
Computer Graphics
CMU 15-462/15-662

Introduction to Geometry

 CMU 15-462/662

Assignment 2
Start building up “Scotty3D”; first part is 3D modeling

Scotty3D

(Start from the cube you described in Lecture 1!)

 CMU 15-462/662

3D Modeling Competition
Don’t just make great software… make great art! :-)

(This mesh was created in Scotty3D in about 5 minutes... you can do much better!)

 CMU 15-462/662

Increasing the complexity of our models
Materials, lighting, ...GeometryTransformations

A: Geometry is the study of two-column
proofs.

 CMU 15-462/662

Q: What is geometry?

Ceci n'est pas géométrie.
See: Paul Lockhart, “A Mathematician’s Lament “

 CMU 15-462/662

What is geometry?

ge•om•et•ry /jēˈämətrē/ n.
1. The study of shapes, sizes, patterns, and positions.
2. The study of spaces where some quantity (lengths,
 angles, etc.) can be measured.

“Earth” “measure”

Plato: “...the earth is in appearance like one of those balls which have leather coverings in twelve pieces...”

 CMU 15-462/662

How can we describe geometry?
IMPLICIT EXPLICIT

CURVATURE

LINGUISTIC
“unit circle”

SYMMETRIC
rotate

DYNAMICTOMOGRAPHIC

(constant density)

DISCRETE

n ➞ ∞

 CMU 15-462/662

Given all these options, what’s the best
way to encode geometry on a computer?

 CMU 15-462/662

Examples of geometry

 CMU 15-462/662

Examples of geometry

 CMU 15-462/662

Examples of geometry

 CMU 15-462/662

Examples of geometry

 CMU 15-462/662

Examples of geometry

 CMU 15-462/662

Examples of geometry

 CMU 15-462/662

Examples of geometry

 CMU 15-462/662

Examples of geometry

 CMU 15-462/662

It’s a Jungle Out There!

 CMU 15-462/662

No one “best” choice—geometry is hard!

“I hate meshes.
 I cannot believe how hard this is.
 Geometry is hard.”

—David Baraff
Senior Research Scientist
Pixar Animation Studios

Slide cribbed from Jeff Erickson.

 CMU 15-462/662

Many ways to digitally encode geometry
EXPLICIT
- point cloud
- polygon mesh
- subdivision, NURBS
- ...
IMPLICIT
- level set
- algebraic surface
- L-systems
- ...
Each choice best suited to a different task/type of geometry

 CMU 15-462/662

“Implicit” Representations of Geometry
Points aren’t known directly, but satisfy some relationship
E.g., unit sphere is all points such that x2+y2+z2=1
More generally, f(x,y,z) = 0

-1

+1
f(x,y)

0

f = 0

 CMU 15-462/662

Many implicit representations in graphics
algebraic surfaces
constructive solid geometry
level set methods
blobby surfaces
fractals
...

(Will see some of these a bit later.)  

Surface is zero set of a polynomial in x, y, z (“algebraic variety”)
Examples:

What about more complicated shapes?

Very hard to come up with polynomials!
 CMU 15-462/662

Algebraic Surfaces (Implicit)

 CMU 15-462/662

Constructive Solid Geometry (Implicit)
Build more complicated shapes via Boolean operations
Basic operations:

Then chain together expressions:

UNION

INTERSECTION

DIFFERENCE

Instead of Booleans, gradually blend surfaces together:

Easier to understand in 2D:

 CMU 15-462/662

Blobby Surfaces (Implicit)

(Gaussian centered at p)

f=.5 f=.4 f=.3

(Sum of Gaussians centered at different points)

 CMU 15-462/662

Scene using implicit functions (not easy!)

