
Computer Graphics 
CMU 15-462/662, Spring 2019

Lecture 1:

Course Intro: 
Welcome to Computer Graphics!



 CMU 15-462/662, Spring 2019

Hi!
Adrian Biagioli

Connor Lin

Nancy Pollard

Yuqiao Zeng



 CMU 15-462/662, Spring 2019

What is computer graphics?

com•put•er   graph•ics   /kəmˈpyo͞odər ˈɡrafiks/ n. 
The use of computers to synthesize and manipulate 
visual information.



 CMU 15-462/662, Spring 2019

Why visual information?

(Allan Ajifo)
(Petar Milošević)

About 30% of brain dedicated to visual processing...

...eyes are highest-bandwidth port into the head!



 CMU 15-462/662, Spring 2019

Humans are visual creatures!



 CMU 15-462/662, Spring 2019

History of visual depiction
Humans have always been visual creatures!

Indonesian cave painting (~38,000 BCE)



 CMU 15-462/662, Spring 2019

Visual technology: painting / illustration
Not purely representational: ideas, feelings, data, ...



 CMU 15-462/662, Spring 2019

Visual technology: carving / sculpture



 CMU 15-462/662, Spring 2019

Visual technology: photography / imaging
Processing of visual data no longer happening in the head!

Joseph Niépce, “View from the Window at Le Gras” (1826)



 CMU 15-462/662, Spring 2019

Visual technology: photography / imaging



 CMU 15-462/662, Spring 2019

Visual technology: digital imagery
Intersection of visual depiction & computation

Ivan Sutherland, “Sketchpad” (1963)



 CMU 15-462/662, Spring 2019

Visual technology: digital imagery



 CMU 15-462/662, Spring 2019

Visual technology: 3D fabrication
Create physical realization of digital shape

A.J. Herbert / 3M (1979)



 CMU 15-462/662, Spring 2019

Visual technology: 3D fabrication



 CMU 15-462/662, Spring 2019

Technologies for visual depiction
Drawing/painting/illustration (~40,000 BCE) 
Sculpture (~40,000 BCE) 
Photography (~1826) 
Digital Imagery (~1963) 
3D Fabrication (~1979)



 CMU 15-462/662, Spring 2019

Definition of Graphics, Revisited

com•put•er   graph•ics   /kəmˈpyo͞odər ˈɡrafiks/ n. 
The use of computers to synthesize and manipulate 
visual information.

Why only visual?



 CMU 15-462/662, Spring 2019

Graphics as Synthesis of Sensory Stimuli

com•put•er   graph•ics   /kəmˈpyo͞odər ˈɡrafiks/ n. 
The use of computers to synthesize and manipulate 
sensory information.

(sound) (touch)

(…What about taste? Smell?!)



 CMU 15-462/662, Spring 2019

Computer graphics is everywhere!



 CMU 15-462/662, Spring 2019

Entertainment (movies, games)



 CMU 15-462/662, Spring 2019

Entertainment
Not just cartoons!



 CMU 15-462/662, Spring 2019

Art and design



 CMU 15-462/662, Spring 2019

Industrial design



 CMU 15-462/662, Spring 2019

Computer aided engineering (CAE)



 CMU 15-462/662, Spring 2019

Architecture



 CMU 15-462/662, Spring 2019

Scientific/mathematical visualization



 CMU 15-462/662, Spring 2019

Medical/anatomical visualization



 CMU 15-462/662, Spring 2019

Navigation



 CMU 15-462/662, Spring 2019

Communication



 CMU 15-462/662, Spring 2019

Foundations of computer graphics
All these applications demand sophisticated theory & systems  
Theory 
- geometric representations 
- sampling theory 
- integration and optimization 
- radiometry 
- perception and color 
Systems 
- parallel, heterogeneous processing 
- graphics-specific programming languages



 CMU 15-462/662, Spring 2019

ACTIVITY: modeling and drawing a cube
Goal: generate a realistic drawing of a cube 
Key questions: 
- Modeling: how do we describe the cube? 
- Rendering: how do we then visualize this model?



 CMU 15-462/662, Spring 2019

ACTIVITY: modeling the cube
Suppose our cube is... 
- centered at the origin (0,0,0) 
- has dimensions 2x2x2 
- edges are aligned with x/y/z axes 
QUESTION: What are the coordinates of the cube vertices?

