Physically-Based Animation and PDEs

Computer Graphics CMU 15-462/15-662

Last time: Optimization

- Graphics as optimization
- Many complex criteria/constraints
 - Technique: numerical optimization
 - pick initial guess
 - ski downhill
 - keep fingers crossed!
 - Today: return to differential equations
 - saw ODEs—derivatives in time
 - now PDEs—also have derivatives in space
 - describe many natural phenomena (water, smoke, cloth, ...)
 - recent revolution in CG/visual effects

<complex-block>

space water, smoke, cloth, ...)

Partial Differential Equations (PDEs)

- ODE: Implicitly describe function in terms of its time derivatives
- Like any implicit description, have to solve for actual function
- PDE: Also include space derivatives in description

ODE—rock flies through air

s of its time derivatives ve for actual function scription

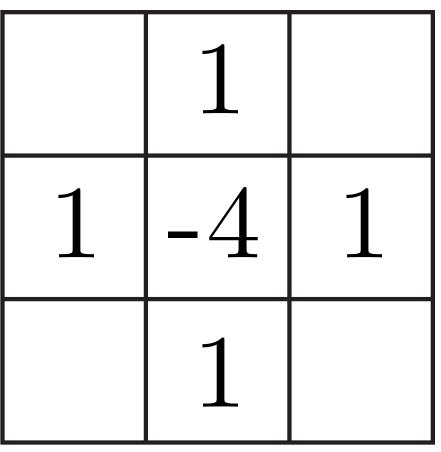
PDE—rock lands in pond

To make a long story short...

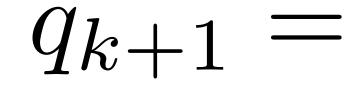
Solving ODE looks like "add a little velocity each time"

$$q_{k+1} = q_k + \tau f$$

Solving a PDE looks like "take weighted combination of neighbors to get velocity (...and add a little velocity each time)"



f(q)

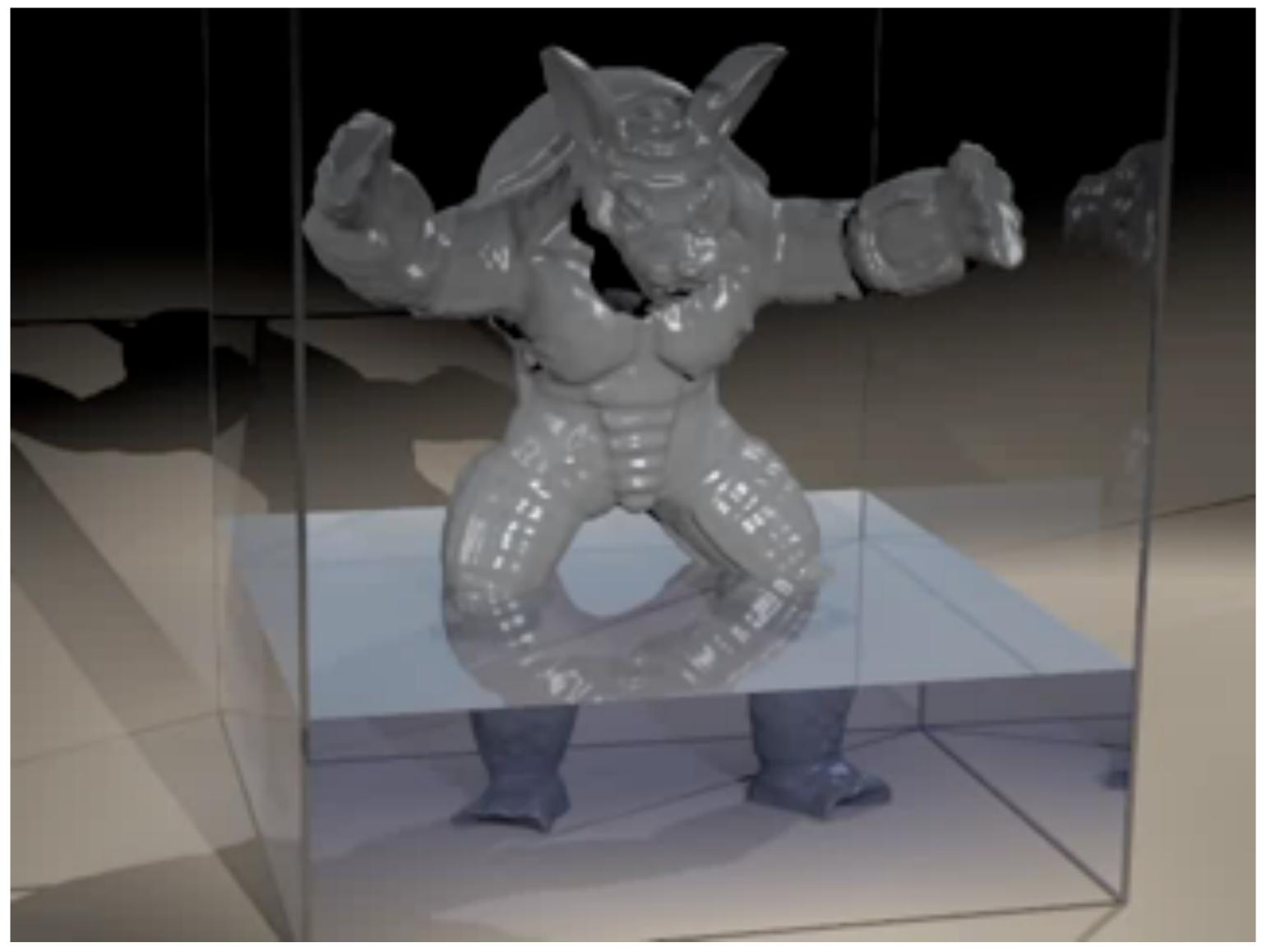


f(q)

$q_{k+1} = q_k + \tau f(q)$

...obviously there is a lot more to say here!

Liquid Simulation in Graphics



Losasso, F., Shinar, T. Selle, A. and Fedkiw, R., "Multiple Interacting Liquids"

Smoke Simulation in Graphics

S. Weißmann, U. Pinkall. "Filament-based smoke with vortex shedding and variational reconnection"

Cloth Simulation in Graphics

Zhili Chen, Renguo Feng and Huamin Wang, "Modeling friction and air effects between cloth and deformable bodies"

