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Assignment 2
Start building up “Scotty3D”; first part is 3D modeling

Scotty3D

(Start from the cube you described in Lecture 1!)
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3D Modeling Competition
Don’t just make great software… make great art! :-)

(This mesh was created in Scotty3D in about 5 minutes... you can do much better!)
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Increasing the complexity of our models
Materials, lighting, ...GeometryTransformations



A: Geometry is the study of two-column 
proofs.
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Q: What is geometry?

Ceci n'est pas géométrie.
See: Paul Lockhart, “A Mathematician’s Lament “
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What is geometry?

ge•om•et•ry   /jēˈämətrē/ n. 
1. The study of shapes, sizes, patterns, and positions. 
2. The study of spaces where some quantity (lengths, 
    angles, etc.) can be measured.

“Earth” “measure”

Plato: “...the earth is in appearance like one of those balls which have leather coverings in twelve pieces...”
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How can we describe geometry?
IMPLICIT EXPLICIT

CURVATURE

LINGUISTIC
“unit circle”

SYMMETRIC
rotate

DYNAMICTOMOGRAPHIC

(constant density)

DISCRETE

n ➞ ∞
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Given all these options, what’s the best 
way to encode geometry on a computer?
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Examples of geometry
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Examples of geometry



 CMU 15-462/662

Examples of geometry
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Examples of geometry
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Examples of geometry
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Examples of geometry
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Examples of geometry
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Examples of geometry
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It’s a Jungle Out There!
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No one “best” choice—geometry is hard!

“I hate meshes. 
  I cannot believe how hard this is. 
  Geometry is hard.”

—David Baraff 
Senior Research Scientist 
Pixar Animation Studios

Slide cribbed from Jeff Erickson.



 CMU 15-462/662

Many ways to digitally encode geometry
EXPLICIT 
- point cloud 
- polygon mesh 
- subdivision, NURBS 
- ... 
IMPLICIT 
- level set 
- algebraic surface 
- L-systems 
- ... 
Each choice best suited to a different task/type of geometry
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“Implicit” Representations of Geometry
Points aren’t known directly, but satisfy some relationship 
E.g., unit sphere is all points such that x2+y2+z2=1 
More generally, f(x,y,z) = 0

-1

+1
f(x,y)

0

f = 0
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Many implicit representations in graphics
algebraic surfaces 
constructive solid geometry 
level set methods 
blobby surfaces 
fractals 
...

(Will see some of these a bit later.)  



Surface is zero set of a polynomial in x, y, z (“algebraic variety”) 
Examples: 

What about more complicated shapes? 

Very hard to come up with polynomials!
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Algebraic Surfaces (Implicit)
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Constructive Solid Geometry (Implicit)
Build more complicated shapes via Boolean operations 
Basic operations: 

Then chain together expressions:

UNION

INTERSECTION

DIFFERENCE



Instead of Booleans, gradually blend surfaces together: 

Easier to understand in 2D:
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Blobby Surfaces (Implicit)

(Gaussian centered at p)

f=.5 f=.4 f=.3

(Sum of Gaussians centered at different points)
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Scene using implicit functions (not easy!)

See http://iquilezles.org/www/material/nvscene2008/nvscene2008.htm

http://iquilezles.org/www/material/nvscene2008/nvscene2008.htm
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Level Set Methods (Implicit)
Implicit surfaces have some nice features (e.g., merging/splitting) 
But, hard to describe complex shapes in closed form 
Alternative: store a grid of values approximating function
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Surface is found where interpolated values equal zero 
Provides much more explicit control over shape (like a texture) 
Often demands sophisticated filtering (trilinear, tricubic…)
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Level Sets from Medical Data (CT, MRI, etc.)
Level sets encode, e.g., constant tissue density
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Implicit Representations - Pros & Cons
Pros: 
- description can be very compact (e.g., a polynomial) 
- easy to determine if a point is in our shape (just plug it in!) 
- other queries may also be easy (e.g., distance to surface) 
- for simple shapes, exact description/no sampling error 
- easy to handle changes in topology (e.g., fluid) 
Cons: 
- expensive to find all points in the shape (e.g., for drawing) 
- very difficult to model complex shapes
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What about explicit representations?
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“Explicit” Representations of Geometry
All points are given directly 
E.g., points on sphere are 

More generally:

(Might have a bunch of these maps, e.g., one per triangle!)
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Many explicit representations in graphics
triangle meshes 
polygon meshes 
subdivision surfaces 
NURBS 
point clouds 
...