See http://iquilezles.org/www/material/nvscene2008/nvscene2008.htm

http://iquilezles.org/www/material/nvscene2008/nvscene2008.htm

 CMU 15-462/662

Level Set Methods (Implicit)
Implicit surfaces have some nice features (e.g., merging/splitting)
But, hard to describe complex shapes in closed form
Alternative: store a grid of values approximating function

-.45

-.25

-.15

.10

.20

-.35

-.20

-.10

.05

.25

-.30

-.10

.10

.25

.55

-.25

-.10

.15

.35

.60

-.55

-.30

-.20

-.05

.15

Surface is found where interpolated values equal zero
Provides much more explicit control over shape (like a texture)
Often demands sophisticated filtering (trilinear, tricubic…)

 CMU 15-462/662

Level Sets from Medical Data (CT, MRI, etc.)
Level sets encode, e.g., constant tissue density

 CMU 15-462/662

Implicit Representations - Pros & Cons
Pros:
- description can be very compact (e.g., a polynomial)
- easy to determine if a point is in our shape (just plug it in!)
- other queries may also be easy (e.g., distance to surface)
- for simple shapes, exact description/no sampling error
- easy to handle changes in topology (e.g., fluid)
Cons:
- expensive to find all points in the shape (e.g., for drawing)
- very difficult to model complex shapes

 CMU 15-462/662

What about explicit representations?

 CMU 15-462/662

“Explicit” Representations of Geometry
All points are given directly
E.g., points on sphere are

More generally:

(Might have a bunch of these maps, e.g., one per triangle!)

 CMU 15-462/662

Many explicit representations in graphics
triangle meshes
polygon meshes
subdivision surfaces
NURBS
point clouds
...

(Will see some of these a bit later.)  

 CMU 15-462/662

Point Cloud (Explicit)
Easiest representation: list of points (x,y,z)
Often augmented with normals
Easily represent any kind of geometry
Useful for LARGE datasets (>>1 point/pixel)
Hard to interpolate undersampled regions
Hard to do processing / simulation / …

 CMU 15-462/662

Polygon Mesh (Explicit)
Store vertices and polygons (most often triangles or quads)
Easier to do processing/simulation, adaptive sampling
More complicated data structures
Perhaps most common representation in graphics

(Much more about polygon meshes in upcoming lectures!)

 CMU 15-462/662

Triangle Mesh (Explicit)
Store vertices as triples of coordinates (x,y,z)
Store triangles as triples of indices (i,j,k)
E.g., tetrahedron:

0

1

2

3

 x y z
0: -1 -1 -1
1: 1 -1 1
2: 1 1 -1
3: -1 1 1

VERTICES
i j k
0 2 1
0 3 2
3 0 1
3 1 2

TRIANGLES

Use barycentric interpolation to define points inside triangles:

(1,0,0)

(0,1,0)

(0,0,1)

 CMU 15-462/662

Recall: Linear Interpolation (1D)
▪ Interpolate vertex positions using linear interpolation; in 1D:

▪ Can think of this as a linear combination of two functions:

▪ As we move closer to t=0, we approach the value of f at xi

▪ As we move closer to t=1, we approach the value of f at xj

 CMU 15-462/662

Bernstein Basis
Why limit ourselves to just linear interpolation?
More flexibility by using higher-order polynomials
Instead of usual basis (1, x, x2, x3, ...), use Bernstein basis:

“n choose k”

k=0,…,n

degree
0≤x≤1

1
2

1

1
2

1

A Bézier curve is a curve expressed in the Bernstein basis:

 CMU 15-462/662

Bézier Curves (Explicit)

control points

For n=1, just get a line segment!
For n=3, get “cubic Bézier”:
Important features:
1. interpolates endpoints
2. tangent to end segments
3. contained in convex hull (nice for

rasterization)

 CMU 15-462/662

Just keep going…?
What if we want an even more interesting curve?
High-degree Bernstein polynomials don’t interpolate well:

Very hard to control!

 CMU 15-462/662

Piecewise Bézier Curves (Explicit)
Alternative idea: piece together many Bézier curves
Widely-used technique (Illustrator, fonts, SVG, etc.)