Elasticity in Graphics

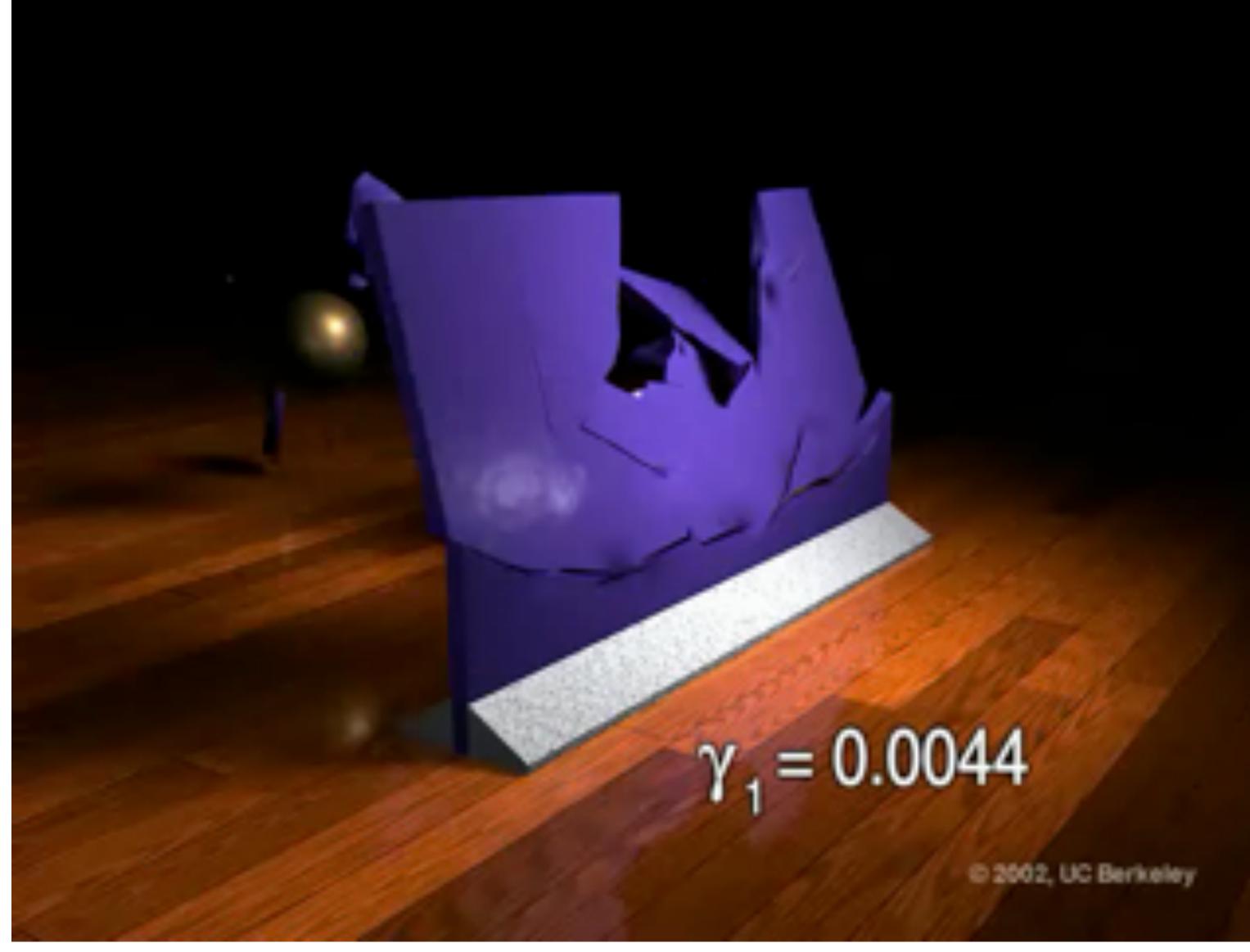
Irving, G., Schroeder, C. and Fedkiw, R., "Volume Conserving Finite Element Simulation of Deformable Models"

Hair Simulation in Graphics

Danny M. Kaufman, Rasmus Tamstorf, Breannan Smith, Jean-Marie Aubry, Eitan Grinspun, "Adaptive Nonlinearity for Collisions in Complex Rod Assemblies"

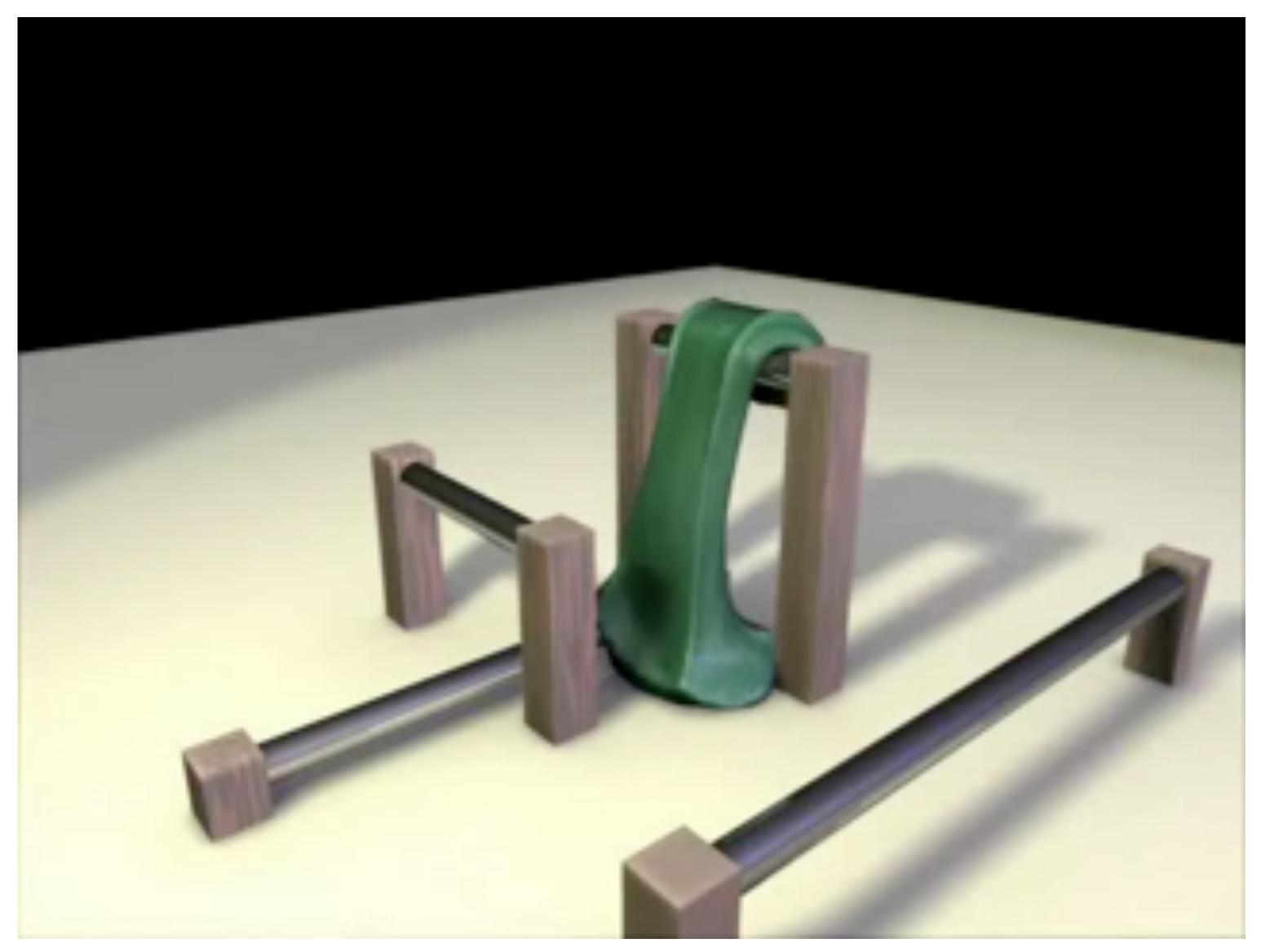
102-41

Fracture in Graphics



James F. O'Brien, Adam Bargteil, Jessica Hodgins, "Graphical Modeling and Animation of Ductile Fracture"

