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Complexity of geometry
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Review: ray-triangle intersection
▪ Find ray-plane intersection

p0,p1,p2

p0,p1,p2

p0,p1,p2o,d

o,d

▪ Determine if point of intersection is within triangle

NT(o+ td) = c

r(t) = o+ td
ray origin normalized ray direction

Parametric equation of a ray:

Plug equation for ray into implicit plane equation:

NTx = c

Solve for t corresponding to intersection point:

t =
c�NTo

NTd
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Review: ray-triangle intersection

▪ Parameterize triangle given by vertices                           using 
barycentric coordinates  

p0,p1,p2

▪ Can think of a triangle as an affine map of the unit triangle

p0,p1,p2 p0,p1,p2

p0,p1,p2

u

v

1

1
f(u, v) = p0 + u(p1 � p0) + v(p2 � p0)

f(u, v) = (1� u� v)p0 + up1 + vp2
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Ray-triangle intersection

p0 + u(p1 � p0) + v(p2 � p0) = o+ td

p0,p1,p2,M,M�1

p0,p1,p2

p0,p1,p2

p0,p1,p2o,d

o,d
o,d

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

x

y
z

u

v

1

1

M�1(o� p0)

M�1(o� p0)                 transforms triangle back to unit triangle in u,v plane, and transforms ray’s direction to be 
orthogonal to plane

Plug parametric ray equation directly into equation for points on triangle:

Solve for u, v, t: ⇥
p1 � p0 p2 � p0 �d

⇤
2

4
u
v
t

3

5 = o� p0
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Ray-primitive queries

Given primitive p:  

p.intersect(r)  returns value of t corresponding to the point of 
intersection with ray r 

p.bbox() returns axis-aligned bounding box of the primitive

tri.bbox():	
			tri_min	=	min(p0,	min(p1,	p2))	
			tri_max	=	max(p0,	max(p1,	p2))	
			return	bbox(tri_min,	tri_max)	
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Ray-axis-aligned-box intersection
What is ray’s closest/farthest intersection with axis-aligned box?

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

NT(o+ td) = c

NT =
⇥
1 0

⇤T

c = x0

t =
x0 � ox

dx

tmin

tmax

Find intersection of ray with all 
planes of box:

Math simplifies greatly since plane is 
axis aligned (consider x=x0 plane in 2D):

Figure shows intersections with x=x0 and x=x1 planes. 
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Ray-axis-aligned-box intersection
Compute intersections with all planes, take intersection of tmin/tmax intervals

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

Note:  tmin < 0

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

Intersections with x planes Intersections with y planes Final intersection result

How do we know when the ray misses the box?
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Ray-scene intersection
Given a scene defined by a set of N primitives and a ray r, find the 
closest point of intersection of r with the scene

p_closest	=	NULL	
t_closest	=	inf	
for	each	primitive	p	in	scene:	
			t	=	p.intersect(r)	
			if	t	>=	0	&&	t	<	t_closest:	
						t_closest	=	t	
						p_closest	=	p	
												

“Find the first primitive the ray hits”

O(N)Complexity?
Can we do better?
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1				2				6				8				10				11				20				25				30				64				80				100				
111				123				200				950	

A simpler problem
▪ Imagine I have a set of integers S 

▪ Given an integer, say k=18, find the element of S closest to k:
10				123				2				100				6				25				64				11				200			30			950		

111				20					8					1			80

Suppose we first sort the integers:

How much does it now cost to find k (including sorting)?

What’s the cost of finding k in terms of the size N of the set?

Can we do better?

Cost for just ONE query: O(n log n)
Amortized cost: O(log n)

worse than before! :-)
…much better!
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Assignment 2, Part II is out!
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Assignment 2, Part II is out!

Can we also reorganize scene primitives to 
enable fast ray-scene intersection queries?
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Simple case
o,d

o,d
Ray misses bounding box of all primitives in scene

Cost (misses box): 
preprocessing: O(n) 
ray-box test: O(1) 
amortized cost*: O(1)

*over many ray-scene intersection tests
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Another (should be) simple case
o,d

o,d

Cost (hits box): 
preprocessing: O(n) 
ray-box test: O(1) 
triangle tests: O(n) 
amortized cost*: O(n)

*over many ray-scene intersection tests

Still no better than 
naïve algorithm 

(test all triangles)!
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Q: How can we do better?

A: Use deep learning.

A: Apply this strategy hierarchically.
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Bounding volume hierarchy (BVH)
▪ Leaf nodes: 

- Contain small list of primitives 
▪ Interior nodes: 

- Proxy for a large subset of primitives 
- Stores bounding box for all primitives in subtree

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22

A

B

C

D E

F G

A

B C

D E F G
1,2,3 

4,5
6,7,8, 

9,10,11
12,13,14, 
15, 16,17

18,19,20, 
21,22

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22

AB C

D E

F G

A

B C

D F E G
1,2,3 

4,5
6,7,8, 

9,10,11
12,13,14, 
15,16,17

18,19,20, 
21,22

Left: two different BVH 
organizations of the same 
scene containing 22 primitives.  