A: ( 1, 1, 1 )   E: ( 1, 1,-1 )
B: (-1, 1, 1 )   F: (-1, 1,-1 )
C: ( 1,-1, 1 )   G: ( 1,-1,-1 )
D: (-1,-1, 1 )   H: (-1,-1,-1 )

QUESTION: What about the edges?
AB, CD, EF, GH,
AC, BD, EG, FH,
AE, CG, BF, DH



 CMU 15-462/662, Spring 2019

ACTIVITY: drawing the cube
Now have a digital description of the cube:
VERTICES
A: ( 1, 1, 1 )   E: ( 1, 1,-1 )
B: (-1, 1, 1 )   F: (-1, 1,-1 )
C: ( 1,-1, 1 )   G: ( 1,-1,-1 )
D: (-1,-1, 1 )   H: (-1,-1,-1 )

How do we draw this 3D cube as a 2D (flat) image? 
Basic strategy: 
1. map 3D vertices to 2D points in the image 
2. connect 2D points with straight lines 
...Ok, but how?

EDGES

AB, CD, EF, GH,
AC, BD, EG, FH,
AE, CG, BF, DH



 CMU 15-462/662, Spring 2019

Perspective projection
Objects look smaller as they get further away (“perspective”) 
Why does this happen? 
Consider simple (“pinhole”) model of a camera:

2D image

3D object

camera



 CMU 15-462/662, Spring 2019

Perspective projection: side view
Where exactly does a point p = (x,y,z) end up on the image? 
Let’s call the image point q=(u,v)

p=(x,y,z)

q=(u,v) 3D object

im
ag

e



 CMU 15-462/662, Spring 2019

Perspective projection: side view
Where exactly does a point p = (x,y,z) end up on the image? 
Let’s call the image point q=(u,v) 
Notice two similar triangles: p=(x,y,z)

q=(u,v)

1
z

y

v 3D object

im
ag

e

Assume camera has unit size, origin is at pinhole c 
Then v/1 = y/z, i.e., vertical coordinate is just the slope y/z 
Likewise, horizontal coordinate is u=x/z

c



 CMU 15-462/662, Spring 2019

ACTIVITY: now draw it!
Need 12 volunteers 
- each person will draw one cube edge 
- assume camera is at c=(2,3,5) 
- convert (X,Y,Z) of both endpoints to (u,v): 

1. subtract camera c from vertex (X,Y,Z) to get (x,y,z) 
2. divide (x,y) by z to get (u,v)—write as a fraction 

- draw line between (u1,v1) and (u2,v2)

VERTICES
A: ( 1, 1, 1 )   E: ( 1, 1,-1 )
B: (-1, 1, 1 )   F: (-1, 1,-1 )
C: ( 1,-1, 1 )   G: ( 1,-1,-1 )
D: (-1,-1, 1 )   H: (-1,-1,-1 )

EDGES

AB, CD, EF, GH,
AC, BD, EG, FH,
AE, CG, BF, DH



 CMU 15-462/662, Spring 2019

ACTIVITY: output on graph paper

0 1
12

1
6

1
4

1
3

5
12

1
2

7
12

2
3

3
4

5
6

11
12

1
0

1
12

1
6

1
4

1
3

5
12

1
2

7
12

2
3

3
4

5
6

11
12

1



 CMU 15-462/662, Spring 2019

ACTIVITY: How did we do?

0 1
12

1
6

1
4

1
3

5
12

1
2

7
12

2
3

3
4

5
6

11
12

1
0

1
12

1
6

1
4

1
3

5
12

1
2

7
12

2
3

3
4

5
6

11
12

1

A: 1/4, 1/2
B: 3/4, 1/2
C: 1/4, 1
D: 3/4, 1
E: 1/6, 1/3
F: 1/2, 1/3
G: 1/6, 2/3
H: 1/2, 2/3

2D coordinates:



 CMU 15-462/662, Spring 2019

ACTIVITY: Previous year’s result



 CMU 15-462/662, Spring 2019

But wait… 
How do we draw lines on a computer?



 CMU 15-462/662, Spring 2019

Close up photo of pixels on a modern display



 CMU 15-462/662, Spring 2019

Output for a raster display
Common abstraction of a raster display: 
- Image represented as a 2D grid of “pixels” (picture elements)  ** 
- Each pixel can can take on a unique color value

** We will strongly challenge this notion of a pixel “as a little square” soon enough. 
      But let’s go with it for now. ;-)



 CMU 15-462/662, Spring 2019

What pixels should we color in to depict a line?
“Rasterization”: process of converting a continuous object to a discrete 
representation on a raster grid (pixel grid) 



 CMU 15-462/662, Spring 2019

What pixels should we color in to depict a line?

Light up all pixels intersected by the line?



 CMU 15-462/662, Spring 2019

What pixels should we color in to depict a line?
Diamond rule (used by modern GPUs): 

light up pixel if line passes through associated diamond 



 CMU 15-462/662, Spring 2019

What pixels should we color in to depict a line?
Is there a right answer? 

(consider a drawing a “line” with thickness) 



 CMU 15-462/662, Spring 2019

How do we find the pixels satisfying a 
chosen rasterization rule?