Formally, piecewise Bézier curve:
piecewise Bézier

single Bézier

 CMU 15-462/662

Bézier Curves — tangent continuity
To get “seamless” curves, need points and tangents to line up:

Ok, but how?
Each curve is cubic: u3p0 + 3u2(1-u)p1 + 3u(1-u)2p2 + (1-u)3p3

Want endpoints of each segment to meet

Want tangents at endpoints to meet
Q: How many constraints vs. degrees of freedom?
Q: Could you do this with quadratic Bézier? Linear Bézier?

NO
NO

YESp0

p1

p2

p3

 CMU 15-462/662

Bézier Patches
Bézier patch is sum of products of Bernstein bases

1
2

1

1
2

1

 CMU 15-462/662

Bézier Surface
Just as we connected Bézier curves, can connect Bézier
patches to get a surface:

Q: Can we always get tangent continuity?
 (Think: how many constraints? How many degrees of freedom?)

Very easy to draw: just dice each patch into regular (u,v) grid!

 CMU 15-462/662

Notice anything fishy
about the last picture?

 CMU 15-462/662

Bézier Patches are Too Simple
Notice that exactly four patches
meet around every vertex!

In practice, far too
constrained.

To make interesting
shapes (with good
continuity), we need
patches that allow
more interesting
connectivity...

 CMU 15-462/662

Spline patch schemes
There are many alternatives!
NURBS, Gregory, Pm, polar…
Tradeoffs:
- degrees of freedom
- continuity
- difficulty of editing
- cost of evaluation
- generality
- …
As usual: pick the right tool for the
job!

 CMU 15-462/662

Subdivision (Explicit or Implicit?)
Alternative starting point for curves/surfaces: subdivision
Start with control curve
Insert new vertex at each edge midpoint
Update vertex positions according to fixed rule
For careful choice of averaging rule, yields smooth curve
- Some subdivision schemes correspond to well-known

spline schemes!

Slide cribbed from Don Fussell.

 CMU 15-462/662

Subdivision Surfaces (Explicit)
Start with coarse polygon mesh (“control cage”)
Subdivide each element
Update vertices via local averaging
Many possible rule:
- Catmull-Clark (quads)
- Loop (triangles)
- ...
Common issues:
- interpolating or approximating?
- continuity at vertices?
Easier than splines for modeling; harder to evaluate pointwise

 CMU 15-462/662

Subdivision in Action (Pixar’s “Geri’s Game”)

Computer Graphics
CMU 15-462/15-662

Meshes and Manifolds

 CMU 15-462/662

Manifold Assumption
Next, we’re going to introduce the idea of manifold geometry

u

v

 CMU 15-462/662

Smooth Surfaces
Intuitively, a surface is the boundary or “shell” of an object
(Think about the candy shell, not the chocolate.)
Surfaces are manifold:
- If you zoom in far enough (at any point) looks like a plane*
- E.g., the Earth from space vs. from the ground

*…or can easily be flattened into the plane, without cutting or ripping.

 CMU 15-462/662

Isn’t every shape manifold?
No, for instance:

Center point never looks like the plane, no matter how close we get.

 CMU 15-462/662

More Examples of Smooth Surfaces
Which of these shapes are manifold?

 CMU 15-462/662

A manifold polygon mesh has fans, not fins
For polygonal surfaces just two easy conditions to check:
1. Every edge is contained in only two polygons (no “fins”)
2. The polygons containing each vertex make a single “fan”

NO

YES

NO

YES

 CMU 15-462/662

What about boundary?
The boundary is where the surface “ends.”
E.g., waist & ankles on a pair of pants.
Locally, looks like a half disk
Globally, each boundary forms a loop

Polygon mesh:
- one polygon per boundary edge
- boundary vertex looks like “pacman”

YES

 CMU 15-462/662

Ok, but why is the manifold
assumption useful?