Viscoelasticity in Graphics



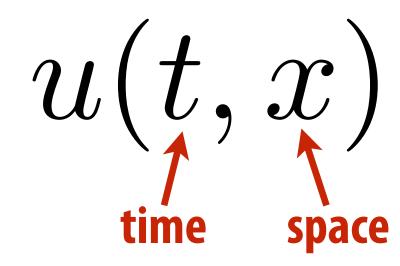
Chris Wojtan, Greg Turk, "Fast Viscoelastic Behavior with Thin Features"

Snow Simulation in Graphics

Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, Andrew Selle, "A Material Point Method For Snow Simulation"

Definition of a PDE

Want to solve for a function of time and space



Function given implicitly in terms of derivatives:

$$\dot{u}, \ddot{u}, \frac{d}{dt^3}u, \frac{d}{dt^4}u, \ldots$$
 a

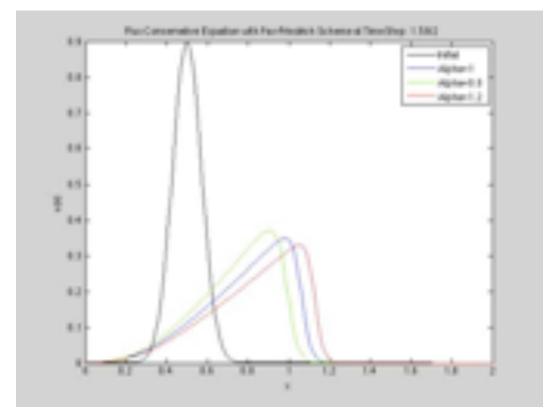
 $\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}, \frac{\partial^2 u}{\partial x_1 \partial x_2}, \frac{\partial^m + nu}{\partial x_i^m \partial x_i^n}, \dots$ plus any combination of space derivatives

Example:

$$\dot{u} + uu' = au''$$

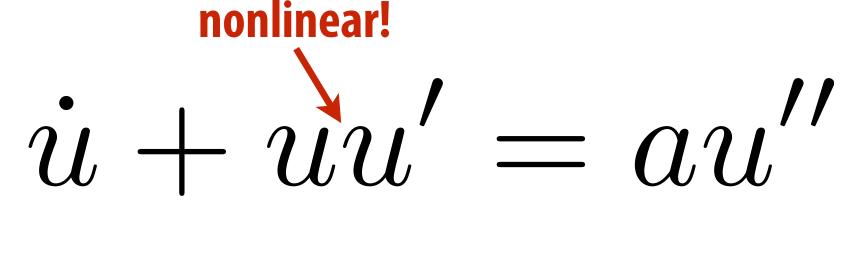
(Burgers' equation)

ny combination of time derivatives

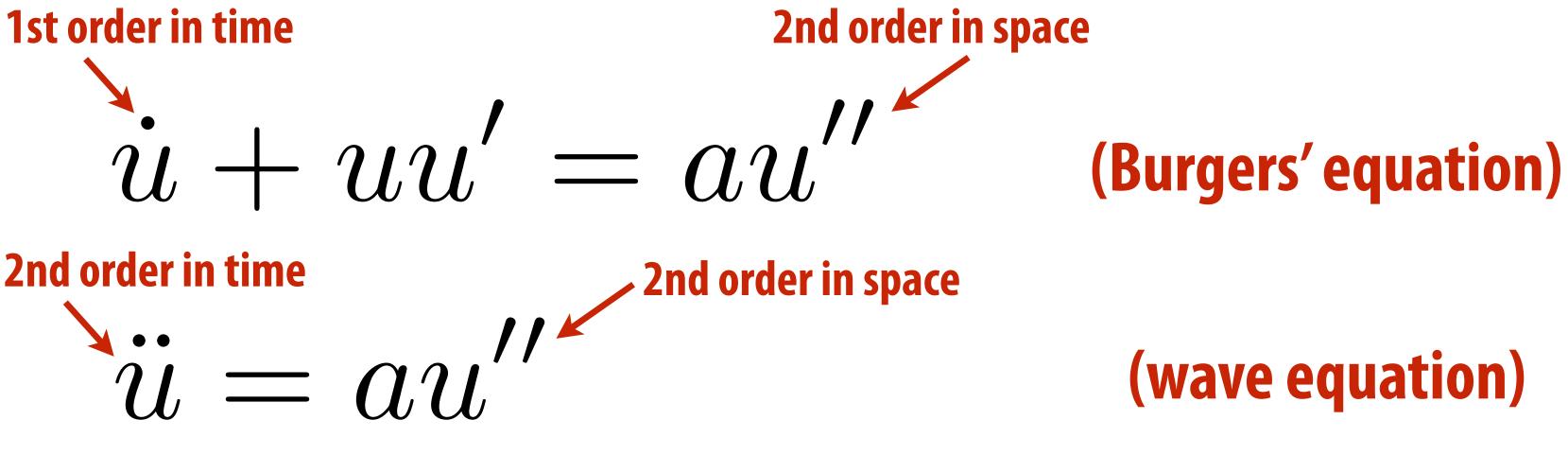


Anatomy of a PDE

Linear vs. nonlinear: how are derivatives combined?



- $\dot{u} = a u''$
- **Order: how many derivatives in space & time?**



Nonlinear / higher order \Rightarrow HARDER TO SOLVE!