Is one BVH better than the 
other?
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Another BVH example 
▪ BVH partitions each node’s primitives into disjoints sets 

- Note: The sets can still be overlapping in space (below: child 
bounding boxes may overlap in space) 

A

B

C

A

B C
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Ray-scene intersection using a BVH
struct BVHNode {
   bool leaf;  // am I a leaf node?
   BBox bbox;  // min/max coords of enclosed primitives
   BVHNode* child1; // “left” child (could be NULL)
   BVHNode* child2; // “right” child (could be NULL)
   Primitive* primList; // for leaves, stores primitives
};

struct HitInfo {
   Primitive* prim;  // which primitive did the ray hit?
   float t;   // at what t value?
};

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {
   HitInfo hit = intersect(ray, node->bbox);  // test ray against node’s bounding box
   if (hit.prim == NULL || hit.t > closest.t))
      return; // don’t update the hit record

   if (node->leaf) {
      for (each primitive p in node->primList) {
         hit = intersect(ray, p);
         if (hit.prim != NULL && hit.t < closest.t) {
            closest.prim = p;
            closest.t = t;
         }
      }
   } else {
      find_closest_hit(ray, node->child1, closest);
      find_closest_hit(ray, node->child2, closest);
   }}

How could this occur?

node

child1
child2
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Improvement: “front-to-back” traversal

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {

   if (node->leaf) {
      for (each primitive p in node->primList) {
         (hit, t) = intersect(ray, p);
         if (hit && t < closest.t) {
            closest.prim = p;
            closest.t = t;
         }
      }
   } else {
      HitInfo hit1 = intersect(ray, node->child1->bbox);
      HitInfo hit2 = intersect(ray, node->child2->bbox);

      NVHNode* first = (hit1.t <= hit2.t) ? child1 : child2;
      NVHNode* second = (hit2.t <= hit1.t) ? child2 : child1;

      find_closest_hit(ray, first, closest);
      if (second child’s t is closer than closest.t)  
         find_closest_hit(ray, second, closest); // why might we still need to do this?
   }
}

“Front to back” traversal. 
Traverse to closest child 
node first. Why? 

node

child1

child2

Invariant: only call find_closest_hit() if ray intersects bbox 
of node.
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For a given set of primitives, there are 
many possible BVHs 

(2N/2 ways to partition N primitives into two groups) 

Q: How do we build a high-quality BVH?
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How would you partition these triangles 
into two groups?
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What about these?
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Intuition about a “good” partition?

Partition into child nodes with equal numbers of primitives

Better partition 
Intuition: want small bounding boxes (minimize overlap between children, avoid empty space)
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What are we really trying to do?
A good partitioning minimizes the cost of finding the closest 
intersection of a ray with primitives in the node.

If a node is a leaf node (no partitioning):

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisectWhere                            is the cost of ray-primitive 
intersection for primitive i in the node.                

(Common to assume all primitives have the same cost)
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Cost of making a partition
The expected cost of ray-node intersection, given that the node’s 
primitives are partitioned into child sets A and B is:

C = Ctrav + pACA + pBCB

C = Ctrav + pACA + pBCB

is the cost of traversing an interior node (e.g., load data, bbox check)C = Ctrav + pACA + pBCB

and C = Ctrav + pACA + pBCB are the costs of intersection with the resultant child subtrees

C = Ctrav + pACA + pBCBand C = Ctrav + pACA + pBCBare the probability a ray intersects the bbox of the child nodes A and B

C = Ctrav + pANACisect + pBNBCisect

Primitive count is common approximation for child node costs:

Remaining question: how do we get the probabilities pA, pB?
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Estimating probabilities
▪ For convex object A inside convex object B, the probability 

that a random ray that hits B also hits A is given by the ratio 
of the surface areas SA and SB of these objects.

