
CMU 15-462

Wrangling Scotty3D

CMU 15-462

Goals Today

‣ Set up a C++ Environment

‣ CLion, Xcode, Visual Studio

‣ Whirlwind crash course of C++, coming from C

‣ Debugging Multithreaded C++

‣ Using Profilers to determine performance issues

But most of all to answer your questions!

CMU 15-462

Getting Scotty3D Up and
Running

CMU 15-462

The Basics
‣ Download the base code from

https://github.com/cmu462/Scotty3D

‣ Click “Clone or Download”, then “Download Zip”

‣ Note: if you pulled the Scotty3D code before Monday evening,
your base code is slightly out of date. More later...

‣ On a Unix machine (Linux / Mac), you can compile from the
command line directly. From Scotty3D root directory:

mkdir build
cd build

make .. && make

‣ Run with ./scotty3d ../media/<...>.dae

https://github.com/cmu462/Scotty3D

CMU 15-462

Warning…

We will be grading your work on the Andrew Unix cluster.

If your code doesn’t compile on Linux, or relies on undefined
behavior that is different on the Linux machines, then you will

not get credit!

Make sure to test your code on the Linux machines well
before the deadline. Word of Warning: the Visual Studio

compiler is unusually lenient regarding non-standard C++

CMU 15-462

Using SSH with Andrew Unix Machines

‣ If you try to test your code while connected to the Unix
cluster via SSH, you will get an error. This is because by
default SSH has no way of streaming Scotty3D to you.

‣ Solution: X Forwarding. (“X” is the window system common on Linux. One of X’s

features is that you can stream windows via SSH to other computers, with a bit of lag).

‣ MacOS/Linux: ssh -Y andrewid@unix.andrew.cmu.edu

‣ On MacOS, you need to install XQuartz first (Mac
implementation of X): https://www.xquartz.org

https://www.xquartz.org

CMU 15-462

X Forwarding on Windows
‣ Windows has no native SSH client.

‣ Option 1: Use MobaXterm to SSH in:

• Download at https://
mobaxterm.mobatek.net

• Toggle on the X Server button and
make sure “X11-Forwarding” is
checked in your Session settings

‣ Option 2: Use PuTTY to SSH in:

• Download at https://putty.org

• Guide: http://courses.cms.caltech.edu/
cs11/misc/xwindows.html

https://mobaxterm.mobatek.net
https://mobaxterm.mobatek.net
https://putty.org
http://courses.cms.caltech.edu/cs11/misc/xwindows.html
http://courses.cms.caltech.edu/cs11/misc/xwindows.html
http://courses.cms.caltech.edu/cs11/misc/xwindows.html

CMU 15-462

Setting up a C++
Development Environment

CMU 15-462

Why use an integrated development
environment (IDE)?
‣ Autocomplete: C++ code tends to have complicated class

definitions with many member functions and variables.
Autocompletion is essential so you don’t have to trawl
through header files

‣ Free Debugging: In an IDE, when your code crashes the
editor will jump to the line that had issues

‣ Easier Navigation and Iteration: Not having to jump in
and out of vim, keyboard shortcuts, tabs, etc add up to
speed your development time.

‣ Much more: Themes, intelligent syntax highlighting,
linting (code formatting), tons of shortcuts to speed
development

CMU 15-462

Windows/Mac/Linux: CLion
‣ Cross Platform IDE for C/C++

Development.

‣ Free for students with a
@andrew.cmu.edu email: 
https://www.jetbrains.com/student/

‣ Simply open the Scotty3D root directory,
it should detect the CMake project out of
the box

‣ To add command line arguments click on
the configuration dropdown on the top
right, then Click Debug. Then open it
again and click “Edit Configurations…”

https://www.jetbrains.com/student/

CMU 15-462

For Mac Users: XCode
‣ Xcode is Apple’s IDE for the Mac. It supports C++,

Objective-C, and Swift development, and has some editors
specific to building Mac and iOS apps.

‣ Download free from the Mac App Store (search “Xcode”)

‣ CMake can create Xcode projects for you out of the box.

‣ From the root directory of Scotty3D:

$ mkdir build
$ cd build
$ cmake -G Xcode ..

‣ Now double click on Scotty3d.xcodeproj to open in Xcode

CMU 15-462

For Mac Users: XCode
‣ To Set Command Line

arguments:

‣ Click on the “Scheme”
ALL_BUILD at the top of the
screen, then click “Edit
Scheme”

‣ Navigate to “Run” on the left,
then “Arguments”, then add
the model you want to
inspect, like  
“../media/meshedit/cow.dae”

‣ Click “Close”

‣ To build, click on the Arrow on
the top Left of the window.