(Burgers' equation) (diffusion equation)

(wave equation)

Model Equations

Fundamental behavior of many important PDEs is wellcaptured by three model linear equations:

LAPLACE EQUATION ("ELLIPTIC") $\Delta u = 0$

"what's the smoothest function interpolating the given boundary data"

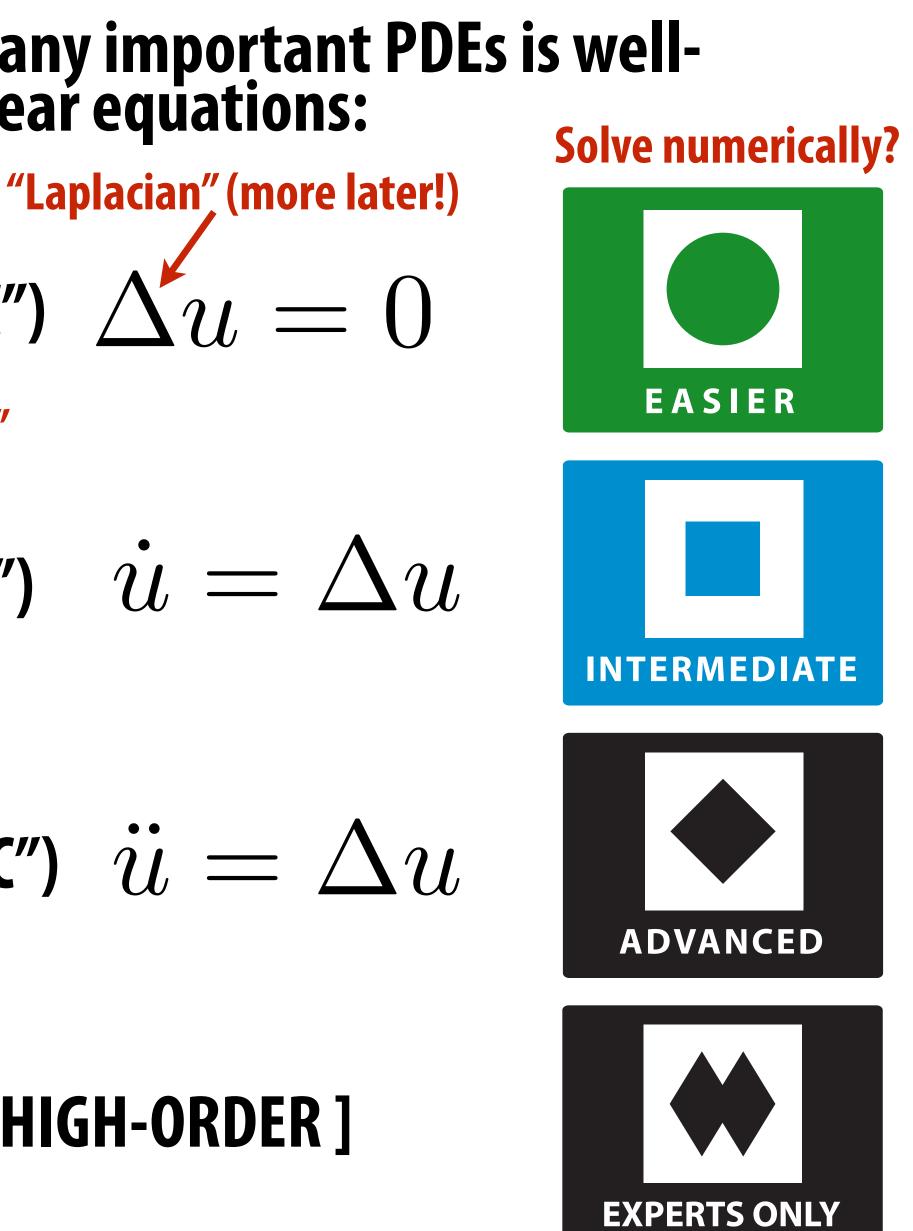
HEAT EQUATION ("PARABOLIC") $\dot{u} =$

"how does an initial distribution of heat spread out over time?"

WAVE EQUATION ("HYPERBOLIC") $\ddot{u} = \Delta u$

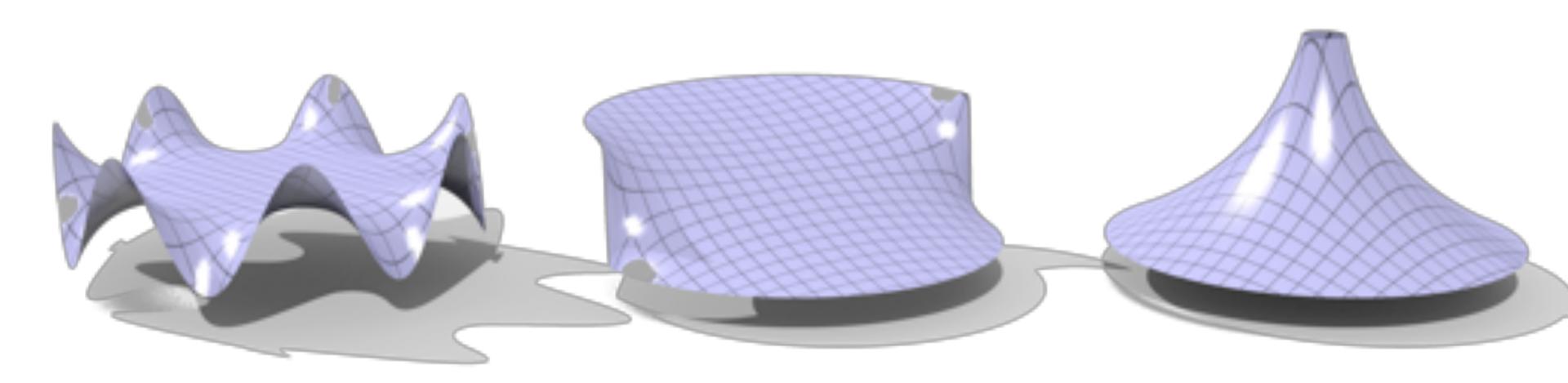
"if you throw a rock into a pond, how does the wavefront evolve over time?"

[NONLINEAR + HYPERBOLIC + HIGH-ORDER]



Elliptic PDEs / Laplace Equation

"What's the smoothest function interpolating the given boundary data?"