(Will see some of these a bit later.)  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Point Cloud (Explicit)
Easiest representation: list of points (x,y,z) 
Often augmented with normals 
Easily represent any kind of geometry 
Useful for LARGE datasets (>>1 point/pixel) 
Hard to interpolate undersampled regions 
Hard to do processing / simulation / …



 CMU 15-462/662

Polygon Mesh (Explicit)
Store vertices and polygons (most often triangles or quads) 
Easier to do processing/simulation, adaptive sampling 
More complicated data structures 
Perhaps most common representation in graphics

(Much more about polygon meshes in upcoming lectures!)
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Triangle Mesh (Explicit)
Store vertices as triples of coordinates (x,y,z) 
Store triangles as triples of indices (i,j,k) 
E.g., tetrahedron:

0

1

2

3

    x  y  z
0: -1 -1 -1
1:  1 -1  1
2:  1  1 -1
3: -1  1  1

VERTICES
i  j  k
0  2  1
0  3  2
3  0  1
3  1  2

TRIANGLES

Use barycentric interpolation to define points inside triangles:

(1,0,0)

(0,1,0)

(0,0,1)
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Recall: Linear Interpolation (1D)
▪ Interpolate vertex positions using linear interpolation; in 1D:

▪ Can think of this as a linear combination of two functions:

▪ As we move closer to t=0, we approach the value of f at xi 

▪ As we move closer to t=1, we approach the value of f at xj
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Bernstein Basis
Why limit ourselves to just linear interpolation? 
More flexibility by using higher-order polynomials 
Instead of usual basis (1, x, x2, x3, ...), use Bernstein basis:

“n choose k”

k=0,…,n

degree
0≤x≤1

1
2

1

1
2

1



A Bézier curve is a curve expressed in the Bernstein basis:
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Bézier Curves (Explicit)

control points

For n=1, just get a line segment! 
For n=3, get “cubic Bézier”: 
Important features: 
1. interpolates endpoints 
2. tangent to end segments 
3. contained in convex hull (nice for 

rasterization)
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Just keep going…?
What if we want an even more interesting curve? 
High-degree Bernstein polynomials don’t interpolate well:

Very hard to control!
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Piecewise Bézier Curves (Explicit)
Alternative idea: piece together many Bézier curves 
Widely-used technique (Illustrator, fonts, SVG, etc.)

Formally, piecewise Bézier curve:
piecewise Bézier

single Bézier
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Bézier Curves — tangent continuity
To get “seamless” curves, need points and tangents to line up:

Ok, but how? 
Each curve is cubic: u3p0 + 3u2(1-u)p1 + 3u(1-u)2p2 + (1-u)3p3 

Want endpoints of each segment to meet 

Want tangents at endpoints to meet 
Q: How many constraints vs. degrees of freedom? 
Q: Could you do this with quadratic Bézier?  Linear Bézier?

NO
NO

YESp0

p1

p2

p3
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Bézier Patches
Bézier patch is sum of products of Bernstein bases

1
2

1

1
2

1
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Bézier Surface
Just as we connected Bézier curves, can connect Bézier 
patches to get a surface:

Q: Can we always get tangent continuity? 
     (Think: how many constraints?  How many degrees of freedom?)

Very easy to draw: just dice each patch into regular (u,v) grid!
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Notice anything fishy 
about the last picture?
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Bézier Patches are Too Simple
Notice that exactly four patches 
meet around every vertex!

In practice, far too 
constrained.

To make interesting 
shapes (with good 
continuity), we need 
patches that allow 
more interesting 
connectivity...
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Spline patch schemes
There are many alternatives! 
NURBS, Gregory, Pm, polar… 
Tradeoffs: 
- degrees of freedom 
- continuity 
- difficulty of editing 
- cost of evaluation 
- generality 
- … 
As usual: pick the right tool for the 
job!
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Subdivision (Explicit or Implicit?)
Alternative starting point for curves/surfaces: subdivision 
Start with control curve 
Insert new vertex at each edge midpoint 
Update vertex positions according to fixed rule 
For careful choice of averaging rule, yields smooth curve 
- Some subdivision schemes correspond to well-known 

spline schemes!