CMU 15-462

For Mac Users: XCode
‣ There’s a chance that Xcode can’t link the project and gives you lip

about the “GLEW” library. If this happens, remove the -lglew
compiler flag from your build settings:

‣ Context: GLEW is a support library
for OpenGL that is built into
MacOS as a system library.

‣ Click on the project on the left
side of the screen

‣ Change the thing you are editing
to “scotty3d” target

‣ Search “glew”

‣ Double click on each entry, find  
“-lglew”, and delete it.

CMU 15-462

For Windows users: Visual Studio
‣ Visual Studio is an industry-standard development

environment for C++ and .NET (C# / F# / VB etc) code

‣ “Windows version of XCode”

‣ Download Community Edition (Free):  
https://visualstudio.microsoft.com

• Install "Desktop Development for C++" module

‣ Note: Visual Studio Code is different — more similar to
Sublime Text or Atom than an IDE. Don’t download this,
it won’t work!

‣ Don’t get the Mac version of VS—No C++ support on
MacOS as of now

https://visualstudio.microsoft.com

CMU 15-462

Setting up Visual Studio 2017 (Windows)

‣ Install the latest version of CMake on Windows:  
https://cmake.org/download/

‣ Make sure you select "Add CMake to the System PATH
for all users" during installation.

‣ If you forgot to do this, see  
https://www.architectryan.com/2018/03/17/add-to-the-path-on-
windows-10/

‣ Double click the file runcmake_win.bat at the root
directory of Scotty3D

‣ You should only need to do this once.

‣ This will create a Visual Studio solution file for you

https://cmake.org/download/
https://www.architectryan.com/2018/03/17/add-to-the-path-on-windows-10/
https://www.architectryan.com/2018/03/17/add-to-the-path-on-windows-10/

CMU 15-462

Setting up Visual Studio 2017 (Windows)
‣ Double click on Scotty3D.sln inside the
build folder

‣ Visual Studio will open with the project

‣ Navigate the files you need to edit via the
Solution Explorer to the right

‣ Visual Studio should already have built-in
autocomplete and debugging features! (Yay)

‣ Change the "Solution Configuration" from
"Debug" to "RelWithDebInfo" or else
Scotty3D will run slow as molasses

CMU 15-462

Setting up Visual Studio 2017 (Windows)
‣ CMake workaround for VS2017:

‣ Right click on the Target ALL_BUILD in the Solution
explorer > Click Properties

‣ Go to the Debugging tab

‣ Open the "Command" Dropdown and click "<Edit...>"

‣ Change from "$(TargetPath)" to "$(TargetDir)\scotty3d.exe"

‣ Click OK > Click Apply
‣ There is a build error if you don't do this!

CMU 15-462

Setting up Visual Studio 2017 (Windows)

‣ To change command line arguments, right click on
ALL_BUILD > Click Properties > Debugging tab

‣ Now you can edit "Command Line Arguments" in the form
"../media/meshedit/cow.dae" (for example)

‣ To run hit F5 or navigate to Debug > Start Debugging

CMU 15-462

C++ for C
Programmers

CMU 15-462

The Basics

‣ C++ is a superset of C: All C code is valid C++ Code

‣ (with few exceptions-but the basics all work correctly)

‣ Even though you can write C-style code, it is very hard to
write scalable software without higher-level constructs

‣ Blog series about migrating from C to C++:

‣ https://ds9a.nl/articles/posts/c++-1/

https://ds9a.nl/articles/posts/c++-1/

CMU 15-462

Major Differences
‣ Use new instead of malloc, delete instead of free:

// C style
int N = 42;  
int *i = malloc(sizeof(int));  
int *arr = malloc(
 sizeof(int) * N);  
// ...  
free(i);  
free(arr);  

// C++
int N = 42;  
int *i = new int;  
int *arr = new int[N];  
 
// ...  
delete i;
// delete[] for arrays  
delete[] arr;

CMU 15-462

Major Differences
‣ C++ adds namespaces. Use the using keyword to bring a namespace

"in-scope," or use the "scope resolution operator" (::) to zoom in to a
namespace

‣ Motivation: now you can have 2 functions (potentially from 2
different libraries) with the same name

‣ Note, we are ignoring the different #includes here

// C style
int cmp(const void* a,  

const void* b) { /* ... */ }
int *arr; // initialized
int arrlen;

qsort(i, arrlen,
sizeof(int), &cmp);  

// C++
int *arr; // initialized
int arrlen;

std::sort(arr, arr + arrlen);

OR

using std;
sort(arr, arr + arrlen);

CMU 15-462

Major Differences
‣ Strings: use std::string instead of char * arrays.

