
Computer Graphics
CMU 15-462/15-662

Digital Geometry
Processing

 CMU 15-462/662

Scotty 3D setup recitation
Today!
Hunt Library Computer Lab
3:30-5pm

 CMU 15-462/662

Last time part 1: overview of geometry
Many types of geometry in nature
Demand sophisticated representations
Two major categories:
- IMPLICIT - “tests” if a point is in shape
- EXPLICIT - directly “lists” points
Lots of representations for both

Geometry

 CMU 15-462/662

Last time part 2: Meshes & Manifolds
Mathematical description of geometry
- simplifying assumption: manifold
- for polygon meshes: “fans, not fins”
Data structures for surfaces
- polygon soup
- halfedge mesh
- storage cost vs. access time, etc.
Today:
- how do we manipulate geometry?
- geometry processing / resampling Ha

lf
ed
ge

twin

ed
ge

next

vertex

face

 CMU 15-462/662

Today: Geometry Processing & Queries
Extend traditional digital signal processing (audio, video, etc.)
to deal with geometric signals:
- upsampling / downsampling / resampling / filtering ...
- aliasing (reconstructed surface gives “false impression”)
Also ask some basic questions about geometry:
- What’s the closest point? Do two triangles intersect? Etc.
Beyond pure geometry, these are basic building blocks for
many algorithms in graphics (rendering, animation...)

 CMU 15-462/662

Digital Geometry Processing: Motivation
3D

 Sc
an

ni
ng

3D
 P

rin
tin

g

 CMU 15-462/662

Geometry Processing Pipeline

print

process
scan

 CMU 15-462/662

Geometry Processing Tasks

reconstruction
filtering

remeshing
compressionparameterizationshape analysis

 CMU 15-462/662

Geometry Processing: Reconstruction
Given samples of geometry, reconstruct surface
What are “samples”? Many possibilities:
- points, points & normals, ...
- image pairs / sets (multi-view stereo)
- line density integrals (MRI/CT scans)
How do you get a surface? Many techniques:
- silhouette-based (visual hull)
- Voronoi-based (e.g., power crust)
- PDE-based (e.g., Poisson reconstruction)
- Radon transform / isosurfacing (marching cubes)

 CMU 15-462/662

Geometry Processing: Upsampling
Increase resolution via interpolation
Images: e.g., bilinear, bicubic interpolation
Polygon meshes:
- subdivision
- bilateral upsampling
- ...

 CMU 15-462/662

Decrease resolution; try to preserve shape/appearance
Images: nearest-neighbor, bilinear, bicubic interpolation
Point clouds: subsampling (just take fewer points!)
Polygon meshes:
- iterative decimation, variational shape approximation, ...

Geometry Processing: Downsampling

 CMU 15-462/662

Geometry Processing: Resampling
Modify sample distribution to improve quality
Images: not an issue! (Pixels always stored on a regular grid)
Meshes: shape of polygons is extremely important!
- different notion of “quality” depending on task
- e.g., visualization vs. solving equation

Q: What about aliasing?

 CMU 15-462/662

Geometry Processing: Filtering
Remove noise, or emphasize important features (e.g., edges)
Images: blurring, bilateral filter, edge detection, ...
Polygon meshes:
- curvature flow
- bilateral filter
- spectral filter

 CMU 15-462/662

Geometry Processing: Compression
Reduce storage size by eliminating redundant data/
approximating unimportant data
Images:
- run-length, Huffman coding - lossless
- cosine/wavelet (JPEG/MPEG) - lossy
Polygon meshes:
- compress geometry and connectivity
- many techniques (lossy & lossless)

840kb840kb

8kb8kb

 CMU 15-462/662

Geometry Processing: Shape Analysis
Identify/understand important semantic features
Images: computer vision, segmentation, face detection, ...
Polygon meshes:
- segmentation, correspondence, symmetry detection, ...

 CMU 15-462/662

Enough overview—
Let’s process some geometry!

