## Lecture 1:

# Course Intro: Welcome to Computer Graphics! 

## Computer Graphics

CMU 15-462/662, Spring 2019

# Hi! 



## Nancy Pollard



## Connor Lin

## Yuqiao Zeng

## What is computer graphics?

com•put•er graph•ics /kəm'pyoodər 'grafiks/n. The use of computers to synthesize and manipulate visual information.

## Why visual information?

About 30\% of brain dedicated to visual processing...

...eyes are highest-bandwidth port into the head!

## Humans are visual creatures!

## History of visual depiction

## ■ Humans have always been visual creatures!



Indonesian cave painting (~38,000 BCE)

## Visual technology: painting / illustration

## - Not purely representational: ideas, feelings, data, ...



## Visual technology: carving / sculpture



## Visual technology: photography / imaging

- Processing of visual data no longer happening in the head!


Joseph Niépce,"View from the Window at Le Gras" (1826)

## Visual technology: photography / imaging



## Visual technology: digital imagery

- Intersection of visual depiction \& computation


Ivan Sutherland, "Sketchpad" (1963)

## Visual technology: digital imagery



## Visual technology: 3D fabrication

## - Create physical realization of digital shape


A.J. Herbert / 3M (1979)

## Visual technology: 3D fabrication



## Technologies for visual depiction

- Drawing/painting/illustration ( $\sim 40,000$ BCE)
- Sculpture ( $\sim 40,000 \mathrm{BCE}$ )
- Photography (~1826) Digital Imagery (~1963)
3D Fabrication (~1979)



## Definition of Graphics, Revisited

com•put•er graph•ics /kəm'pyoodər 'grafiks/n. The use of computers to synthesize and manipulate visual information.

Why only visual?

## Graphics as Synthesis of Sensory Stimuli


(sound)

(touch)
com•put•er graph•ics /kəm'pyoodər 'grafiks/n. The use of computers to synthesize and manipulate sensory information.
(...What about taste? Smell?!)

## Computer graphics is everywhere!

## Entertainment (movies, games)



## Entertainment

■ Not just cartoons!

## Art and design



## Industrial design



## Computer aided engineering (CAE)



## Architecture



## Scientific/mathematical visualization



## Medical/anatomical visualization



## Navigation



## Communication

## im



## OUR STORY



## Foundations of computer graphics

- All these applications demand sophisticated theory \& systems
- Theory
- geometric representations
- sampling theory
- integration and optimization
- radiometry
- perception and color
- Systems
- parallel, heterogeneous processing
- graphics-specific programming languages


## ACTIVITY: modeling and drawing a cube

- Goal: generate a realistic drawing of a cube
- Key questions:
- Modeling: how do we describe the cube?
- Rendering: how do we then visualize this model?


## ACTIVITY: modeling the cube

- Suppose our cube is...
- centered at the origin $(0,0,0)$
- has dimensions $2 \times 2 \times 2$
- edges are aligned with $x / y / z$ axes
- QUESTION: What are the coordinates of the cube vertices?


■ QUESTION: What about the edges?
$A B, C D, E F, G H$,
$A C, B D, E G, F H$,
$A E, C G, B F, D H$

## ACTIVITY: drawing the cube

- Now have a digital description of the cube:

| VERTICES |  | EDGES |
| :--- | :--- | :--- | :--- |
| A: $(1,1,1)$ | $\mathrm{E}:(1,1,-1)$ |  |
| $\mathrm{B}:(-1,1,1)$ | $\mathrm{F}:(-1,1,-1)$ | $\mathrm{AB}, \mathrm{CD}, \mathrm{EF}, \mathrm{GH}$, |
| $\mathrm{C}:(1,-1,1)$ | $\mathrm{G}:(1,-1,-1)$ | $\mathrm{AC}, \mathrm{BD}, \mathrm{EG}, \mathrm{FH}$, |
| $\mathrm{D}:(-1,-1,1)$ | $\mathrm{H}:(-1,-1,-1)$ | $\mathrm{AE}, \mathrm{CG}, \mathrm{BF}, \mathrm{DH}$ |

- How do we draw this 3D cube as a 2D (flat) image?
- Basic strategy:

1. map 3D vertices to 2D points in the image
2. connect 2D points with straight lines

■ ...Ok, but how?

## Perspective projection

- Objects look smaller as they get further away ("perspective")

■ Why does this happen?
■ Consider simple ("pinhole") model of a camera:


## Perspective projection: side view

- Where exactly does a point $p=(x, y, z)$ end up on the image?
- Let's call the image point $\mathrm{q}=(\mathrm{u}, \mathrm{v})$



## Perspective projection: side view

- Where exactly does a point $p=(x, y, z)$ end up on the image?
- Let's call the image point $\mathbf{q}=(\mathbf{u}, \mathbf{v})$
- Notice two similar triangles:



## 3D object

- Assume camera has unit size, origin is at pinhole c

■ Then $\mathrm{v} / 1=\mathrm{y} / \mathrm{z}$, i.e., vertical coordinate is just the slope $\mathrm{y} / \mathrm{z}$
■ Likewise, horizontal coordinate is $\mathrm{u}=\mathrm{x} / \mathbf{z}$

## ACTIVITY: now draw it!

- Need 12 volunteers
- each person will draw one cube edge
- assume camera is at $c=(2,3,5)$
- convert ( $X, Y, Z$ ) of both endpoints to ( $u, v$ ):

1. subtract camera c from vertex $(X, Y, Z)$ to get $(x, y, z)$
2. divide ( $x, y$ ) by $z$ to get ( $u, v$ ) -write as a fraction

- draw line between (u1,v1) and (u2,v2)

