Lecture 1:

Course Intro: Welcome to Computer Graphics!

Computer Graphics CMU 15-462/662, Spring 2019

Nancy Pollard

Adrian Biagioli

Connor Lin

Yuqiao Zeng

What is computer graphics?

com • put • er graph • ics /kəm 'pyoodər 'grafiks/ *n*. The use of computers to synthesize and manipulate visual information.

Why visual information?

About 30% of brain dedicated to visual processing...

...eyes are highest-bandwidth port into the head!

Humans are visual creatures!

History of visual depiction

Humans have always been visual creatures!

Indonesian cave painting (~38,000 BCE)

Visual technology: painting / illustration Not purely representational: ideas, feelings, data, ...

Visual technology: carving / sculpture

Visual technology: photography / imaging Processing of visual data no longer happening in the head!

Joseph Niépce, "View from the Window at Le Gras" (1826)

Visual technology: photography / imaging

Visual technology: digital imagery

Intersection of visual depiction & computation

Ivan Sutherland, "Sketchpad" (1963)

Visual technology: digital imagery

Visual technology: 3D fabrication **Create physical realization of digital shape**

A.J. Herbert / 3M (1979)

Visual technology: 3D fabrication

Technologies for visual depiction

- Drawing/painting/illustration (~40,000 BCE)
- Sculpture (~40,000 BCE)
 - Photography (~1826)
 - Digital Imagery (~1963) 3D Fabrication (~1979)

tion BCE)

Definition of Graphics, Revisited

com • put • er graph • ics /kəm 'pyoodər 'grafiks/ *n*. The use of computers to synthesize and manipulate visual information.

Why only visual?

Graphics as Synthesis of Sensory Stimuli

(sound)

com•put•er graph•ics /kəm'pyoodər 'grafiks/ n. The use of computers to synthesize and manipulate sensory information.

(touch)

(...What about taste? Smell?!)

Computer graphics is everywhere!

Entertainment (movies, games)

Entertainment

Not just cartoons!

Art and design

Industrial design

Computer aided engineering (CAE)

Architecture

Scientific/mathematical visualization

Medical/anatomical visualization

Navigation

Communication

What mokes is great app?

TO REPORT TO ADDRESS & Pright from pass their law area produced. tions for longitudina speed

The usey too towek

COLUMN AND ADDRESS AND ADDRESS CONTRACTOR OF A DESCRIPTION OF A DESCRIP No. of the summer desire by humanity

Meet the makers

14,500

The state of the second state and for state The property physically included by the property of said and provide solution and

Foundations of computer graphics

- All these applications demand sophisticated theory & systems Theory
 - geometric representations
 - sampling theory
 - integration and optimization
 - radiometry
 - perception and color
 - **Systems**
 - parallel, heterogeneous processing
 - graphics-specific programming languages

ACTIVITY: modeling and drawing a cube

- Goal: generate a realistic drawing of a cube
- **Key questions:**
 - Modeling: how do we describe the cube?
 - Rendering: how do we then visualize this model?

ACTIVITY: modeling the cube

Suppose our cube is...

- centered at the origin (0,0,0)
- has dimensions 2x2x2
- edges are aligned with x/y/z axes
- **QUESTION:** What are the coordinates of the cube vertices?

A:
$$(1, 1, 1)$$
 E: $(1$
B: $(-1, 1, 1)$ F: (-1)
C: $(1, -1, 1)$ G: $(1$
D: $(-1, -1, 1)$ H: (-1)

QUESTION: What about the edges?

AB,	CD,	EF,	GH,
AC,	BD,	EG,	FH,
AE,	CG,	BF,	DH

- , 1, -1) , 1, -1) , -1, -1)
- , -1, -1)

ACTIVITY: drawing the cube

Now have a digital description of the cube:

VERTICES

A:	(1,	1,	1)	E :	(1,	1,-1)
B:	(-	-1,	1,	1)	F :	(-	-1,	1, -1)
C :	(1,-	-1,	1)	G:	(1,-	-1,-1)
D:	(-	-1,-	-1,	1)	H :	(-	-1,-	-1,-1)

- How do we draw this 3D cube as a 2D (flat) image? **Basic strategy:**
 - 1. map 3D vertices to 2D points in the image
 - 2. connect 2D points with straight lines
 - ...Ok, but how?