Could check every single pixel in the image to see if it meets 
the condition... 

- O(n2) pixels in image vs. at most O(n) “lit up” pixels 

- must be able to do better! (e.g., work proportional to 
number of pixels in the drawing of the line) 



 CMU 15-462/662, Spring 2019

Incremental line rasterization
Let’s say a line is represented with integer endpoints: (u1,v1), (u2,v2) 
Slope of line: s = (v2-v1) / (u2-u1) 
Consider a very easy special case: 
- u1 < u2, v1 < v2 (line points toward upper-right) 
- 0 < s < 1 (more change in x than y)

v = v1;
for( u=u1; u<=u2; u++ )
{
   v += s;
   draw( u, round(v) )
}

Common optimization: rewrite algorithm to use only 
integer arithmetic (Bresenham algorithm)

u1 u2

v1

v2

Assume integer coordinates 
are at pixel centers

(u1,v1)

(u2,v2)



 CMU 15-462/662, Spring 2019

Our line drawing!

0 1
12

1
6

1
4

1
3

5
12

1
2

7
12

2
3

3
4

5
6

11
12

1
0

1
12

1
6

1
4

1
3

5
12

1
2

7
12

2
3

3
4

5
6

11
12

1

A: 1/4, 1/2
B: 3/4, 1/2
C: 1/4, 1
D: 3/4, 1
E: 1/6, 1/3
F: 1/2, 1/3
G: 1/6, 2/3
H: 1/2, 2/3

2D coordinates:



 CMU 15-462/662, Spring 2019

We just rendered a simple line drawing of a cube. 

But to render more realistic pictures 
(or animations) we need a much richer model 

of the world. 

surfaces 
motion 

materials 
lights 

cameras



 CMU 15-462/662, Spring 2019

2D shapes

patches may overlap a color sample so depth samples from differ-
ent patches always compare with the latter patch in render order
“winning”.

Prior to rendering any set of patches, a depth clear to zero is neces-
sary to reset the depth buffer. This could be done with a “cover” op-
eration that simply zeros the depth buffer (without modifying other
buffers) or with a scissored depth buffer clear.

Once the render order issues are resolved, color shading is a matter
of bicubic interpolation [Sun et al. 2007] in the TES.

This is a lot of complexity to match the PDF specification’s patch
rendering order. Certainly if the hardware’s tessellation generator
simply guaranteed an order consistent with the PDF specification,
even at the cost of some less optimal hardware efficiency, rendering
PDF gradient meshes would be much more straightforward.

Another option is detecting via CPU preprocessing of the patch
mesh whether or not actual mesh overlaps are present [Randria-
narivony and Brunnett 2004]. When not present, gradient mesh
rendering could be much more straightforward and efficient. In
practice, we know overlaps are rare in real gradient mesh content.

Coarse Level-of-detail Control Graphics hardware tessellation
has a limited maximum level-of-detail for tessellation. When the
level-of-detail is clamped to a hardware limit for tessellation, tes-
sellation artifacts may arise. We monitor the relative size of tes-
sellated patches such that their maximum level-of-detail does not
grossly exceed the scale of two or three pixels in window space.
If this happens, patches need to be subdivided manually to ensure
the patch mesh avoids objectionable tessellation artifacts. Care is
necessary to maintain a water-tight subdivided patch mesh. This is
done by ensuring exactly matching level-of-detail computations on
mutual edges of adjacent patches.

8 Comparing GPU versus CPU Rendering

Our contributions for GPU-acceleration are best understood in con-
trast with Illustrator’s pre-existing CPU rendering approach. All
but a cursory description of Illustrator’s CPU rendering approach is
beyond the scope of this paper. Illustrator’s CPU rendering closely
follows the PDF standard [Adobe Systems 2008]. AGM’s CPU
renderer relies on a robust, expertly-tuned, but reasonably conven-
tional active edge list algorithm [Foley et al. 1990] for rasterizing
arbitrary paths including Bézier segments [Turner 2007]. Table 1
lists the differences between the CPU and GPU approaches in orga-
nizing the framebuffer storage for rendering. Table 2 lists the ways
rendering is different between the CPU and GPU approaches.

9 Performance

We benchmarked our GPU-accelerated rendering mode against
AGM’s CPU-based renderer on six Illustrator documents pictured
in Figure 10. We selected these scenes for their availability, artistic
content, and complexity. Table 3 quantitatively summarizes each
scene’s complexity. We consider these scenes representative of the
kind of complex artwork we wish to encourage by making its au-
thoring more interactive.

9.1 Benchmarking RGB Artwork

Table 4 presents our benchmarking results for RGB color model
rendering. Our benchmarking method executes a script that zooms
and pans over the content to mimic the kind of fast view changes an

(a) WF BambooScene.ai

(b) archerfish.ai (c) Blue Mirror.ai

(d) whale2.ai

(e) Tropical Reef.ai

(f) bigBlend2.ai

Figure 10: Challenging Illustrator artwork for benchmarking.