Slide cribbed from Don Fussell.
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Subdivision Surfaces (Explicit)
Start with coarse polygon mesh (“control cage”) 
Subdivide each element 
Update vertices via local averaging 
Many possible rule: 
- Catmull-Clark (quads) 
- Loop (triangles) 
- ... 
Common issues: 
- interpolating or approximating? 
- continuity at vertices? 
Easier than splines for modeling; harder to evaluate pointwise



 CMU 15-462/662

Subdivision in Action (Pixar’s “Geri’s Game”)



Computer Graphics 
CMU 15-462/15-662

Meshes and Manifolds
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Manifold Assumption
Next, we’re going to introduce the idea of manifold geometry

u

v
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Smooth Surfaces
Intuitively, a surface is the boundary or “shell” of an object 
(Think about the candy shell, not the chocolate.) 
Surfaces are manifold: 
- If you zoom in far enough (at any point) looks like a plane* 
- E.g., the Earth from space vs. from the ground

*…or can easily be flattened into the plane, without cutting or ripping.
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Isn’t every shape manifold?
No, for instance:

Center point never looks like the plane, no matter how close we get.



 CMU 15-462/662

More Examples of Smooth Surfaces
Which of these shapes are manifold?
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A manifold polygon mesh has fans, not fins
For polygonal surfaces just two easy conditions to check: 
1. Every edge is contained in only two polygons (no “fins”) 
2. The polygons containing each vertex make a single “fan”

NO

YES

NO

YES
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What about boundary?
The boundary is where the surface “ends.” 
E.g., waist & ankles on a pair of pants. 
Locally, looks like a half disk 
Globally, each boundary forms a loop 

Polygon mesh: 
- one polygon per boundary edge 
- boundary vertex looks like “pacman”

YES
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Ok, but why is the manifold 
assumption useful?
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Keep it Simple!
- make some assumptions about our geometry to keep data 

structures/algorithms simple and efficient 
- in many common cases, doesn’t fundamentally limit what 

we can do with geometry
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How do we actually encode all this data?
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Warm up: storing numbers
Q: What data structures can we use to store a list of numbers? 
One idea: use an array (constant time lookup, coherent access) 

Alternative: use a linked list (linear lookup, incoherent access) 

Q: Why bother with the linked list? 
A: For one, we can easily insert numbers wherever we like...

1.7 2.9 0.3 7.5 9.2 4.8 6.0 0.1

1.7

2.9

0.3
7.5

9.2
4.8

6.0

0.1
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Adjacency List (Array-like)
Store triples of coordinates (x,y,z), tuples of indices 
E.g., tetrahedron:

0

1

2

3

    x  y  z
0: -1 -1 -1
1:  1 -1  1
2:  1  1 -1
3: -1  1  1

VERTICES
i  j  k
0  2  1
0  3  2
3  0  1
3  1  2

POLYGONS

Q: How do we find all the polygons touching vertex 2? 
Ok, now consider a more complicated mesh: 

Very expensive to find the neighboring triangles!  (What’s the cost?) 

~1 billion polygons
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Incidence Matrices
If we want to answer neighborhood queries, why not simply 
store a list of neighbors? 
Can encode all neighbor information via incidence matrices 
E.g., tetrahedron: 

1 means “touches”; 0 means “does not touch” 
Instead of storing lots of 0’s, use sparse matrices 
Still large storage cost, but finding neighbors is now O(1) 
Hard to change connectivity, since we used fixed indices 
Bonus feature: mesh does not have to be manifold

e2

v0

v1

v2

v3

e0

e1

e3
e4

f0

f3

f1

f2

e5

  v0 v1 v2 v3
e0 1  1  0  0
e1 0  1  1  0
e2 1  0  1  0
e3 1  0  0  1
e4 0  0  1  1
e5 0  1  0  1

VERTEX⬌EDGE
  e0 e1 e2 e3 e4 e5
f0 1  0  0  1  0  1
f1 0  1  0  0  1  1
f2 1  1  1  0  0  0
f3 0  0  1  1  1  0

EDGE⬌FACE



Store some information about neighbors 
Don’t need an exhaustive list; just a few key pointers 
Key idea: two halfedges act as “glue” between mesh 
elements: 

Each vertex, edge face points to just one of its halfedges.
 CMU 15-462/662

Halfedge Data Structure (Linked-list-like)

Ha
lf
ed
ge

twin

ed
ge

next

vertex

face

struct Halfedge
{
   Halfedge* twin;
   Halfedge* next;
   Vertex* vertex;
   Edge* edge;
   Face* face;
};

struct Vertex
{
   Halfedge* halfedge;
};

halfedge

vertex

struct Edge
{
   Halfedge* halfedge;
};ha

lf
ed
ge

ed
ge

struct Face
{
   Halfedge* halfedge;
};

ha
lf
ed
ge

Face



Use “twin” and “next” pointers to move around mesh 
Use “vertex”, “edge”, and “face” pointers to grab element 
Example: visit all vertices of a face: 

Example: visit all neighbors of a vertex: 

