
Computer Graphics
CMU 15-462/662

Assignment 3
Overview

CMU 15-462/662

Logistics
‣ Midterms have been graded, collect them in class today

‣ Each page (not problem) has been graded by a different
TA. Contact the individual TA for regrade requests.

- Page 1: Yuqiao

- Page 2: Connor

- Page 3: Zach

- Page 4: Adrian

‣ Mid-semester letter grades were calculated based on
Assignment 0.0, Assignment 0.5, DrawSVG, and the
midterm exam.

CMU 15-462/662

Assignment 3: Pathtracer
‣ Extension of the work you did in MeshEdit

- Now that we can create meshes with Scotty3D, it’s time to build
a renderer that computes a realistic rendering of the scene

‣ Warning: Pathtracer will be difficult for different reasons than
MeshEdit was difficult!

- In MeshEdit we aimed to maintain the invariants of a complex
data structure

๏ Errors are more “obvious” and result in crashes/hangs

- In PathTracer, we aim to maintain physical accuracy, but we
aren’t changing the scene at all

๏ Errors are related to math or theory and the symptoms are
usually visual and may not be obvious

CMU 15-462/662

Example Scotty3d Output

CMU 15-462/662

The Big Picture

CMU 15-462/662

End Goal
‣ You are tasked with building a pathtracer, which simulates rays of

light bouncing around your scene and eventually “into the camera”

- (Small detail: we will actually “start” our rays at the camera
origin and bounce it around the scene until we hit a light)

- Over the next few weeks we will dive into the physics of Color,
Radiometry, the “Rendering Equation,” and more details that are
important in designing a pathtracer

- Up to this point you are ready to complete the assignment up to
+ including Task 4 (shadow rays).

CMU 15-462/662

Overview of Tasks
‣ Task 1: Generate the initial  

rays to send from the camera

‣ Task 2: Compute ray-primitive intersection

- You need to support triangles and spheres 

‣ Task 3: Accelerate ray-scene  
intersection queries using a Bounding  
Volume Hierarchy (BVH)

‣ Task 4: Implement direct lighting  
with shadows

CMU 15-462/662

Overview of Tasks
‣ Task 5: Support indirect

illumination via path tracing 
 
 

‣ Task 6: Support non-diffuse
materials (mirror, glass) 
 
 

‣ Task 7: Support environment
lighting via a texture

CMU 15-462/662

Camera Rays

CMU 15-462/662

Recall Lecture 1: Perspective Projection

‣ In lecture 1 we considered the pinhole model for cameras:

CMU 15-462/662

θ

Recall Lecture 1: Perspective Projection

‣ Question: What is , given ?

- is the vertical field of view

- is the projection of on the image plane, with
extents

‣ Goal of part 1: generate the ray in world space given
the camera position, orientation, and (u, v) coordinate

- uvs are given in range, not

h

h θ
2θ

pyv
[−h, h]

⃗cp

[0,1] [0, h]

CMU 15-462/662

Implementation
‣ Where is each variable in the
figure, in camera.h?

- Do we need anything more
than the excerpt on the
bottom right?

‣ Suggestion: Calculate the
camera ray in camera space first

- Take advantage of similar
triangles —

- How do we convert a camera
space vector to world space?

- Camera space: camera
forward vector is  
and camera origin is at 
 - much easier to
reason about camera rays!

// camera.h
class Camera {
 public:

 // ...
 double v_fov() const { return vFov; } // !!
 double aspect_ratio() const { return ar; } // !!
 // ...

 // worldspace -> cameraspace transformation matrix
 Matrix4x4 getTransformation(); // !!

 // Task 1
 Ray generate_ray(double x, double y) const;

 // ...
};

(0,0,1)

(0,0,0)

y/v = ??

θ

CMU 15-462/662

Bounding Volume
Hierarchies (BVHs)

CMU 15-462/662

‣ Problem: I want to efficiently perform a query on primitives
that are ordered/arranged spatially. This query is only going
to be relevant locally to some volume of space, and we would
like to bail out of the computation early for “far-away”
primitives that are outside that volume.

