
Computer Graphics
CMU 15-462/662

Spatial
Data Structures

 CMU 15-462/662

Complexity of geometry

 CMU 15-462/662

Review: ray-triangle intersection
▪ Find ray-plane intersection

p0,p1,p2

p0,p1,p2

p0,p1,p2o,d

o,d

▪ Determine if point of intersection is within triangle

NT(o+ td) = c

r(t) = o+ td
ray origin normalized ray direction

Parametric equation of a ray:

Plug equation for ray into implicit plane equation:

NTx = c

Solve for t corresponding to intersection point:

t =
c�NTo

NTd

 CMU 15-462/662

Review: ray-triangle intersection

▪ Parameterize triangle given by vertices using
barycentric coordinates

p0,p1,p2

▪ Can think of a triangle as an affine map of the unit triangle

p0,p1,p2 p0,p1,p2

p0,p1,p2

u

v

1

1
f(u, v) = p0 + u(p1 � p0) + v(p2 � p0)

f(u, v) = (1� u� v)p0 + up1 + vp2

 CMU 15-462/662

Ray-triangle intersection

p0 + u(p1 � p0) + v(p2 � p0) = o+ td

p0,p1,p2,M,M�1

p0,p1,p2

p0,p1,p2

p0,p1,p2o,d

o,d
o,d

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

⇥
p1 � p0 p2 � p0 �td

⇤
2

4
u
v
t

3

5 = o� p0

x

y
z

u

v

1

1

M�1(o� p0)

M�1(o� p0) transforms triangle back to unit triangle in u,v plane, and transforms ray’s direction to be
orthogonal to plane

Plug parametric ray equation directly into equation for points on triangle:

Solve for u, v, t: ⇥
p1 � p0 p2 � p0 �d

⇤
2

4
u
v
t

3

5 = o� p0

 CMU 15-462/662

Ray-primitive queries

Given primitive p:

p.intersect(r) returns value of t corresponding to the point of
intersection with ray r

p.bbox() returns axis-aligned bounding box of the primitive

tri.bbox():	
			tri_min	=	min(p0,	min(p1,	p2))	
			tri_max	=	max(p0,	max(p1,	p2))	
			return	bbox(tri_min,	tri_max)	
												

 CMU 15-462/662

Ray-axis-aligned-box intersection
What is ray’s closest/farthest intersection with axis-aligned box?

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

NT(o+ td) = c

NT =
⇥
1 0

⇤T

c = x0

t =
x0 � ox

dx

tmin

tmax

Find intersection of ray with all
planes of box:

Math simplifies greatly since plane is
axis aligned (consider x=x0 plane in 2D):

Figure shows intersections with x=x0 and x=x1 planes.

 CMU 15-462/662

Ray-axis-aligned-box intersection
Compute intersections with all planes, take intersection of tmin/tmax intervals

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

Note: tmin < 0

o,d
o,d

x0 � x1 � y0 � y1x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

x0 � x1 � y0 � y1

tmin

tmax

Intersections with x planes Intersections with y planes Final intersection result

How do we know when the ray misses the box?

 CMU 15-462/662

Ray-scene intersection
Given a scene defined by a set of N primitives and a ray r, find the
closest point of intersection of r with the scene

p_closest	=	NULL	
t_closest	=	inf	
for	each	primitive	p	in	scene:	
			t	=	p.intersect(r)	
			if	t	>=	0	&&	t	<	t_closest:	
						t_closest	=	t	
						p_closest	=	p	
												

“Find the first primitive the ray hits”

O(N)Complexity?
Can we do better?

 CMU 15-462/662

1				2				6				8				10				11				20				25				30				64				80				100				
111				123				200				950	

A simpler problem
▪ Imagine I have a set of integers S

▪ Given an integer, say k=18, find the element of S closest to k:
10				123				2				100				6				25				64				11				200			30			950		

111				20					8					1			80

Suppose we first sort the integers:

How much does it now cost to find k (including sorting)?

What’s the cost of finding k in terms of the size N of the set?

Can we do better?

Cost for just ONE query: O(n log n)
Amortized cost: O(log n)

worse than before! :-)
…much better!

 CMU 15-462/662

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

Can we also reorganize scene primitives to
enable fast ray-scene intersection queries?

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662

Simple case
o,d

o,d
Ray misses bounding box of all primitives in scene

Cost (misses box):
preprocessing: O(n)
ray-box test: O(1)
amortized cost*: O(1)

*over many ray-scene intersection tests

 CMU 15-462/662

Another (should be) simple case
o,d

o,d

Cost (hits box):
preprocessing: O(n)
ray-box test: O(1)
triangle tests: O(n)
amortized cost*: O(n)

*over many ray-scene intersection tests

Still no better than
naïve algorithm

(test all triangles)!

 CMU 15-462/662

Q: How can we do better?

A: Use deep learning.

A: Apply this strategy hierarchically.