146:10        •        V. Batra et al.

ACM Transactions on Graphics, Vol. 34, No. 4, Article 146, Publication Date: August 2015

[Source: Batra 2017]



 CMU 15-462/662, Spring 2019

(Stanislav Orekhov)

Complex 3D surfaces

[Kaldor 2008]



 CMU 15-462/662, Spring 2019

Modeling 
material properties

[Jakob 2014]

[Wann Jensen 2001]

[Zhao 2013]



 CMU 15-462/662, Spring 2019

Realistic lighting environments 
Up, (Pixar 2009)



 CMU 15-462/662, Spring 2019

Realistic lighting environments 
Toy Story 3 (Pixar 2010)



 CMU 15-462/662, Spring 2019

Realistic lighting environments 
Big Hero 6 (Disney 2014)



 CMU 15-462/662, Spring 2019

This image is rendered in real-time on a modern GPU

Unreal Engine Kite Demo (Epic Games 2015)



 CMU 15-462/662, Spring 2019

[Mirror’s Edge 2008]

So is this.



 CMU 15-462/662, Spring 2019

Animation: modeling motion

https://www.youtube.com/watch?v=6G3O60o5U7w

Luxo Jr. (Pixar 1986)

https://www.youtube.com/watch?v=6G3O60o5U7w


 CMU 15-462/662, Spring 2019

Physically-based simulation of motion

https://www.youtube.com/watch?v=tT81VPk_ukU [James 2004]

https://www.youtube.com/watch?v=tT81VPk_ukU


 CMU 15-462/662, Spring 2019

Course Logistics



 CMU 15-462/662, Spring 2019

About this course
A broad overview of major topics and techniques in computer 
graphics: geometry, rendering, animation, imaging 

Outline: 
- Focus on fundamental data structures and algorithms that 

are reused across all areas of graphics 
- Assignments on: 

- Rasterization 
- Geometric Modeling 
- Photorealistic Rendering 
- Animation 

- In-class midterm/final



 CMU 15-462/662, Spring 2019

Assignment 0: Math (P)Review



 CMU 15-462/662, Spring 2019

Assignment 1: Rasterization



 CMU 15-462/662, Spring 2019

Assignment 2: Geometric Modeling



 CMU 15-462/662, Spring 2019

Assignment 3: Photorealistic Rendering



 CMU 15-462/662, Spring 2019

Assignment 4: Animation

(cribbed from Alec Jacobson)



 CMU 15-462/662, Spring 2019

Midterm / Final

Both cover cumulative material seen so far 
In-class, proctored exam 
Can bring one sticky note (both sides) w/ any information on it



 CMU 15-462/662, Spring 2019

Getting started

Create an account on the course web site: 
http://15462.courses.cs.cmu.edu/spring2019/home 

Sign up for the course on Piazza 
https://piazza.com/class/jqv79wkbxqz743 

There is no textbook for this course, but see the course website for references 
(there are some excellent graphics textbooks, some completely online!)

http://15462.courses.cs.cmu.edu/spring2019/home


 CMU 15-462/662, Spring 2019

Assignments / Grading
(10%) Warm-up Math (P)Review 
- Written exercises on basic linear algebra and vector calc. (individually) 

(60%) Four programming assignments 
- Four programming assignments 
- Each worth 15% of overall course grade 

(25%) Midterm / final 
- Both cover cumulative material seen so far 

(5%) Class participation 
- In-class/website comments, other contributions to class



 CMU 15-462/662, Spring 2019

Late hand-in policy

Programming assignments 
- Five late day points for the semester 
- First three programming assignments only 
- No more late points? 10% penalty per day 
- No assignments will be accepted more than 3 days past the deadline



 CMU 15-462/662, Spring 2019

Cheating Policy

Let’s keep it simple: if you are caught cheating, you will 
get a zero for the entire course (not just the assignment).



 CMU 15-462/662, Spring 2019

The course web site
We have no textbook for this class —the lecture slides and instructor/TA/
student discussions on the web are the primary course reference

Slide comments and discussion

“Add private note” button: 
You can add notes to yourself 
about this slide here.



 CMU 15-462/662, Spring 2019

Our philosophy

We want a very active class: come to class, participate in the 
class, contribute to the web site  

Challenging assignments (with tons of “going further” 
opportunities: see what you can do!) 

Challenging exams (see what you can do!) 

Very reasonable grading (at least the instructors think so) 



 CMU 15-462/662, Spring 2019

Next time, we’ll do a math review & preview 
- Linear algebra, vector calculus 
- Help make the rest of the course easier!

See you next time!