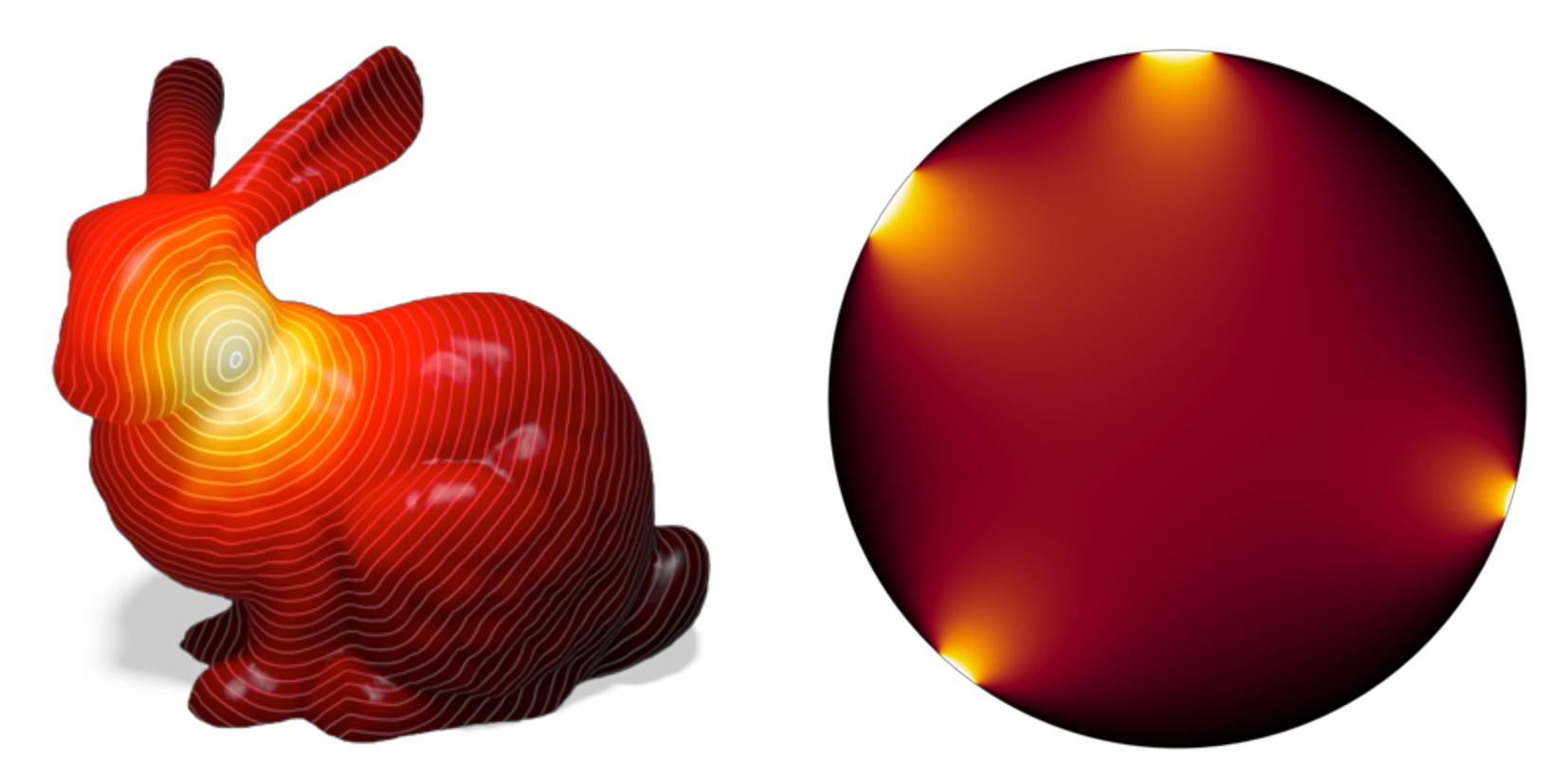


Conceptually: each value is at the average of its "neighbors" Roughly speaking, why is it easier to solve? Very robust to errors: just keep averaging with neighbors!

Image from Solomon, Crane, Vouga, "Laplace-Beltrami: The Swiss Army Knife of Geometry Processing"

Parabolic PDEs / Heat Equation

"How does an initial distribution of heat spread out over time?"



After a long time, solution is same as Laplace equation! Models damping / viscosity in many physical systems

Hyperbolic PDEs / Wave Equation "If you throw a rock into a pond, how does the wavefront

"If you throw a rock into a pond, how does the wavefront evolve over time?"

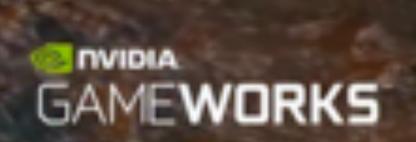
Errors made at the beginning will persist for a long time! (hard)

How did we do that?

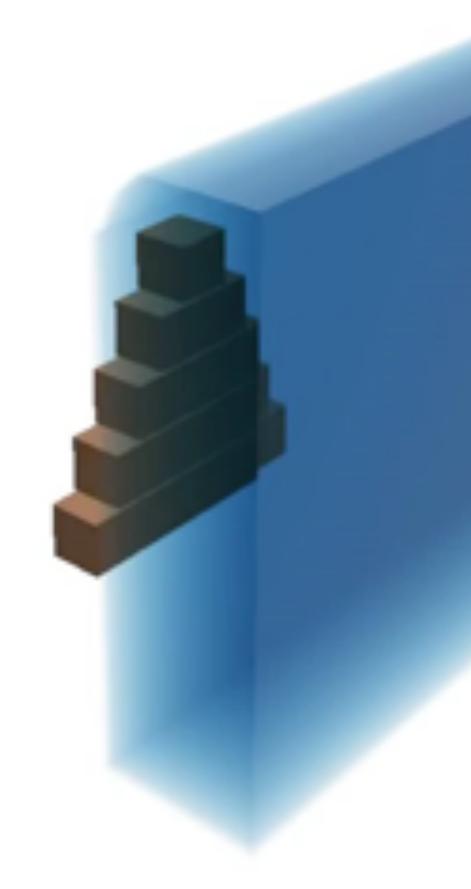
Numerical Solution of PDEs—Overview

- Like ODEs, many interesting PDEs are difficult/impossible to solve analytically—especially if we want to incorporate data (e.g., user interaction)
 - Must instead use numerical integration
- **Basic strategy:**
 - pick a time discretization (forward Euler, backward Euler...)
 - pick a spatial discretization (TODAY)
 - as with ODEs, run a time-stepping algorithm
- Historically, very expensive—only for "hero shots" in movies
- **Computers are ever faster...**
- More & more use of PDEs in games, interactive tools, ...

Real Time PDE-Based Simulation (Fire)



Real Time PDE-Based Simulation (Water)