 CMU 15-462/662

Bounding volume hierarchy (BVH)
▪ Leaf nodes:

- Contain small list of primitives
▪ Interior nodes:

- Proxy for a large subset of primitives
- Stores bounding box for all primitives in subtree

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22

A

B

C

D E

F G

A

B C

D E F G
1,2,3

4,5
6,7,8,

9,10,11
12,13,14,
15, 16,17

18,19,20,
21,22

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22

AB C

D E

F G

A

B C

D F E G
1,2,3

4,5
6,7,8,

9,10,11
12,13,14,
15,16,17

18,19,20,
21,22

Left: two different BVH
organizations of the same
scene containing 22 primitives.

Is one BVH better than the
other?

 CMU 15-462/662

Another BVH example
▪ BVH partitions each node’s primitives into disjoints sets

- Note: The sets can still be overlapping in space (below: child
bounding boxes may overlap in space)

A

B

C

A

B C

 CMU 15-462/662

Ray-scene intersection using a BVH
struct BVHNode {
 bool leaf; // am I a leaf node?
 BBox bbox; // min/max coords of enclosed primitives
 BVHNode* child1; // “left” child (could be NULL)
 BVHNode* child2; // “right” child (could be NULL)
 Primitive* primList; // for leaves, stores primitives
};

struct HitInfo {
 Primitive* prim; // which primitive did the ray hit?
 float t; // at what t value?
};

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {
 HitInfo hit = intersect(ray, node->bbox); // test ray against node’s bounding box
 if (hit.prim == NULL || hit.t > closest.t))
 return; // don’t update the hit record

 if (node->leaf) {
 for (each primitive p in node->primList) {
 hit = intersect(ray, p);
 if (hit.prim != NULL && hit.t < closest.t) {
 closest.prim = p;
 closest.t = t;
 }
 }
 } else {
 find_closest_hit(ray, node->child1, closest);
 find_closest_hit(ray, node->child2, closest);
 }}

How could this occur?

node

child1
child2

 CMU 15-462/662

Improvement: “front-to-back” traversal

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {

 if (node->leaf) {
 for (each primitive p in node->primList) {
 (hit, t) = intersect(ray, p);
 if (hit && t < closest.t) {
 closest.prim = p;
 closest.t = t;
 }
 }
 } else {
 HitInfo hit1 = intersect(ray, node->child1->bbox);
 HitInfo hit2 = intersect(ray, node->child2->bbox);

 NVHNode* first = (hit1.t <= hit2.t) ? child1 : child2;
 NVHNode* second = (hit2.t <= hit1.t) ? child2 : child1;

 find_closest_hit(ray, first, closest);
 if (second child’s t is closer than closest.t)
 find_closest_hit(ray, second, closest); // why might we still need to do this?
 }
}

“Front to back” traversal.
Traverse to closest child
node first. Why?

node

child1

child2

Invariant: only call find_closest_hit() if ray intersects bbox
of node.

 CMU 15-462/662

For a given set of primitives, there are
many possible BVHs

(2N/2 ways to partition N primitives into two groups)

Q: How do we build a high-quality BVH?

 CMU 15-462/662

How would you partition these triangles
into two groups?

 CMU 15-462/662

What about these?

 CMU 15-462/662

Intuition about a “good” partition?

Partition into child nodes with equal numbers of primitives

Better partition
Intuition: want small bounding boxes (minimize overlap between children, avoid empty space)

 CMU 15-462/662

What are we really trying to do?
A good partitioning minimizes the cost of finding the closest
intersection of a ray with primitives in the node.

If a node is a leaf node (no partitioning):

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisectWhere is the cost of ray-primitive
intersection for primitive i in the node.

(Common to assume all primitives have the same cost)

 CMU 15-462/662

Cost of making a partition
The expected cost of ray-node intersection, given that the node’s
primitives are partitioned into child sets A and B is:

C = Ctrav + pACA + pBCB

C = Ctrav + pACA + pBCB

is the cost of traversing an interior node (e.g., load data, bbox check)C = Ctrav + pACA + pBCB

and C = Ctrav + pACA + pBCB are the costs of intersection with the resultant child subtrees

C = Ctrav + pACA + pBCBand C = Ctrav + pACA + pBCBare the probability a ray intersects the bbox of the child nodes A and B

C = Ctrav + pANACisect + pBNBCisect

Primitive count is common approximation for child node costs:

Remaining question: how do we get the probabilities pA, pB?

 CMU 15-462/662

Estimating probabilities
▪ For convex object A inside convex object B, the probability

that a random ray that hits B also hits A is given by the ratio
of the surface areas SA and SB of these objects.

