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Scotty 3D setup recitation
Today!  
Hunt Library Computer Lab 
3:30-5pm
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Last time part 1: overview of geometry
Many types of geometry in nature 
Demand sophisticated representations 
Two major categories: 
- IMPLICIT - “tests” if a point is in shape 
- EXPLICIT - directly “lists” points 
Lots of representations for both

Geometry
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Last time part 2: Meshes & Manifolds
Mathematical description of geometry 
- simplifying assumption: manifold 
- for polygon meshes: “fans, not fins” 
Data structures for surfaces 
- polygon soup 
- halfedge mesh 
- storage cost vs. access time, etc. 
Today: 
- how do we manipulate geometry? 
- geometry processing / resampling Ha
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Today: Geometry Processing & Queries
Extend traditional digital signal processing (audio, video, etc.) 
to deal with geometric signals: 
- upsampling / downsampling / resampling / filtering ... 
- aliasing (reconstructed surface gives “false impression”) 
Also ask some basic questions about geometry: 
- What’s the closest point?  Do two triangles intersect?  Etc. 
Beyond pure geometry, these are basic building blocks for 
many algorithms in graphics (rendering, animation...)
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Digital Geometry Processing: Motivation
3D
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Geometry Processing Pipeline

print

process
scan
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Geometry Processing Tasks

reconstruction
filtering

remeshing
compressionparameterizationshape analysis
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Geometry Processing: Reconstruction
Given samples of geometry, reconstruct surface 
What are “samples”?  Many possibilities: 
- points, points & normals, ... 
- image pairs / sets (multi-view stereo) 
- line density integrals (MRI/CT scans) 
How do you get a surface?  Many techniques: 
- silhouette-based (visual hull) 
- Voronoi-based (e.g., power crust) 
- PDE-based (e.g., Poisson reconstruction) 
- Radon transform / isosurfacing (marching cubes)
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Geometry Processing: Upsampling
Increase resolution via interpolation 
Images: e.g., bilinear, bicubic interpolation 
Polygon meshes: 
- subdivision 
- bilateral upsampling 
- ...
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Decrease resolution; try to preserve shape/appearance 
Images: nearest-neighbor, bilinear, bicubic interpolation 
Point clouds: subsampling (just take fewer points!) 
Polygon meshes: 
- iterative decimation, variational shape approximation, ...

Geometry Processing: Downsampling
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Geometry Processing: Resampling
Modify sample distribution to improve quality 
Images: not an issue! (Pixels always stored on a regular grid) 
Meshes: shape of polygons is extremely important! 
- different notion of “quality” depending on task 
- e.g., visualization vs. solving equation

Q: What about aliasing?
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Geometry Processing: Filtering
Remove noise, or emphasize important features (e.g., edges) 
Images: blurring, bilateral filter, edge detection, ... 
Polygon meshes: 
- curvature flow 
- bilateral filter 
- spectral filter
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Geometry Processing: Compression
Reduce storage size by eliminating redundant data/
approximating unimportant data 
Images:  
- run-length, Huffman coding - lossless 
- cosine/wavelet (JPEG/MPEG) - lossy 
Polygon meshes: 
- compress geometry and connectivity 
- many techniques (lossy & lossless)

840kb840kb

8kb8kb
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Geometry Processing: Shape Analysis
Identify/understand important semantic features 
Images: computer vision, segmentation, face detection, ... 
Polygon meshes: 
- segmentation, correspondence, symmetry detection, ...
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Enough overview— 
Let’s process some geometry!
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Remeshing as resampling
Remember our discussion of aliasing 
Bad sampling makes signal appear different than it really is 
E.g., undersampled curve looks flat 
Geometry is no different! 
- undersampling destroys features 
- oversampling bad for performance
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What makes a “good” mesh?
One idea: good approximation of original shape! 
Keep only elements that contribute information about shape 
Add additional information where, e.g., curvature is large
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Approximation of position is not enough!
Just because the vertices of a mesh are very close to the 
surface it approximates does not mean it’s a good 
approximation! 
Need to consider other factors, e.g., close approximation of 
surface normals 
Otherwise, can have wrong appearance, wrong area, wrong…
APPROXIMATION OF CYLINDER FLATTENED