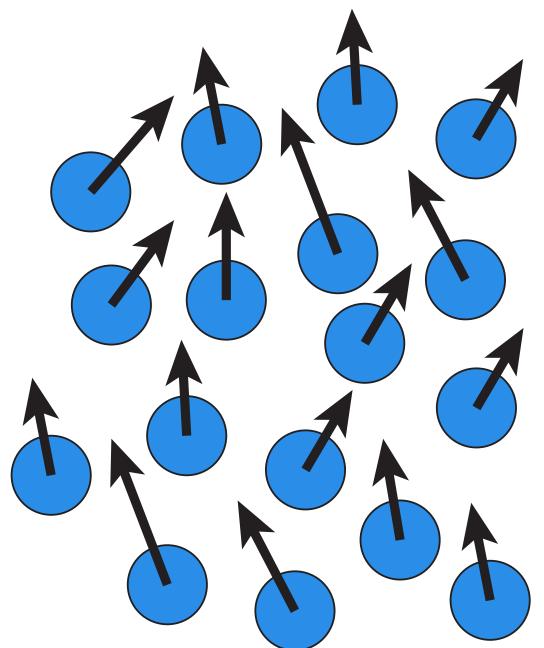


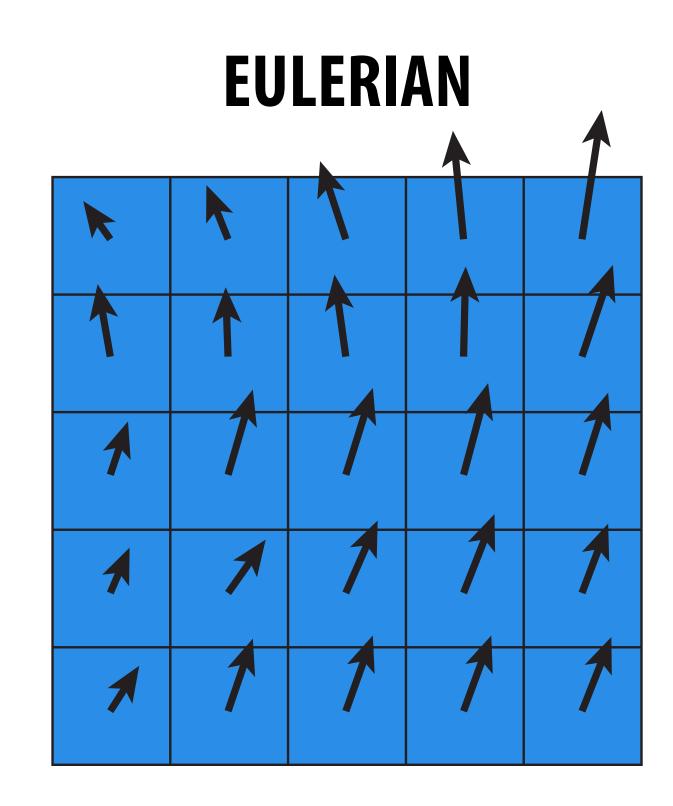
Nuttapong Chentanez, Matthias Müller, "Real-time Eulerian water simulation using a restricted tall cell grid"

Lagrangian vs. Eulerian

- Two basic ways to discretize space: Lagrangian & Eulerian
- E.g., suppose we want to encode the motion of a fluid

LAGRANGIAN





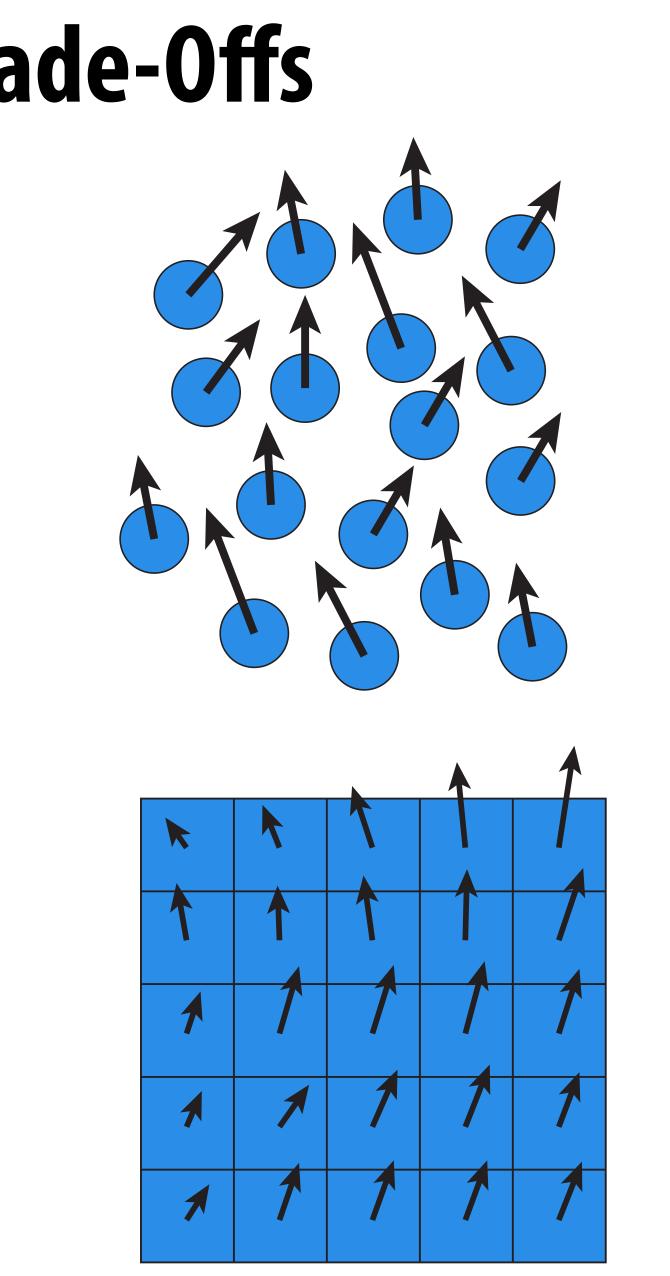
track position & velocity of moving particles

track velocity (or flux) at fixed grid locations

Lagrangian vs. Eulerian—Trade-Offs

Lagrangian

- conceptually easy (like polygon soup!)
- resolution/domain not limited by grid
- good particle distribution can be tough
- finding neighbors can be expensive
- Eulerian
 - fast, regular computation
 - easy to represent, e.g., smooth surfaces
 - simulation "trapped" in grid
 - grid causes "numerical diffusion" (blur)
 - need to understand PDEs (but you will!)



Mixing Lagrangian & Eulerian

- Of course, no reason you have to choose just one!
- Many modern methods mix Lagrangian & Eulerian:
 - PIC/FLIP, particle level sets, mesh-based surface tracking, Voronoi-based, arbitrary Lagrangian-Eulerian (ALE), ...
 - Pick the right tool for the job!

just one! & Eulerian: ed surface tracking, Eulerian (ALE), ...

Maya Bifrost

Aside: Which Quantity Do We Solve For?

- Many PDEs have mathematically equivalent formulations in terms of different quantities
- E.g., incompressible fluids:
 - velocity—how fast is each particle moving?
 - vorticity—how fast is fluid "spinning" at each point?
- **Computationally, can make a big difference**
 - **Pick the right tool for the job!**

Ok, but we're getting way ahead of ourselves. How do we solve easy PDEs?

Numerical PDEs—Basic Strategy

Pick PDE formulation

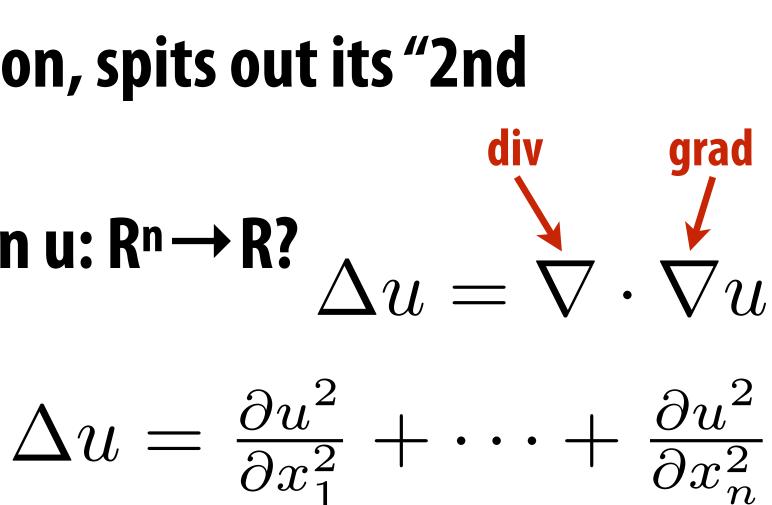
- Which quantity do we want to solve for?
- E.g., velocity or vorticity?
- **Pick spatial discretization**
- How do we approximate derivatives in space?
- **Pick time discretization**
- How do we approximate derivatives in time?
- When do we evaluate forces?
- Forward Euler, backward Euler, symplectic Euler, ...
- Finally, we have an update rule
- **Repeatedly solve to generate an animation**