[DEMO] 
Note: only makes sense if mesh is manifold!
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Halfedge makes mesh traversal easy

ha
lf
ed
ge

next

next

Face

Halfedge* h = f->halfedge;
do {
   h = h->next;
   // do something w/ h->vertex
}
while( h != f->halfedge );

ha
lf
ed
ge

twin

twin

next

next
Vertex

Halfedge* h = v->halfedge;
do {
   h = h->twin->next;
}
while( h != v->halfedge );
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Halfedge meshes are always manifold
Consider simplified halfedge data structure 
Require only “common-sense” conditions

struct Halfedge {
   Halfedge *next, *twin;
};

Keep following next, and you’ll get faces. 
Keep following twin and you’ll get edges. 
Keep following next->twin and you’ll get vertices.

Q: Why, therefore, is it impossible to encode the red figures?

twin->twin == this
next != this
twin != this

(pointer to yourself!)
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Halfedge meshes are easy to edit
Remember key feature of linked list: insert/delete elements 
Same story with halfedge mesh (“linked list on steroids”) 
E.g., for triangle meshes, several atomic operations:

b

c

a d

b

c

a d

flip

b

m

c

a d

b

c

a d

split

a

b

c d

a

b

m

collapse

How?  Allocate/delete elements; reassigning pointers. 
Must be careful to preserve manifoldness!
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Edge Flip (Triangles)
Triangles (a,b,c), (b,d,c) become (a,d,c), (a,b,d): 

Long list of pointer reassignments (edge->halfedge = ...) 
However, no elements created/destroyed. 
Q: What happens if we flip twice? 
Challenge: can you implement edge flip such that pointers are 
unchanged after two flips?

b

c

a d

b

c

a d

flip
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Edge Split (Triangles)
Insert midpoint m of edge (c,b), connect to get four triangles: 

This time, have to add new elements. 
Lots of pointer reassignments. 
Q: Can we “reverse” this operation?

b

m

c

a d

b

c

a d

split
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Edge Collapse (Triangles)
Replace edge (b,c) with a single vertex m: 

Now have to delete elements. 
Still lots of pointer assignments! 
Q: How would we implement this with an adjacency list? 
Any other good way to do it?  (E.g., different data structure?)

a

b

c d

a

b

m

collapse
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Comparison of Polygon Mesh Data Strucutres

Adjacency List Incidence 
Matrices

Halfedge Mesh

storage cost* ~3 x #vertices ~33 x #vertices ~36 x #vertices

constant-time 
neighborhood access?

NO YES YES

easy to add/remove 
mesh elements?

NO NO YES

nonmanifold 
geometry?

YES YES NO

*number of integer values and/or pointers required to encode connectivity 
(all data structures require same amount of storage for vertex positions)

Conclusion: pick the right data structure for the job!

Case study: 
triangles.



Paul Heckbert (former CMU prof.) 
quadedge code - http://bit.ly/1QZLHosMany very similar data structures: 

- winged edge 
- corner table 
- quadedge 
- ... 
Each stores local neighborhood information 
Similar tradeoffs relative to simple polygon list: 
- CONS: additional storage, incoherent memory access 
- PROS: better access time for individual elements, intuitive 

traversal of local neighborhoods 
(Food for thought: can you design a halfedge-like data 
structure with reasonably coherent data storage?)
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Alternatives to Halfedge
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Ok, but what can we actually do with our 
fancy new data structure?
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Subdivision Modeling



 CMU 15-462/662

Subdivision Modeling
Common modeling paradigm in modern 3D tools: 
- Coarse “control cage” 
- Perform local operations to control/edit shape 
- Global subdivision process determines final surface
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Subdivision Modeling—Local Operations
For general polygon meshes, we can dream up lots of local 
mesh operations that might be useful for modeling:

…and many, many more!
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Global Subdivision
Start with coarse polygon mesh (“control cage”) 
Subdivide each element 
Update vertices via local averaging 
Many possible rule: 
- Catmull-Clark (quads) 
- Loop (triangles) 
- ... 
Common issues: 
- interpolating or approximating? 
- continuity at vertices? 
Easier than splines for modeling; harder to evaluate pointwise
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Next Time: Digital Geometry Processing
Extend traditional digital signal processing (audio, video, etc.) 
to deal with geometric signals: 
- upsampling / downsampling / resampling / filtering ... 
- aliasing (reconstructed surface gives “false impression”) 
Also some new challenges (very recent field!): 
- over which domain is a geometric signal expressed? 
- no terrific sampling theory, no fast Fourier transform, ... 
Often need new data structures & new algorithms