(true area)
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What else makes a “good” triangle mesh?
Another rule of thumb: triangle 

“GOOD” “BAD”

E.g., all angles close to 60 degrees 
More sophisticated condition: Delaunay 
Can help w/ numerical accuracy/stability 
Tradeoffs w/ good geometric approximation* 

e.g., long & skinny might be “more efficient”
*See Shewchuk, “What is a Good Linear Element”

DELAUNAY

(pronunciation)
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subdivide

What else constitutes a good mesh?
Another rule of thumb: regular vertex degree 
E.g., valence 6 for triangle meshes (equilateral)

Why? Better polygon shape, important for  (e.g.) subdivision:

FACT: Can’t have perfect valence everywhere! (except on torus)

“GOOD” “OK” “BAD”
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How do we upsample a mesh?
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Upsampling via Subdivision

Repeatedly split each element into smaller pieces 
Replace vertex positions with weighted average of neighbors 
Main considerations: 
- interpolating vs. approximating 
- limit surface continuity (C1, C2, ...) 
- behavior at irregular vertices 
Many options: 
- Quad: Catmull-Clark 
- Triangle: Loop, Butterfly, Sqrt(3)
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Catmull-Clark Subdivision
Step 0: split every polygon (any # of sides) into quadrilaterals:

New vertex positions are weighted combination of old ones:
STEP 3: Vertex coords

New vertex coords: –   vertex degree
–   average of face coords around vertex

–   average of edge coords around vertex
–   original vertex position

STEP 1: Face coords STEP 2: Edge coords
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Catmull-Clark on quad mesh

smooth 
reflection lines

smooth 
caustics

Good normal approximation almost everywhere:
(very few irregular vertices)
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Catmull-Clark on triangle mesh

jagged 
reflection lines

jagged 
caustics

(huge number of irregular vertices!)

Poor normal approximation almost everywhere:

ALIASING!
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Loop Subdivision
Alternative subdivision scheme for triangle meshes 
Curvature is continuous away from irregular vertices (“C2”) 
Algorithm: 
- Split each triangle into four 
- Assign new vertex positions according to weights:

u u

u u

u u1-nu
n: vertex degree
u: 3/16 if n=3, 3/(8n) otherwise

1/8

1/8

3/83/8
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Loop Subdivision via Edge Operations
First, split edges of original mesh in any order:

split

flip

Images cribbed from Denis Zorin.

(Don’t forget to update vertex positions!)

Next, flip new edges that touch a new & old vertex:
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What if we want fewer triangles?
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Simplification via Edge Collapse
One popular scheme: iteratively collapse edges 
Greedy algorithm: 
- assign each edge a cost 
- collapse edge with least cost 
- repeat until target number of elements is reached 
Particularly effective cost function: quadric error metric*

*invented here at CMU! (Garland & Heckbert 1997)

30,000 3,000 300

30
#triangles:



 CMU 15-462/662

Quadric Error Metric
Approximate distance to a collection of triangles 
Distance is sum of point-to-plane distances 
- Q: Distance to plane w/ normal N passing through point p? 
- A: d(x) = N•x - N•p = N•(x-p) 
Sum of distances:

p

x

N

N1

N2N3

N4

N5

p

N•(x-p)
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Quadric Error - Homogeneous Coordinates
Suppose in coordinates we have 
- a query point (x,y,z) 
- a normal (a,b,c) 
- an offset d := -(p,q,r) • (a,b,c) 
Then in homogeneous coordinates, let 
- u := (x,y,z,1) 
- v := (a,b,c,d) 
Signed distance to plane is then just u•v = ax+by+cz+d 
Squared distance is (uTv)2 = uT(vvT)u =: uTKu 
Key idea: matrix K encodes distance to plane 
K is symmetric, contains 10 unique coefficients (small storage)
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Quadric Error of Edge Collapse
How much does it cost to collapse an edge? 
Idea: compute edge midpoint, measure quadric error

collapse

Better idea: use point that minimizes quadric error as new point! 
Q: Ok, but how do we minimize quadric error?
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Review: Minimizing a Quadratic Function
Suppose I give you a function f(x) = ax2+bx+c 
Q: What does the graph of this function look like? 
Could also look like this! 
Q: How do we find the minimum? 
A: Look for the point where the function isn’t 
changing (if we look “up close”) 
I.e., find the point where the derivative vanishes

x

f(x)

x

f(x)

(What about our second example?)
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Minimizing a Quadratic Form
A quadratic form is just a generalization of our quadratic 
polynomial from 1D to nD 
E.g., in 2D: f(x,y) = ax2 + bxy + cy2 + dx + ey + g 
Can always (always!) write quadratic polynomial using a 
symmetric matrix (and a vector, and a constant):

Q: How do we find a critical point (min/max/saddle)? 
A: Set derivative to zero!