- Examples: Collision detection, frustum/occlusion culling 
 
 
 

- How do we cheaply figure out when to bail out?

‣ What’s the query in raytracing? The primitive?

- In Scotty3D: Ray-Triangle / Ray-Sphere intersection

Recall: Spatial Data Structures

Left:
https://youtu.be/-S8wq0dz1H4

Right:
https://youtu.be/VqH8kcmD-HI

https://youtu.be/-S8wq0dz1H4
https://youtu.be/VqH8kcmD-HI

CMU 15-462/662

Recall: Bounding Volume Hierarchy

‣ Divide all of your primitives into a hierarchy: a binary tree

- The leaves are individual primitives

- The nodes are bounding volumes

Image Source: https://en.wikipedia.org/wiki/Bounding_volume_hierarchy

https://en.wikipedia.org/wiki/Bounding_volume_hierarchy

CMU 15-462/662

BVH in Scotty3D
Red box: Currently selected node
Dark blue triangles: “right” subtree
Light blue triangles: “left” subtree 

Note: “right” / “left” does not have 
to do with the spatial positioning, only 
the topology of the BVH graph!

Once you’ve implemented BVH,
you can look at this visualization
via the V key after rendering

Press the < and > keys to descend
the tree and ? to move to the
parent

CMU 15-462/662

Exercise: Bounding Circle Hierarchy
‣ Suppose you’re a graphics engineer working on a 2D video

game in which you need to draw many thousands of vector
graphics (like DrawSVG) on screen at a time. To speed up
rendering, you propose using vector objects (polygons,
curves, etc) as the primitives and circles as the volumes

Source: https://kenney.nl/assets/racing-pack

Vector Object
Assets (the
primitives)

CMU 15-462/662

“BCH” Example Exercise

Source: https://kenney.nl/assets/racing-pack

We are only considering foreground objects (not the racetrack/grass) here
for clarity (we would have to draw way more circles otherwise)

CMU 15-462/662

We are only considering foreground objects (not the racetrack/grass) here
for clarity (we would have to draw way more circles otherwise)

“BCH” Example Exercise

Source: https://kenney.nl/assets/racing-pack

These are the leaf nodes, which
contain individual primitives or
groups of primitives that are
always rendered simultaneously

CMU 15-462/662

We are only considering foreground objects (not the racetrack/grass) here
for clarity (we would have to draw way more circles otherwise)

“BCH” Example Exercise

Source: https://kenney.nl/assets/racing-pack

This is one level higher than the
leaf nodes. Notice that there are
exactly two sub-volumes for each
parent volume and that volumes
can and do overlap

CMU 15-462/662

We are only considering foreground objects (not the racetrack/grass) here
for clarity (we would have to draw way more circles otherwise)

“BCH” Example Exercise

Source: https://kenney.nl/assets/racing-pack

… And so on until we reach a root
node encapsulating all objects

CMU 15-462/662

“BCH” Implementation
class Primitive {
 // ...
 Color color_at_pixel(float x, float y);
 // ...
};

struct Circle {
 float x;
 float y;
 float rad;

 inline bool isect(float x_, float y_) {
 return (x_-x)*(x_-x)+(y_-y)*(y_-y) < rad*rad;
 }
};

struct BCHNode {
 BCHNode *l;
 BCHNode *r;

 Circle bounds;
 size_t start; // start index in Scene::primitives
 size_t range; // number of elts in primitives
};

struct BCHAccel {
 // ...
 BCHNode *root;
};

class Scene {
 // ...
 std::vector<Primitive *> primitives;
 BCHAccel *accel;

 Color color_at_pixel(float x, float y);
};

‣ Here’s how we could write the
header file for this rendering
engine.

‣ “Flattened Tree” arrangement
in the primitives vector

- start and range are valid for
parent nodes and leaf
nodes (same in Scotty3D!)