 CMU 15-462/662

Keep it Simple!
- make some assumptions about our geometry to keep data

structures/algorithms simple and efficient
- in many common cases, doesn’t fundamentally limit what

we can do with geometry

 CMU 15-462/662

How do we actually encode all this data?

 CMU 15-462/662

Warm up: storing numbers
Q: What data structures can we use to store a list of numbers?
One idea: use an array (constant time lookup, coherent access)

Alternative: use a linked list (linear lookup, incoherent access)

Q: Why bother with the linked list?
A: For one, we can easily insert numbers wherever we like...

1.7 2.9 0.3 7.5 9.2 4.8 6.0 0.1

1.7

2.9

0.3
7.5

9.2
4.8

6.0

0.1

 CMU 15-462/662

Adjacency List (Array-like)
Store triples of coordinates (x,y,z), tuples of indices
E.g., tetrahedron:

0

1

2

3

 x y z
0: -1 -1 -1
1: 1 -1 1
2: 1 1 -1
3: -1 1 1

VERTICES
i j k
0 2 1
0 3 2
3 0 1
3 1 2

POLYGONS

Q: How do we find all the polygons touching vertex 2?
Ok, now consider a more complicated mesh:

Very expensive to find the neighboring triangles! (What’s the cost?)

~1 billion polygons

 CMU 15-462/662

Incidence Matrices
If we want to answer neighborhood queries, why not simply
store a list of neighbors?
Can encode all neighbor information via incidence matrices
E.g., tetrahedron:

1 means “touches”; 0 means “does not touch”
Instead of storing lots of 0’s, use sparse matrices
Still large storage cost, but finding neighbors is now O(1)
Hard to change connectivity, since we used fixed indices
Bonus feature: mesh does not have to be manifold

e2

v0

v1

v2

v3

e0

e1

e3
e4

f0

f3

f1

f2

e5

 v0 v1 v2 v3
e0 1 1 0 0
e1 0 1 1 0
e2 1 0 1 0
e3 1 0 0 1
e4 0 0 1 1
e5 0 1 0 1

VERTEX⬌EDGE
 e0 e1 e2 e3 e4 e5
f0 1 0 0 1 0 1
f1 0 1 0 0 1 1
f2 1 1 1 0 0 0
f3 0 0 1 1 1 0

EDGE⬌FACE

Store some information about neighbors
Don’t need an exhaustive list; just a few key pointers
Key idea: two halfedges act as “glue” between mesh
elements:

Each vertex, edge face points to just one of its halfedges.
 CMU 15-462/662

Halfedge Data Structure (Linked-list-like)

Ha
lf
ed
ge

twin

ed
ge

next

vertex

face

struct Halfedge
{
 Halfedge* twin;
 Halfedge* next;
 Vertex* vertex;
 Edge* edge;
 Face* face;
};

struct Vertex
{
 Halfedge* halfedge;
};

halfedge

vertex

struct Edge
{
 Halfedge* halfedge;
};ha

lf
ed
ge

ed
ge

struct Face
{
 Halfedge* halfedge;
};

ha
lf
ed
ge

Face

Use “twin” and “next” pointers to move around mesh
Use “vertex”, “edge”, and “face” pointers to grab element
Example: visit all vertices of a face:

Example: visit all neighbors of a vertex:

[DEMO]
Note: only makes sense if mesh is manifold!

 CMU 15-462/662

Halfedge makes mesh traversal easy

ha
lf
ed
ge

next

next

Face

Halfedge* h = f->halfedge;
do {
 h = h->next;
 // do something w/ h->vertex
}
while(h != f->halfedge);

ha
lf
ed
ge

twin

twin

next

next
Vertex

Halfedge* h = v->halfedge;
do {
 h = h->twin->next;
}
while(h != v->halfedge);

 CMU 15-462/662

Halfedge meshes are always manifold
Consider simplified halfedge data structure
Require only “common-sense” conditions

struct Halfedge {
 Halfedge *next, *twin;
};

Keep following next, and you’ll get faces.
Keep following twin and you’ll get edges.
Keep following next->twin and you’ll get vertices.