(this expression works for any n!)

(Can you show this is true, at least in 2D?)
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Positive Definite Quadratic Form
Just like our 1D parabola, critcal point is not always a min! 
Q: In 2D, 3D, nD, when do we get a minimum? 
A: When matrix A is positive-definite:

1D: Must have xax = ax2 > 0.  In other words: a is positive! 
2D: Graph of function looks like a “bowl”:

Positive-definiteness is extremely important in computer 
graphics: it means we can find a minimum by solving linear 
equations.  Basis of many, many modern algorithms 
(geometry processing, simulation, ...).

positive definite positive semidefinite indefinite
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Minimizing Quadratic Error
Find “best” point for edge collapse by minimizing quad. form 

Already know fourth (homogeneous) coordinate is 1! 
So, break up our quadratic function into two pieces:

Now we have a quadratic form in the 3D position x. 
Can minimize as before:

(Q: Why should B be positive-definite?)
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Quadric Error Simplification: Final Algorithm
Compute K for each triangle (distance to plane) 
Set K at each vertex to sum of Ks from incident triangles 
Set K at each edge to sum of Ks at endpoints 
Find point at each edge minimizing quadric error 
Until we reach target # of triangles: 
- collapse edge (i,j) with smallest cost to get new vertex m 
- add Ki and Kj to get quadric Km at m 

- update cost of edges touching m 
More details in assignment writeup!
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Quadric Simplification—Flipped Triangles
Depending on where we put the new vertex, one of the new 
triangles might be “flipped” (normal points in instead of out):

Easy solution: check dot product between normals across edge 
If negative, don’t collapse this edge!
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What if we’re happy with the number of 
triangles, but want to improve quality?
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Already have a good tool: edge flips! 
If α+β > π, flip it!

How do we make a mesh “more Delaunay”?

FACT: in 2D, flipping edges eventually yields Delaunay mesh 
Theory: worst case O(n2); no longer true for surfaces in 3D. 
Practice: simple, effective way to improve mesh quality
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Same tool: edge flips! 
If total deviation from degree-6 gets smaller, flip it!

Alternatively: how do we improve degree?

flip

FACT: average vertex degree is 6 as number of elements increases 
Iterative edge flipping acts like “discrete diffusion” of degree 
Again, no (known) guarantees; works well in practice
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How do we make a triangles “more round”?
Delaunay doesn’t mean triangles are “round” (angles near 60°) 
Can often improve shape by centering vertices:

average

Simple version of technique called “Laplacian smoothing”.* 
On surface: move only in tangent direction 
How?  Remove normal component from update vector.

*See Crane, “Digital Geometry Processing with Discrete Exterior Calculus” http://keenan.is/ddg

http://keenan.is/dgpdec
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Isotropic Remeshing Algorithm
Try to make triangles uniform shape & size 
Repeat four steps: 
- Split any edge over 4/3rds mean edge legth 
- Collapse any edge less than 4/5ths mean edge length 
- Flip edges to improve vertex degree 
- Center vertices tangentially

Based on: Botsch & Kobbelt, “A Remeshing Approach to Multiresolution Modeling”
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What can go wrong when 
you resample a signal?
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Danger of Resampling

downsample upsample

…

(Q: What happens with an image?)
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But wait: we have the original mesh. 
Why not just project each new sample point 
onto the closest point of the original mesh? 
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Next Time: Geometric Queries
Q: Given a point, in space, how do we find the closest point on 
a surface?  Are we inside or outside the surface? How do we 
find intersection of two triangles?  Etc. 
Q: Do implicit/explicit representations make such tasks easier? 
Q: What’s the cost of the naïve algorithm, and how do we 
accelerate such queries for large meshes? 
So many questions!

p

???