‣ Console output: Use std::cout and the "stream
operator" (<<) (new in C++). No more memorizing printf
keywords!

// C style
int i = 15462;
char *str = "Hello, World.";
// segfault! read only memory  
// str[12] = '!';

printf("%d It's %s.\n", i,
str);
// Prints:  
// Hello, World. It's 15462.

// C++
int i = 15462;
std::string str =

"Hello, World."
str[12] = '!'; // fine!

std::cout << str << " It's "
 << i << ‘\n';
// Prints:  
// Hello, World! It's 15462

CMU 15-462

Major Differences
‣ By the way: You can still use printf if you want! Convert to

a C-style string using std::string::c_str()

// C++
int i = 15462;
std::string str = "Hello, World."
str[12] = '!'; // fine!

printf("Hey! %s\n", str.c_str());

CMU 15-462

Major Differences
‣ Classes allow you to modularize your code much more

effectively 
(source for below: https://ds9a.nl/articles/posts/cpp-2/)

// C style
struct Circle
{

int x, y;
int size;
Canvas* canvas;
...

};

void setCanvas(Circle* circle, Canvas* canvas);
void positionCircle(Circle* circle,
 int x, int y);
void paintCircle(Circle* circle);

// C++
class Circle
{
public:

Circle(Canvas* canvas); // "constructor"
void position(int x, int y);
void paint();

private:
int d_x, d_y;
int d_size;
Canvas* d_canvas;

};

void Circle::paint()
{

d_canvas->drawCircle(d_x, d_y, d_size);
}

https://ds9a.nl/articles/posts/cpp-2/

CMU 15-462

Another Example: Iterators in Scotty3D
‣ From halfEdgeMesh.h:

‣ Uses an std::list (a linked list) iterator (which itself is an std::iterator)
to “simulate” pointers

‣ https://en.cppreference.com/w/cpp/iterator/iterator

‣ https://en.cppreference.com/w/cpp/container/list

‣ Because of operator overloading in C++, “dereferencing” an iterator
with * works as you would expect.

https://en.cppreference.com/w/cpp/iterator/iterator
https://en.cppreference.com/w/cpp/container/list

CMU 15-462

Debugging /
Profiling C++ Code

CMU 15-462

Setting Breakpoints
‣ In all three of the editors discussed today, you can set

breakpoints in your code. When Scotty3D is run and the
breakpoint is hit, the application will pause and you can
step through the code / all variables in your IDE.

‣ Not enough time today to go through every feature of
every IDE — but there are plenty of resource online!

‣ In all three editors we talked about, you can set a
breakpoint by clicking to the left of each line.

CMU 15-462

Profiling: Finding performance issues

‣ A profiler is used to determine what functions are taking the most
time to execute in your program.

‣ We don’t grade for performance in this class, but profilers can be
very useful to determine where an infinite loop is happening.

‣ To profile with XCode, use the  
“Instruments” companion app (which  
should be installed alongside XCode)

‣ Apple Talk “Using time profiler with Instruments:” 
https://developer.apple.com/videos/play/wwdc2016/418/

‣ Visual Studio Profiler Documentation: 
https://docs.microsoft.com/en-us/visualstudio/profiling

‣ CLion Profiler Documentation: 
https://www.jetbrains.com/help/clion/cpu-profiler.html

https://developer.apple.com/videos/play/wwdc2016/418/
https://docs.microsoft.com/en-us/visualstudio/profiling
https://www.jetbrains.com/help/clion/cpu-profiler.html

CMU 15-462

Example: Using MacOS Instruments
to find an infinite loop

‣ I was naughty and added an infinite loop to my code: 
 

‣ I want to pinpoint where the problem is. While
running the program, I’ll open Instruments and
select “Time Profiler”. Then I can select scotty3d
from the list of running programs, and I can clearly
see the problem in the heaviest stack trace:

CMU 15-462

Scotty3D Base Code Update

‣ If you pulled Scotty3D Base code before Monday evening,
you are missing some important updates to Scotty3D’s UI.

‣ meshEdit.cpp was not affected, so you can safely replace
every other file with the updated ones on Github.

‣ See this link for details on what was changed: 
https://github.com/cmu462/Scotty3D/commit/
e399f6098c6afd51512ca3a3f9452a9c28b250fa

‣ If you’re having issues, make a Piazza post

https://github.com/cmu462/Scotty3D/commit/e399f6098c6afd51512ca3a3f9452a9c28b250fa
https://github.com/cmu462/Scotty3D/commit/e399f6098c6afd51512ca3a3f9452a9c28b250fa