EDGES

AB,	CD,	EF,	GH,
AC,	BD,	EG,	FH,
AE,	CG,	BF,	DH

Perspective projection

- **Objects look smaller as they get further away ("perspective")**
- Why does this happen?
- **Consider simple ("pinhole") model of a camera:**

Perspective projection: side view

- Where exactly does a point p = (x,y,z) end up on the image?
- Let's call the image point q=(u,v)

JiewIndupon the image?

Perspective projection: side view Where exactly does a point p = (x,y,z) end up on the image?

- Let's call the image point q=(u,v)
- **Notice two similar triangles:**

- Assume camera has unit size, origin is at pinhole c Then v/1 = y/z, i.e., vertical coordinate is just the slope y/z
- Likewise, horizontal coordinate is u=x/z

p=(x,y,z)**3D object**

ACTIVITY: now draw it!

Need 12 volunteers

- each person will draw one cube edge
- assume camera is at c=(2,3,5)
- convert (X,Y,Z) of both endpoints to (u,v):
 - 1. subtract camera c from vertex (X,Y,Z) to get (x,y,z)
 - 2. divide (x,y) by z to get (u,v)—write as a fraction
- draw line between (u1,v1) and (u2,v2)

VERTICES

A:
$$(1, 1, 1)$$
 E: $(1, 1, -1)$
B: $(-1, 1, 1)$ F: $(-1, 1, -1)$
C: $(1, -1, 1)$ G: $(1, -1, -1)$
D: $(-1, -1, 1)$ H: $(-1, -1, -1)$

J,v): (,Z) to get (x,y,z) e as a fraction 2)

EDGES

AB, CD, EF, GH, AC, BD, EG, FH, AE, CG, BF, DH

ACTIVITY: output on graph paper

ACTIVITY: How did we do?

2D coordinates:

A:	1/4,	1/2
B:	3/4,	1/2
C :	1/4,	1
D:	3/4,	1
E :	1/6,	1/3
F :	1/2,	1/3
G:	1/6,	2/3
H:	1/2,	2/3

ACTIVITY: Previous year's result

But wait... How do we draw lines on a computer?

Close up photo of pixels on a modern display

Output for a raster display

Common abstraction of a raster display:

- Image represented as a 2D grid of "pixels" (picture elements) **
- Each pixel can can take on a unique color value

** We will strongly challenge this notion of a pixel "as a little square" soon enough. But let's go with it for now. ;-)

What pixels should we color in to depict a line?

"Rasterization": process of converting a continuous object to a discrete representation on a raster grid (pixel grid)

What pixels should we color in to depict a line?

Light up all pixels intersected by the line?

What pixels should we color in to depict a line? **Diamond rule (used by modern GPUs):** light up pixel if line passes through associated diamond

What pixels should we color in to depict a line?

Is there a right answer? (consider a drawing a "line" with thickness)

How do we find the pixels satisfying a chosen rasterization rule?

- Could check every single pixel in the image to see if it meets the condition...
 - O(n²) pixels in image vs. at most O(n) "lit up" pixels
 - must be able to do better! (e.g., work proportional to number of pixels in the drawing of the line)

Incremental line rasterization

- Let's say a line is represented with integer endpoints: (u1,v1), (u2,v2)
- Slope of line: s = (v2-v1)/(u2-u1)
- **Consider a very easy special case:**

Common optimization: rewrite algorithm to use only integer arithmetic (Bresenham algorithm)

Our line drawing!

2D coordinates:

A:	1/4,	1/2
B:	3/4,	1/2
C :	1/4,	1
D:	3/4,	1
E :	1/6,	1/3
F :	1/2,	1/3
G:	1/6,	2/3
H :	1/2,	2/3

We just rendered a simple line drawing of a cube.