 CMU 15-462/662

Remeshing as resampling
Remember our discussion of aliasing
Bad sampling makes signal appear different than it really is
E.g., undersampled curve looks flat
Geometry is no different!
- undersampling destroys features
- oversampling bad for performance

 CMU 15-462/662

What makes a “good” mesh?
One idea: good approximation of original shape!
Keep only elements that contribute information about shape
Add additional information where, e.g., curvature is large

 CMU 15-462/662

Approximation of position is not enough!
Just because the vertices of a mesh are very close to the
surface it approximates does not mean it’s a good
approximation!
Need to consider other factors, e.g., close approximation of
surface normals
Otherwise, can have wrong appearance, wrong area, wrong…
APPROXIMATION OF CYLINDER FLATTENED

(true area)

 CMU 15-462/662

What else makes a “good” triangle mesh?
Another rule of thumb: triangle

“GOOD” “BAD”

E.g., all angles close to 60 degrees
More sophisticated condition: Delaunay
Can help w/ numerical accuracy/stability
Tradeoffs w/ good geometric approximation*

e.g., long & skinny might be “more efficient”
*See Shewchuk, “What is a Good Linear Element”

DELAUNAY

(pronunciation)

 CMU 15-462/662

subdivide

What else constitutes a good mesh?
Another rule of thumb: regular vertex degree
E.g., valence 6 for triangle meshes (equilateral)

Why? Better polygon shape, important for (e.g.) subdivision:

FACT: Can’t have perfect valence everywhere! (except on torus)

“GOOD” “OK” “BAD”

 CMU 15-462/662

How do we upsample a mesh?

 CMU 15-462/662

Upsampling via Subdivision

Repeatedly split each element into smaller pieces
Replace vertex positions with weighted average of neighbors
Main considerations:
- interpolating vs. approximating
- limit surface continuity (C1, C2, ...)
- behavior at irregular vertices
Many options:
- Quad: Catmull-Clark
- Triangle: Loop, Butterfly, Sqrt(3)

 CMU 15-462/662

Catmull-Clark Subdivision
Step 0: split every polygon (any # of sides) into quadrilaterals:

New vertex positions are weighted combination of old ones:
STEP 3: Vertex coords

New vertex coords: – vertex degree
– average of face coords around vertex

– average of edge coords around vertex
– original vertex position

STEP 1: Face coords STEP 2: Edge coords

 CMU 15-462/662

Catmull-Clark on quad mesh

smooth
reflection lines

smooth
caustics

Good normal approximation almost everywhere:
(very few irregular vertices)

 CMU 15-462/662

Catmull-Clark on triangle mesh

jagged
reflection lines

jagged
caustics

(huge number of irregular vertices!)

Poor normal approximation almost everywhere:

ALIASING!

 CMU 15-462/662

Loop Subdivision
Alternative subdivision scheme for triangle meshes
Curvature is continuous away from irregular vertices (“C2”)
Algorithm:
- Split each triangle into four
- Assign new vertex positions according to weights:

u u

u u

u u1-nu
n: vertex degree
u: 3/16 if n=3, 3/(8n) otherwise

1/8

1/8

3/83/8

 CMU 15-462/662

Loop Subdivision via Edge Operations
First, split edges of original mesh in any order:

split

flip

Images cribbed from Denis Zorin.

(Don’t forget to update vertex positions!)

Next, flip new edges that touch a new & old vertex:

 CMU 15-462/662

What if we want fewer triangles?

 CMU 15-462/662

Simplification via Edge Collapse
One popular scheme: iteratively collapse edges
Greedy algorithm:
- assign each edge a cost
- collapse edge with least cost
- repeat until target number of elements is reached
Particularly effective cost function: quadric error metric*

*invented here at CMU! (Garland & Heckbert 1997)

30,000 3,000 300

30
#triangles:

 CMU 15-462/662

Quadric Error Metric
Approximate distance to a collection of triangles
Distance is sum of point-to-plane distances
- Q: Distance to plane w/ normal N passing through point p?
- A: d(x) = N•x - N•p = N•(x-p)
Sum of distances:

p

x

N

N1

N2N3

N4

N5

p

N•(x-p)

 CMU 15-462/662

Quadric Error - Homogeneous Coordinates
Suppose in coordinates we have
- a query point (x,y,z)
- a normal (a,b,c)
- an offset d := -(p,q,r) • (a,b,c)
Then in homogeneous coordinates, let
- u := (x,y,z,1)
- v := (a,b,c,d)
Signed distance to plane is then just u•v = ax+by+cz+d
Squared distance is (uTv)2 = uT(vvT)u =: uTKu
Key idea: matrix K encodes distance to plane
K is symmetric, contains 10 unique coefficients (small storage)

 CMU 15-462/662

Quadric Error of Edge Collapse
How much does it cost to collapse an edge?
Idea: compute edge midpoint, measure quadric error

collapse

Better idea: use point that minimizes quadric error as new point!
Q: Ok, but how do we minimize quadric error?