Richard Courant

The Laplace Operator

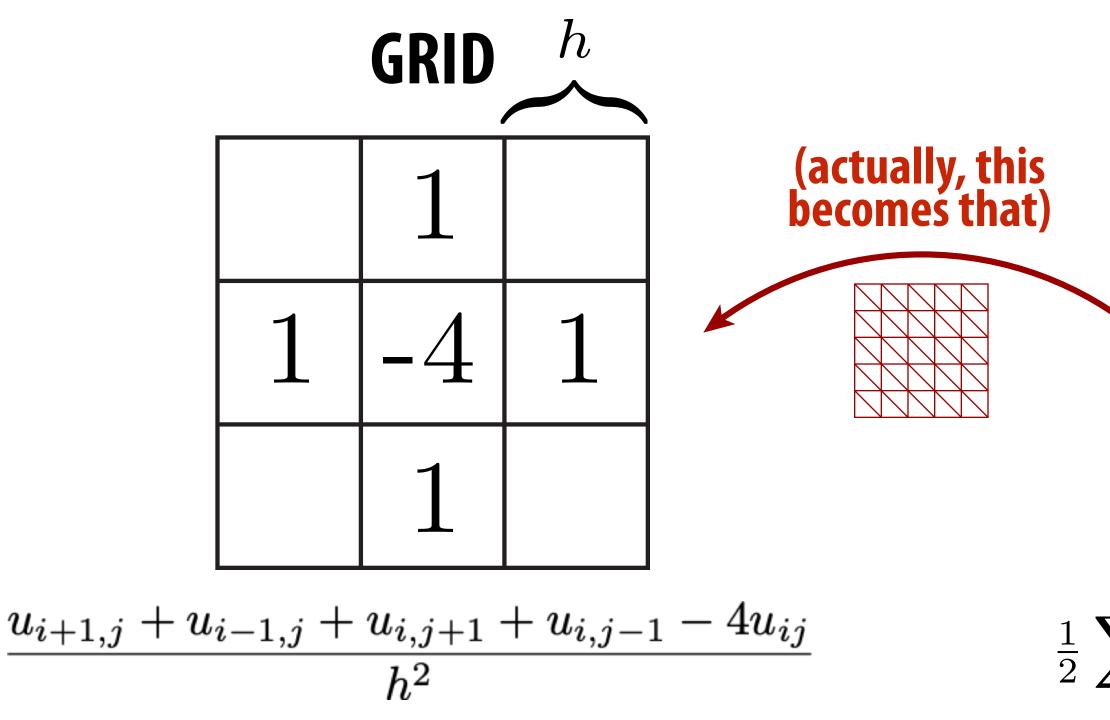
- All of our model equations used the Laplace operator
- **Different conventions for symbol:**

- Unbelievably important object showing up everywhere across physics, geometry, signal processing, ...
 - **Ok, but what does it mean?**
- Differential operator: eats a function, spits out its "2nd derivative"
- What does that mean for a function u: $\mathbb{R}^n \rightarrow \mathbb{R}$?
 - divergence of gradient
 - sum of second derivatives



Discretizing the Laplacian

- How do we approximate the Laplacian?
- Depends on discretization (Eulerian, Lagrangian, grid, mesh, ...)
- Two extremely common ways in graphics:

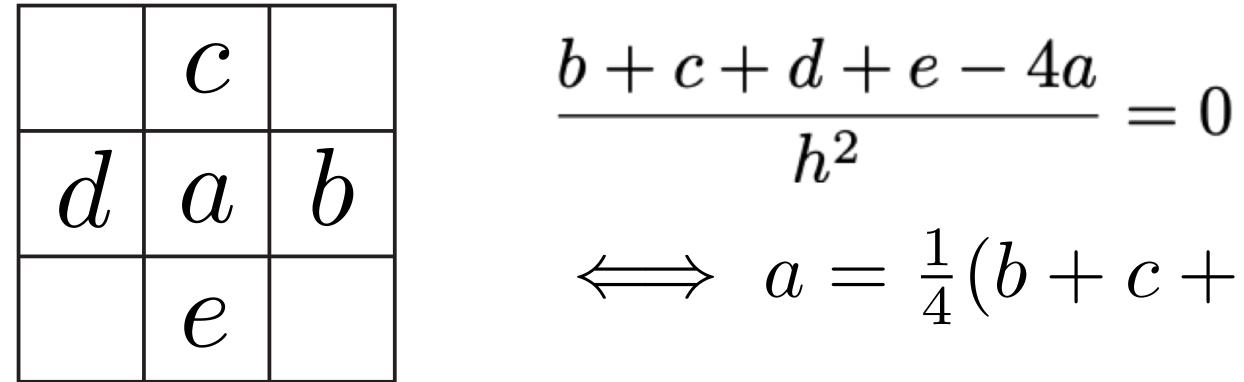


Also not too hard on point clouds, polygon meshes, ...

TRIANGLE MESH α_{ii} $(\cot \alpha_{ij} + \cot \beta_{ij})(u_j - u_i)$

Numerically Solving the Laplace Equation

- Want to solve $\Delta u = 0$
- Plug in one of our discretizations, e.g.,



- Oh: if we have a solution, then each value must be the average of the neighboring values.
- How do we solve this?
- One idea: keep averaging with neighbors! ("Jacobi method")
- Correct, but slow. Much better to use modern linear solver

$\iff a = \frac{1}{4}(b + c + d + e)$

Solving the Heat Equation

- Back to our three model equations, want to solve heat eqn. $\dot{u} = \Delta u$
- Just saw how to discretize Laplacian
- Also know how to do time (forward Euler, backward Euler, ...)
- E.g., forward Euler:

$$u^{k+1} = u^k + \Delta$$

Q: On a grid, what's our overall update now at u_{i,i}?

$$u_{i,j}^{k+1} = u^k + \frac{\tau}{h^2} \left(u_{i+1,j}^k + u_{i-1,j}^k + u_{i,j+1}^k + u_{i,j-1}^k - 4u_{ij}^k \right)$$

Not hard to implement! Loop over grid, add up some neighbors.

