p, ωi) cos θdωi

ωi

p

 (all orange rays)ωoArea
Light

p′

Sample from the rays
that hit the light

CMU 15-462/662

Lighting via Emitted Radiance

‣ , the emitted radiance, is nonzero when the
surface itself is a light.

‣ Above, and

‣ No surfaces in the provided Scotty3D demo files
use an emissive material — still, try to support
emission (it is possible in Scotty3D).

- Useful if you want to both reflect and emit light

Le

Le(p, ωo) = 0 Le(p′ , − ωi) > 0

Emitted
Radiance

Lo(p, ωo) = Le(p, ωo) + ∫H2

fr(p, ωi → ωo) Li(p, ωi) cos θdωi

ωi

p

 (all orange rays)ωoEmissive
Surface

p′

CMU 15-462/662

The Rendering Equation
Lo(p, ωo) = Le(p, ωo) + ∫H2

fr(p, ωi → ωo) Li(p, ωi) cos θdωi
What’s this??

‣ Note: This cosine is due to parameterization of sphere

‣ Note: Concerns solid angles, not areas (Lambert’s law)
https://spie.org/publications/fg11_p04_solid_angle_and_projected

https://spie.org/publications/fg11_p04_solid_angle_and_projected

CMU 15-462/662

“Delta” BRDFs

‣ For a Mirror, we could define the BRDF as:

‣ Written in lecture as a Dirac delta function

where are the angles between and the normal

‣ Wait a minute… how do we sample that?!

- Our sampler would have to perfectly guess the incoming
vector up to floating point precision

- Instead we manually provide the reflected vector

‣ These “Delta BRDFs” also don’t use direct lighting.

fi(p, ωi → ωo) = {1/cos(θi) if ωo = reflect(ωi)
0 otherwise

δ(cos θi − cos θo)
cos θi

θi, θo ωi, ωo

ωi

Lo(p, ωo) = Le(p, ωo) + ∫H2

fr(p, ωi → ωo) Li(p, ωi) cos θdωi

CMU 15-462/662

Rendering Equation in Direct Lighting

Lo(p, ωo) = Le(p, ωo) + ∫H2

fr(p, ωi → ωo) Li(p, ωi) cos θdωi

Generates a random ray
dir_to_light from to
somewhere on the surface
of the light.

p

Need to account for the
probability of hitting this
patch of the area light,
which would bias sampling

E[F(X)] = ∫ F(X)PX(X)dX

Law of unconscious statistician:

(No delta surfaces)

CMU 15-462/662

Writing BRDFs in Scotty3D (Task 5, 6)
‣ There are actually two functions to implement each BRDF:

- Spectrum f(const Vector3D &wo, const Vector3D &wi)

๏ Input: Ray directions ,

๏ Output: Classical BRDF that returns radiance

๏ Called only during direct lighting
- Spectrum sample_f(const Vector3D &wo, Vector3D &wi, float* pdf)

๏ Input: Only outgoing ray direction

๏ Output: Generate a random sample , its probability (in the variable
pdf), and return

๏ You should call this when computing indirect lighting (Task 5)

ωi ωo

f(ωi → ωo)

ωo

ωi
f(ωi → ωo)

CMU 15-462/662

Writing BRDFs in Scotty3D (Tasks 5,6)
‣ Common point of confusion: in f() and sample_f(), and

both point away from the intersection point .
Additionally, the outward normal is defined to be the -axis.

ωo ωi
p

z

ωi

p

 (all orange rays)ωo

z = n

‣ Additionally, in the case of refraction, the coordinate of
 will be negative (is defined as the outward normal)

z
ωi z

Towards the top of
trace_ray in pathtracer.cpp

CMU 15-462/662

Task 5,6 Hints and Tips
‣ Diffuse BRDF

- Think carefully about the pdf value.

- You may optionally implement a Cosine Weighted sampler, which
should be straightforward after today.

- Remember to use the DiffuseBSDF::albedo variable.

‣ Mirror BRDF

- Remember to use the MirrorBSDF::reflectance variable

‣ Glass BRDF

- Remember to use GlassBSDF::reflectance and GlassBSDF::transmittance

- The PDF is not 1.0

- I highly recommend using Schlick’s approximation (there is a link on the
wiki) which is easier to implement and more robust way to compute the
fresnel term Fr

CMU 15-462/662

Task 6 Grading
‣ For Task 6, I will be running your code remotely on the

Andrew Unix cluster to render the Cornell box with your
pathtracer at demanding settings:

./scotty3d -w output.png -t 8 -m 4 -s 1024 -d 800x600 ../media/pathtracer/CBspheres.dae

‣ 8 threads, max 4 light bounces, 1024 samples, 800x600

‣ I am giving each submission 30 minutes to render (more
than double our reference). If your submission doesn’t
finish in time you will receive a penalty.

‣ It is important that you test your code! New changes to the
base code allow you to remotely render via SSH

- See Piazza

CMU 15-462/662

Performance Improvement Suggestions

‣ Use a Profiler! This will save you loads of headache and can
help diagnose slow code, at the level of an individual function
call. Come to OH for help, or intro to C++ lecture

- Most serious performance issues have to do with something
silly, like not passing by reference

‣ Avoid trig functions, use dot and cross products if possible

‣ Avoid very recursive code (ex: BVH traversal), and convert to a
sequential algorithm

‣ Use the helper functions at the top of bsdf.h

‣ Remember: Millions of rays will be cast in a large render, so
make sure your code is as fast as possible with respect to each
raycast.

CMU 15-462/662

Correctness Improvement Suggestions

‣ Don’t clamp radiances, ever. Your answer will be wrong

- A common reason for this is that you are seeing white
“speckles” in your renders. Try turning up the sample
rate first, if that doesn’t fix it you have a math error.

- Note that a Spectrum can have color values > 1

‣ Make sure that your PDF integrates to 1. Otherwise your
rays may gain energy on each bounce and you get this:

‣ Manage your cosines: if the edges of some objects are
too dark, then you have missed a divide by cosine
somewhere

‣ Banging your head against code will not prove fruitful,
especially for Task 6. You may want to work out the
math on pen and paper.

CMU 15-462/662

Questions?