VERTICES

```
A: ( 1, 1, 1 ) E: ( 1, 1,-1 )
B: (-1, 1, 1 ) F: (-1, 1,-1 )
C: ( 1,-1, 1 ) G: ( 1,-1,-1 )
D: (-1,-1, 1 ) H: (-1,-1,-1 )
```

EDGES
$A B, C D, E F, G H$, $A C, B D, E G, F H$, AE, CG, BF, DH

## ACTIVITY: output on graph paper



## ACTIVITY: How did we do?



2D coordinates:
A: $1 / 4,1 / 2$
B: $3 / 4,1 / 2$
C: $1 / 4,1$
D: 3/4, 1
E: $1 / 6,1 / 3$
F: 1/2, 1/3
G: 1/6, $2 / 3$
H: 1/2, 2/3

## ACTIVITY: Previous year's result



## But wait... <br> How do we draw lines on a computer?

## Close up photo of pixels on a modern display

## Output for a raster display

- Common abstraction of a raster display:
- Image represented as a 2D grid of "pixels" (picture elements) **
- Each pixel can can take on a unique color value

** We will strongly challenge this notion of a pixel"as a little square" soon enough.
But let's go with it for now. ;-)


## What pixels should we color in to depict a line?

"Rasterization": process of converting a continuous object to a discrete representation on a raster grid (pixel grid)


## What pixels should we color in to depict a line?

Light up all pixels intersected by the line?


## What pixels should we color in to depict a line?

Diamond rule (used by modern GPUs): light up pixel if line passes through associated diamond


## What pixels should we color in to depict a line?

Is there a right answer?
(consider a drawing a "line" with thickness)


## How do we find the pixels satisfying a chosen rasterization rule?

- Could check every single pixel in the image to see if it meets the condition...
- O(n²) pixels in image vs. at most O(n) "lit up" pixels
- must be able to do better! (e.g., work proportional to number of pixels in the drawing of the line)


## Incremental line rasterization

- Let's say a line is represented with integer endpoints: (u1,v1), (u2,v2)
- Slope of line: $s=(v 2-v 1) /(u 2-u 1)$
- Consider a very easy special case:
- u1 < u2, v1 < v2 (line points toward upper-right)
- $0<s<1$ (more change in $x$ than $y$ )
$\mathrm{v}=\mathrm{v} 1$;
for ( u=u1; u<=u2; u++ )
\{
$\mathrm{v}+=\mathrm{s}$;
draw( $u$, round(v) )
\}


Common optimization: rewrite algorithm to use only integer arithmetic (Bresenham algorithm)

## Our line drawing!



2D coordinates:
A: 1/4, 1/2
B: $3 / 4,1 / 2$
C: $1 / 4,1$
D: 3/4, 1
E: $1 / 6,1 / 3$
F: 1/2, 1/3
G: 1/6, $2 / 3$
H: 1/2, 2/3

# We just rendered a simple line drawing of a cube. 

## But to render more realistic pictures (or animations) we need a much richer model of the world.

## surfaces

motion materials
lights
cameras

## 2 D shapes


[Source: Batra 2017]

## Complex 3D surfaces




## Realistic lighting environments

## Realistic lighting environments

Toy Story 3 (Pixar 2010)


## Realistic lighting environments

Big Hero 6 (Disney 2014)

## This image is rendered in real-time on a modern GPU



## So is this.



## Animation: modeling motion



## Physically-based simulation of motion


https://www.youtube.com/watch?v=tT81VPk ukU

## Course Logistics

## About this course

- A broad overview of major topics and techniques in computer graphics: geometry, rendering, animation, imaging

■ Outline:

- Focus on fundamental data structures and algorithms that are reused across all areas of graphics
- Assignments on:
- Rasterization
- Geometric Modeling
- Photorealistic Rendering
- Animation
- In-class midterm/final


## Assignment 0: Math (P)Review





## Assignment 1: Rasterization



## Assignment 2: Geometric Modeling



## Assignment 3: Photorealistic Rendering



## Assignment 4: Animation



## Midterm / Final

- Both cover cumulative material seen so far
- In-class, proctored exam
- Can bring one sticky note (both sides) w/ any information on it



## Getting started

- Create an account on the course web site:

■ http://15462.courses.cs.cmu.edu/spring2019/home


- Sign up for the course on Piazza

■ https://piazza.com/class/jqv79wkbxqz743

- There is no textbook for this course, but see the course website for references (there are some excellent graphics textbooks, some completely online!)


## Assignments / Grading <br> ■ (10\%) Warm-up Math (P)Review

- Written exercises on basic linear algebra and vector calc. (individually)
- (60\%) Four programming assignments
- Four programming assignments
- Each worth $15 \%$ of overall course grade
- (25\%) Midterm / final
- Both cover cumulative material seen so far
- (5\%) Class participation
- In-class/website comments, other contributions to class


## Late hand-in policy

## - Programming assignments

- Five late day points for the semester
- First three programming assignments only
- No more late points? 10\% penalty per day
- No assignments will be accepted more than 3 days past the deadline


## Cheating Policy



Let's keep it simple: if you are caught cheating, you will get a zero for the entire course (not just the assignment).

## The course web site

We have no textbook for this class -the lecture slides and instructor/TA/ student discussions on the web are the primary course reference

## Perspective projection

- Objects look smaller as they get further away ("perspective")
- Why does this happen?
- Consider simple ("pinhole") model of a camera:

"Add private note" button:
You can add notes to yourself about this slide here.

Slide comments and discussion

## Our philosophy

- We want a very active class: come to class, participate in the class, contribute to the web site
- Challenging assignments (with tons of "going further" opportunities: see what you can do!)
- Challenging exams (see what you can do!)
- Very reasonable grading (at least the instructors think so)


## See you next time!

- Next time, we'll do a math review \& preview
- Linear algebra, vector calculus
- Help make the rest of the course easier!