 Δn^k

Solving the Wave Equation

Finally, wave equation:

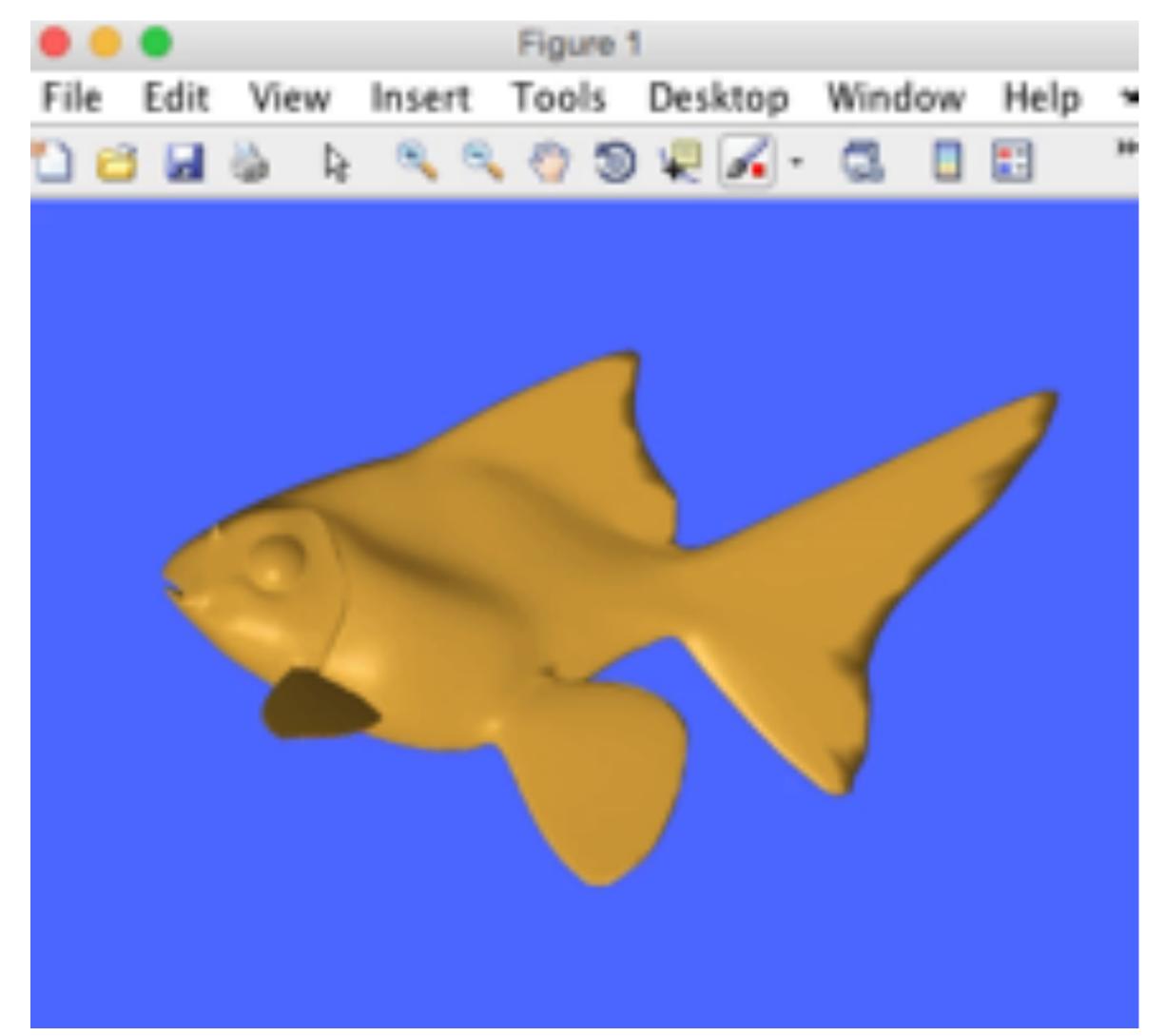
- $\ddot{u} = \Delta u$
- Not much different; now have 2nd derivative in time
- By now we've learned two different techniques:
 - Convert to two 1st order (in time) equations: $\dot{u} = v, \quad \dot{v} = \Delta u$
 - Or, use centered difference (like Laplace) in time: $\frac{u^{k+1}-2u^k+u^{k-1}}{\tau^2} = \Delta u^k$
- Plus all our choices about how to discretize Laplacian.
- So many choices! And many, many (many) more we didn't

The formation time that the formation the formation that the formation the formation

ize Laplacian. y) more we didn't

Wave Equation on a Triangle Mesh

Credit: Alec Jacobson (<u>http://www.alecjacobson.com/weblog/?p=4363</u>)



Also: http://www.adultswim.com/etcetera/elastic-man/

Wait, what about all those cool fluids and stuff?

Want to Know More?

There are some good books: And papers:

http://www.physicsbasedanimation.com/

Physics-Based Animation

The science of simulating physics for human visual consumption.

Resources & Courses Collections About

Biomechanical Simulation and Control of Hands and Tendinous Systems

Search

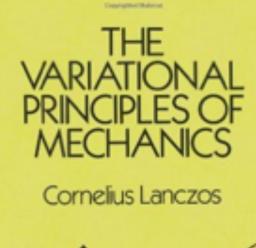
This site is managed by Christopher Batty from the

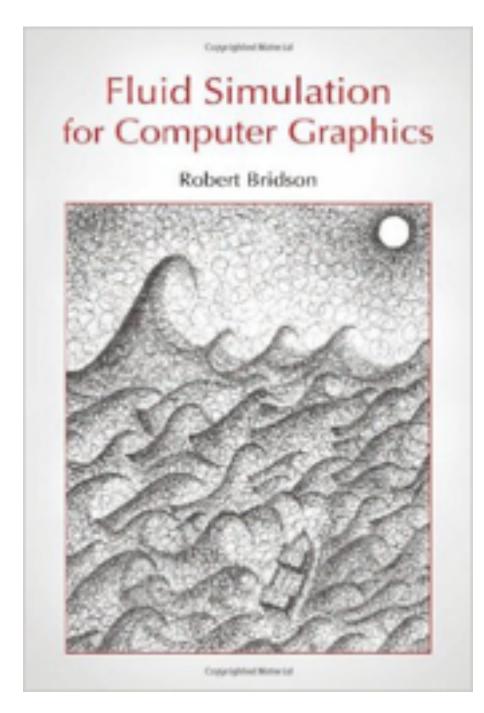
Prashant Sachdeva, Shinjiro Sueda, Susanne Bradley, Mikhail Fain, Dinesh K. Pai

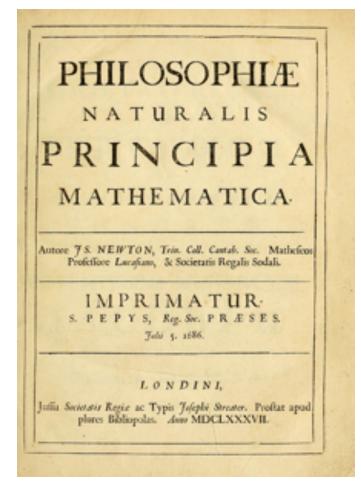
Also, what did the folks who wrote these books & papers read?

Introduction to Partial Differential Equations with Applications E.C. Zachmanoglou and Dale W. Thoe

CODERC THE







Also not covered: solving linear equations