P (hitA|hitB) =
SA

SB

Leads to surface area heuristic (SAH):

Assumptions of the SAH (which may not hold in practice!):
- Rays are randomly distributed
- Rays are not occluded

C = Ctrav +
SA

SN
NACisect +

SB

SN
NBCisect

 CMU 15-462/662

Implementing partitions
▪ Constrain search for good partitions to axis-aligned spatial partitions

- Choose an axis; choose a split plane on that axis
- Partition primitives by the side of splitting plane their centroid lies
- SAH changes only when split plane moves past triangle boundary
- Have to consider rather large number of possible split planes…

 CMU 15-462/662

Efficiently implementing partitioning
▪ Efficient modern approximation: split spatial extent of

primitives into B buckets (B is typically small: B < 32)

b0 b1 b2 b3 b4 b5 b6 b7

For	each	axis:	x,y,z:	
			initialize	buckets	
			For	each	primitive	p	in	node:	
						b	=	compute_bucket(p.centroid)	
						b.bbox.union(p.bbox);	
						b.prim_count++;	
			For	each	of	the	B-1	possible	partitioning	planes	evaluate	SAH	
Recurse	on	lowest	cost	partition	found	(or	make	node	a	leaf)

 CMU 15-462/662

Troublesome cases

All primitives with same centroid (all
primitives end up in same partition)

All primitives with same bbox (ray
often ends up visiting both partitions)

In general, different strategies may work better for different
types of geometry / different distributions of primitives…

 CMU 15-462/662

Primitive-partitioning acceleration
structures vs. space-partitioning structures
▪ Primitive partitioning (bounding

volume hierarchy): partitions node’s
primitives into disjoint sets (but sets
may overlap in space)

▪ Space-partitioning (grid, K-D tree)
partitions space into disjoint regions
(primitives may be contained in
multiple regions of space)

 CMU 15-462/662

▪ Recursively partition space via axis-aligned partitioning planes
- Interior nodes correspond to spatial splits
- Node traversal can proceed in front-to-back order
- Unlike BVH, can terminate search after first hit is found.

K-D tree

B

A

A

B C

C

D

E F

D E

F

 CMU 15-462/662

Challenge: objects overlap multiple nodes
▪ Want node traversal to proceed in front-to-back order so traversal can

terminate search after first hit found

B

A

A

B C

C

D

E F

D E

F

Triangle 1 overlaps multiple nodes.

Ray hits triangle 1 when in highlighted
leaf cell.

But intersection with triangle 2 is closer!
(Haven’t traversed to that node yet)

1

2

Solution: require primitive intersection
point to be within current leaf node.

(primitives may be intersected multiple
times by same ray *)

* Caching or “mailboxing” can be used to avoid repeated intersections

 CMU 15-462/662

Uniform grid

▪ Partition space into equal sized volumes
(volume-elements or “voxels”)

▪ Each grid cell contains primitives that
overlap voxel. (very cheap to construct
acceleration structure)

▪ Walk ray through volume in order
- Very efficient implementation

possible (think: 3D line rasterization)

- Only consider intersection with
primitives in voxels the ray intersects

 CMU 15-462/662

What should the grid resolution be?

Too few grids cell: degenerates to
brute-force approach

Too many grid cells: incur significant cost
traversing through cells with empty space

 CMU 15-462/662

Heuristic
▪ Choose number of voxels ~ total number of primitives

(constant prims per voxel — assuming uniform distribution of primitives)

O(
3
p
N)Intersection cost:

(Q: Which grows faster,
cube root of N or log(N)?

 CMU 15-462/662

Uniform distribution of primitives

CS348b Lecture 3 Pat Hanrahan, Spring 2015

Uniform Grids: When They Work Well

Uniform grids work well for large collections of objects that are
uniform in size and distribution

http://www.kevinboulanger.net/grass.html

Terrain / height fields:

Grass:

Example credit: Pat Hanrahan

[Image credit: Misuba Renderer]

[Image credit: www.kevinboulanger.net/grass.html]

 CMU 15-462/662

Uniform grid cannot adapt to non-uniform
distribution of geometry in scene
(Unlike K-D tree, location of spatial partitions is not dependent on scene geometry)

“Teapot in a stadium problem”
Scene has large spatial extent.

Contains a high-resolution object that
has small spatial extent (ends up in one
grid cell)

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662

Non-uniform distribution of geometric detail

[Image credit: Pixar]

 CMU 15-462/662

Quad-tree / octree

Quad-tree: nodes have 4 children (partitions 2D space)
Octree: nodes have 8 children (partitions 3D space)

Like uniform grid: easy to build (don’t
have to choose partition planes)

Has greater ability to adapt to location of
scene geometry than uniform grid.

But lower intersection performance than
K-D tree (only limited ability to adapt)

 CMU 15-462/662

Summary of spatial acceleration structures:
Choose the right structure for the job!
▪ Primitive vs. spatial partitioning:

- Primitive partitioning: partition sets of objects
- Bounded number of BVH nodes, simpler to update if primitives in scene change position

- Spatial partitioning: partition space
- Traverse space in order (first intersection is closest intersection), may intersect primitive multiple times

▪ Adaptive structures (BVH, K-D tree)
- More costly to construct (must be able to amortize cost over many geometric queries)
- Better intersection performance under non-uniform distribution of primitives

▪ Non-adaptive accelerations structures (uniform grids)
- Simple, cheap to construct
- Good intersection performance if scene primitives are uniformly distributed

▪ Many, many combinations thereof…

 CMU 15-462/662

Next time: light