But to render more realistic pictures (or animations) we need a much richer model of the world.

surfaces motion materials lights cameras

2D shapes

[Source: Batra 2017]

Complex 3D surfaces

Realistic lighting environments

Up, (Pixar 2009)

Realistic lighting environments

Realistic lighting environments

Big Hero 6 (Disney 2014)

This image is rendered in real-time on a modern GPU

Unreal Engine Kite Demo (Epic Games 2015)

So is this.

[Mirror's Edge 2008]

Animation: modeling motion

https://www.youtube.com/watch?v=6G3060o5U7w

Physically-based simulation of motion

https://www.youtube.com/watch?v=tT81VPk_ukU

[James 2004]

Course Logistics

About this course

A broad overview of major topics and techniques in computer graphics: geometry, rendering, animation, imaging

Outline:

- Focus on fundamental data structures and algorithms that are reused across all areas of graphics
- Assignments on:
 - Rasterization
 - **Geometric Modeling**
 - **Photorealistic Rendering**
 - Animation
- In-class midterm/final

Assignment 0: Math (P)Review

Assignment 1: Rasterization

Assignment 2: Geometric Modeling

Assignment 3: Photorealistic Rendering

Assignment 4: Animation

(cribbed from Alec Jacobson)

Midterm / Final

Both cover cumulative material seen so far

- In-class, proctored exam
- Can bring one sticky note (both sides) w/ any information on it

		F	ull Name:	
	15-	462/662, F	all 2015	
		Final Ex	am	
		Dec 14, 201	15	
octions:				
This exam is CLOSE	D BOOK, CLO	SED NOTES (w	ith the exception of	your one post-it note).
	n't worry if you	a can't finish evo	erything-keep in 1	you should try to answer al nind that everyone else is or
f your work gets me	ssy, please clea	urly indicate you	ir final answer.	
	Problem	Your Score	Possible Points	
	1		15	
	2		15	
	3		18	
			10	
	4			
	4		7	
			7 10	
	5			
	5		10	

Getting started

- Create an account on the course web site:
 - http://15462.courses.cs.cmu.edu/spring2019/h

- Sign up for the course on Piazza
 - https://piazza.com/class/jqv79wkbxqz743

There is no textbook for this course, but see the course website for references (there are some excellent graphics textbooks, some completely online!)

COMPUTER GRAPHICS

Mon/Wed 1:30 - 3:00pm (GHC 4215) nstructors: Kayvon Fatahalian and Keenan Crane

Fall 2015 Schedule

ome	

Aug 31	Introduction
Sep 2	Drawing a Triangle (+ Introduction to Sampling) Assignment 1 out
Sep 7	No Class (Labor Day Holiday)
Sep 9	Coordinate Spaces and Transforms
Sep 14	Texture Mapping and Texture Filtering
Sep 16	The Rasterization Pipeline (+ How GPU's Work)
Sep 21	Introduction to Geometry Assignment 1 due Assignment 2 out

Assignments / Grading

(10%) Warm-up Math (P)Review

Written exercises on basic linear algebra and vector calc. (individually)

60%) Four programming assignments

- Four programming assignments
- Each worth 15% of overall course grade

(25%) Midterm / final

Both cover cumulative material seen so far

(5%) Class participation

In-class/website comments, other contributions to class

Late hand-in policy

Programming assignments

- Five late day points for the semester
- First three programming assignments only
- No more late points? 10% penalty per day
- No assignments will be accepted more than 3 days past the deadline

Cheating Policy

Let's keep it simple: if you are caught cheating, you will get a zero for the entire course (not just the assignment).

The course web site

We have no textbook for this class — the lecture slides and instructor/TA/ student discussions on the web are the primary course reference

subtended by an object. Could someone elaborate on that here?

Our philosophy

- We want a very active class: come to class, participate in the class, contribute to the web site
- **Challenging assignments (with tons of "going further"** opportunities: see what you can do!)
- Challenging exams (see what you can do!)
- Very reasonable grading (at least the instructors think so)

See you next time!

- Next time, we'll do a math review & preview
 - Linear algebra, vector calculus
 - Help make the rest of the course easier!