P (hitA|hitB) =
SA

SB

Leads to surface area heuristic (SAH):

Assumptions of the SAH (which may not hold in practice!): 
- Rays are randomly distributed 
- Rays are not occluded

C = Ctrav +
SA

SN
NACisect +

SB

SN
NBCisect
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Implementing partitions
▪ Constrain search for good partitions to axis-aligned spatial partitions 

- Choose an axis; choose a split plane on that axis 
- Partition primitives by the side of splitting plane their centroid lies 
- SAH changes only when split plane moves past triangle boundary 
- Have to consider rather large number of possible split planes…
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Efficiently implementing partitioning
▪ Efficient modern approximation: split spatial extent of 

primitives into B buckets (B is typically small: B < 32) 

b0 b1 b2 b3 b4 b5 b6 b7

For	each	axis:	x,y,z:	
			initialize	buckets	
			For	each	primitive	p	in	node:	
						b	=	compute_bucket(p.centroid)	
						b.bbox.union(p.bbox);	
						b.prim_count++;	
			For	each	of	the	B-1	possible	partitioning	planes	evaluate	SAH	
Recurse	on	lowest	cost	partition	found	(or	make	node	a	leaf)
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Troublesome cases

All primitives with same centroid (all 
primitives end up in same partition)

All primitives with same bbox (ray 
often ends up visiting both partitions) 

In general, different strategies may work better for different 
types of geometry / different distributions of primitives…
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Primitive-partitioning acceleration 
structures vs. space-partitioning structures
▪ Primitive partitioning (bounding 

volume hierarchy): partitions node’s 
primitives into disjoint sets (but sets 
may overlap in space) 

▪ Space-partitioning (grid, K-D tree) 
partitions space into disjoint regions 
(primitives may be contained in 
multiple regions of space) 
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▪ Recursively partition space via axis-aligned partitioning planes 
- Interior nodes correspond to spatial splits 
- Node traversal can proceed in front-to-back order 
- Unlike BVH, can terminate search after first hit is found.

K-D tree

B

A

A

B C

C

D

E F

D E

F
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Challenge: objects overlap multiple nodes
▪ Want node traversal to proceed in front-to-back order so traversal can 

terminate search after first hit found 

B

A

A

B C

C

D

E F

D E

F

Triangle 1 overlaps multiple nodes. 

Ray hits triangle 1 when in highlighted 
leaf cell. 

But intersection with triangle 2 is closer! 
(Haven’t traversed to that node yet)

1

2

Solution: require primitive intersection 
point to be within current leaf node. 

(primitives may be intersected multiple 
times by same ray *)

* Caching or “mailboxing” can be used to avoid repeated intersections 
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Uniform grid

▪ Partition space into equal sized volumes 
(volume-elements or “voxels”) 

▪ Each grid cell contains primitives that 
overlap voxel. (very cheap to construct 
acceleration structure) 

▪ Walk ray through volume in order 
- Very efficient implementation 

possible (think: 3D line rasterization) 

- Only consider intersection with 
primitives in voxels the ray intersects
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What should the grid resolution be?

Too few grids cell: degenerates to 
brute-force approach

Too many grid cells: incur significant cost 
traversing through cells with empty space
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Heuristic
▪ Choose number of voxels ~ total number of primitives

(constant prims per voxel — assuming uniform distribution of primitives)

O(
3
p
N)Intersection cost: 

(Q: Which grows faster, 
cube root of N or log(N)?
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Uniform distribution of primitives

CS348b Lecture 3 Pat Hanrahan, Spring 2015

Uniform Grids: When They Work Well

Uniform grids work well for large collections of objects that are 
uniform in size and distribution

http://www.kevinboulanger.net/grass.html

Terrain / height fields:

Grass:

Example credit: Pat Hanrahan

[Image credit: Misuba Renderer]

[Image credit: www.kevinboulanger.net/grass.html]
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Uniform grid cannot adapt to non-uniform 
distribution of geometry in scene
(Unlike K-D tree, location of spatial partitions is not dependent on scene geometry)

“Teapot in a stadium problem”
Scene has large spatial extent. 

Contains a high-resolution object that 
has small spatial extent (ends up in one 
grid cell)

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!
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Non-uniform distribution of geometric detail

[Image credit: Pixar]
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Quad-tree / octree

Quad-tree: nodes have 4 children (partitions 2D space) 
Octree: nodes have 8 children (partitions 3D space)

Like uniform grid: easy to build (don’t 
have to choose partition planes) 

Has greater ability to adapt to location of 
scene geometry than uniform grid. 

But lower intersection performance than 
K-D tree (only limited ability to adapt) 
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Summary of spatial acceleration structures: 
Choose the right structure for the job!
▪ Primitive vs. spatial partitioning: 

- Primitive partitioning: partition sets of objects 
- Bounded number of BVH nodes, simpler to update if primitives in scene change position 

- Spatial partitioning: partition space 
- Traverse space in order (first intersection is closest intersection), may intersect primitive multiple times   

▪ Adaptive structures (BVH, K-D tree) 
- More costly to construct  (must be able to amortize cost over many geometric queries) 
- Better intersection performance under non-uniform distribution of primitives 

▪ Non-adaptive accelerations structures (uniform grids) 
- Simple, cheap to construct 
- Good intersection performance if scene primitives are uniformly distributed 

▪ Many, many combinations thereof…
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Next time: light