 CMU 15-462/662

Review: Minimizing a Quadratic Function
Suppose I give you a function f(x) = ax2+bx+c
Q: What does the graph of this function look like?
Could also look like this!
Q: How do we find the minimum?
A: Look for the point where the function isn’t
changing (if we look “up close”)
I.e., find the point where the derivative vanishes

x

f(x)

x

f(x)

(What about our second example?)

 CMU 15-462/662

Minimizing a Quadratic Form
A quadratic form is just a generalization of our quadratic
polynomial from 1D to nD
E.g., in 2D: f(x,y) = ax2 + bxy + cy2 + dx + ey + g
Can always (always!) write quadratic polynomial using a
symmetric matrix (and a vector, and a constant):

Q: How do we find a critical point (min/max/saddle)?
A: Set derivative to zero!

(this expression works for any n!)

(Can you show this is true, at least in 2D?)

 CMU 15-462/662

Positive Definite Quadratic Form
Just like our 1D parabola, critcal point is not always a min!
Q: In 2D, 3D, nD, when do we get a minimum?
A: When matrix A is positive-definite:

1D: Must have xax = ax2 > 0. In other words: a is positive!
2D: Graph of function looks like a “bowl”:

Positive-definiteness is extremely important in computer
graphics: it means we can find a minimum by solving linear
equations. Basis of many, many modern algorithms
(geometry processing, simulation, ...).

positive definite positive semidefinite indefinite

 CMU 15-462/662

Minimizing Quadratic Error
Find “best” point for edge collapse by minimizing quad. form

Already know fourth (homogeneous) coordinate is 1!
So, break up our quadratic function into two pieces:

Now we have a quadratic form in the 3D position x.
Can minimize as before:

(Q: Why should B be positive-definite?)

 CMU 15-462/662

Quadric Error Simplification: Final Algorithm
Compute K for each triangle (distance to plane)
Set K at each vertex to sum of Ks from incident triangles
Set K at each edge to sum of Ks at endpoints
Find point at each edge minimizing quadric error
Until we reach target # of triangles:
- collapse edge (i,j) with smallest cost to get new vertex m
- add Ki and Kj to get quadric Km at m

- update cost of edges touching m
More details in assignment writeup!

 CMU 15-462/662

Quadric Simplification—Flipped Triangles
Depending on where we put the new vertex, one of the new
triangles might be “flipped” (normal points in instead of out):

Easy solution: check dot product between normals across edge
If negative, don’t collapse this edge!

 CMU 15-462/662

What if we’re happy with the number of
triangles, but want to improve quality?

 CMU 15-462/662

Already have a good tool: edge flips!
If α+β > π, flip it!

How do we make a mesh “more Delaunay”?

FACT: in 2D, flipping edges eventually yields Delaunay mesh
Theory: worst case O(n2); no longer true for surfaces in 3D.
Practice: simple, effective way to improve mesh quality

 CMU 15-462/662

Same tool: edge flips!
If total deviation from degree-6 gets smaller, flip it!

Alternatively: how do we improve degree?

flip

FACT: average vertex degree is 6 as number of elements increases
Iterative edge flipping acts like “discrete diffusion” of degree
Again, no (known) guarantees; works well in practice

 CMU 15-462/662

How do we make a triangles “more round”?
Delaunay doesn’t mean triangles are “round” (angles near 60°)
Can often improve shape by centering vertices:

average

Simple version of technique called “Laplacian smoothing”.*
On surface: move only in tangent direction
How? Remove normal component from update vector.

*See Crane, “Digital Geometry Processing with Discrete Exterior Calculus” http://keenan.is/ddg

http://keenan.is/dgpdec

 CMU 15-462/662

Isotropic Remeshing Algorithm
Try to make triangles uniform shape & size
Repeat four steps:
- Split any edge over 4/3rds mean edge legth
- Collapse any edge less than 4/5ths mean edge length
- Flip edges to improve vertex degree
- Center vertices tangentially

Based on: Botsch & Kobbelt, “A Remeshing Approach to Multiresolution Modeling”

 CMU 15-462/662

What can go wrong when
you resample a signal?

 CMU 15-462/662

Danger of Resampling

downsample upsample

…

(Q: What happens with an image?)

 CMU 15-462/662

But wait: we have the original mesh.
Why not just project each new sample point
onto the closest point of the original mesh?

 CMU 15-462/662

Next Time: Geometric Queries
Q: Given a point, in space, how do we find the closest point on
a surface? Are we inside or outside the surface? How do we
find intersection of two triangles? Etc.
Q: Do implicit/explicit representations make such tasks easier?
Q: What’s the cost of the naïve algorithm, and how do we
accelerate such queries for large meshes?
So many questions!

p

???