Q: Why, therefore, is it impossible to encode the red figures?

twin->twin == this
next != this
twin != this

(pointer to yourself!)

 CMU 15-462/662

Halfedge meshes are easy to edit
Remember key feature of linked list: insert/delete elements
Same story with halfedge mesh (“linked list on steroids”)
E.g., for triangle meshes, several atomic operations:

b

c

a d

b

c

a d

flip

b

m

c

a d

b

c

a d

split

a

b

c d

a

b

m

collapse

How? Allocate/delete elements; reassigning pointers.
Must be careful to preserve manifoldness!

 CMU 15-462/662

Edge Flip (Triangles)
Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d):

Long list of pointer reassignments (edge->halfedge = ...)
However, no elements created/destroyed.
Q: What happens if we flip twice?
Challenge: can you implement edge flip such that pointers are
unchanged after two flips?

b

c

a d

b

c

a d

flip

 CMU 15-462/662

Edge Split (Triangles)
Insert midpoint m of edge (c,b), connect to get four triangles:

This time, have to add new elements.
Lots of pointer reassignments.
Q: Can we “reverse” this operation?

b

m

c

a d

b

c

a d

split

 CMU 15-462/662

Edge Collapse (Triangles)
Replace edge (b,c) with a single vertex m:

Now have to delete elements.
Still lots of pointer assignments!
Q: How would we implement this with an adjacency list?
Any other good way to do it? (E.g., different data structure?)

a

b

c d

a

b

m

collapse

 CMU 15-462/662

Comparison of Polygon Mesh Data Strucutres

Adjacency List Incidence
Matrices

Halfedge Mesh

storage cost* ~3 x #vertices ~33 x #vertices ~36 x #vertices

constant-time
neighborhood access?

NO YES YES

easy to add/remove
mesh elements?

NO NO YES

nonmanifold
geometry?

YES YES NO

*number of integer values and/or pointers required to encode connectivity
(all data structures require same amount of storage for vertex positions)

Conclusion: pick the right data structure for the job!

Case study:
triangles.

Paul Heckbert (former CMU prof.)
quadedge code - http://bit.ly/1QZLHosMany very similar data structures:

- winged edge
- corner table
- quadedge
- ...
Each stores local neighborhood information
Similar tradeoffs relative to simple polygon list:
- CONS: additional storage, incoherent memory access
- PROS: better access time for individual elements, intuitive

traversal of local neighborhoods
(Food for thought: can you design a halfedge-like data
structure with reasonably coherent data storage?)

 CMU 15-462/662

Alternatives to Halfedge

 CMU 15-462/662

Ok, but what can we actually do with our
fancy new data structure?

 CMU 15-462/662

Subdivision Modeling

 CMU 15-462/662

Subdivision Modeling
Common modeling paradigm in modern 3D tools:
- Coarse “control cage”
- Perform local operations to control/edit shape
- Global subdivision process determines final surface

 CMU 15-462/662

Subdivision Modeling—Local Operations
For general polygon meshes, we can dream up lots of local
mesh operations that might be useful for modeling:

…and many, many more!

 CMU 15-462/662

Global Subdivision
Start with coarse polygon mesh (“control cage”)
Subdivide each element
Update vertices via local averaging
Many possible rule:
- Catmull-Clark (quads)
- Loop (triangles)
- ...
Common issues:
- interpolating or approximating?
- continuity at vertices?
Easier than splines for modeling; harder to evaluate pointwise

 CMU 15-462/662

Next Time: Digital Geometry Processing
Extend traditional digital signal processing (audio, video, etc.)
to deal with geometric signals:
- upsampling / downsampling / resampling / filtering ...
- aliasing (reconstructed surface gives “false impression”)
Also some new challenges (very recent field!):
- over which domain is a geometric signal expressed?
- no terrific sampling theory, no fast Fourier transform, ...
Often need new data structures & new algorithms