↳ From bvh.h in Scotty3d

CMU 15-462/662

“BCH” Implementation
‣ Basic implementation of

color_at_pixel(…) without
acceleration structure. Instead of
drawing to every bordering pixel for
each primitive (like DrawSVG), we
render every primitive at each pixel.

class Primitive {
 // ...
 Color color_at_pixel(float x, float y);
 // ...
};

struct Circle {
 float x;
 float y;
 float rad;

 inline bool isect(float x_, float y_) {
 return (x_-x)*(x_-x)+(y_-y)*(y_-y) < rad*rad;
 }
};

struct BCHNode {
 BCHNode *l;
 BCHNode *r;

 Circle bounds;
 size_t start; // start index in Scene::primitives
 size_t range; // number of elts in primitives
};

struct BCHAccel {
 // ...
 BCHNode *root;
};

class Scene {
 // ...
 std::vector<Primitive *> primitives;
 BCHAccel *accel;

 Color color_at_pixel(float x, float y);
};

‣ How would we traverse the
BCH, given this header?

Color Scene::color_at_pixel(float x, float y) {
 Color cur = Color(0,0,0,0);
 for(int i = 0; i < primitives.size(); ++i) {
 Color top = primitives[i].color_at_pixel(x, y);
 // Alpha blend "over" operator (like DrawSVG)
 cur = Color::over(cur, top);
 }
 return cur;
}

CMU 15-462/662

“BCH” Implementation
‣ Implementation of

color_at_node that
traverses a BCH

class Primitive {
 // ...
 Color color_at_pixel(float x, float y);
 // ...
};

struct Circle {
 float x;
 float y;
 float rad;

 inline bool isect(float x_, float y_) {
 return (x_-x)*(x_-x)+(y_-y)*(y_-y) < rad*rad;
 }
};

struct BCHNode {
 BCHNode *l;
 BCHNode *r;

 Circle bounds;
 size_t start; // start index in Scene::primitives
 size_t range; // number of elts in primitives
};

struct BCHAccel {
 // ...
 BCHNode *root;
};

class Scene {
 // ...
 std::vector<Primitive *> primitives;
 BCHAccel *accel;

 Color color_at_pixel(float x, float y);
 void color_at_node(float x, float y,
 BCHNode *node, Color *cur);
};

void Scene::color_at_node(float x, float y,
 BCHNode *node, Color *cur) {
 if(!node->bounds.isect(x, y)) return;

 if(node->l == nullptr && node->r == nullptr) { // leaf
 for(int i = 0; i < node->range; ++i){
 int j = node->start + i;
 Color top = primitives[j].color_at_pixel(x, y);
 *cur = Color::over(*cur, top);
 }
 return;
 }

 color_at_node(x, y, node->l, cur);
 color_at_node(x, y, node->r, cur);
}

Color Scene::color_at_pixel(float x, float y) {
 Color ret(0,0,0,0);
 color_at_node(x, y, root, &ret);
 return ret;
}

‣ Sidebar: While faster, this method
subtly changes (breaks) alpha
blending behavior —  
Why? How do you fix it?

CMU 15-462/662

BCH Takeaways / Questions

‣ Our aim has been to minimize the number of primitives
considered by our renderer at each pixel

‣ Is the BCH successful? How much wasted space (space in each
bounding volume that is not covered by a primitive) is there?
How much overlap between nodes is there?

- Both of these issues lead to redundant BVH traversals

‣ Is a circle the best bounding shape for this scene?

‣ What types of scenes would a BCH be most effective for?

CMU 15-462/662

Back to 3D: Building a BVH
‣ With the BCH, we want to minimize “wasted space” in

building the actual bounding partition.

- We could theoretically find the best partitioning of a
BCH by brute-forcing all possible partitions and
maximizing the ratio of primitive areas to circle areas.

- Try coming up with faster partitioning schemes…

‣ Now consider a pathtracer. What do we want to minimize
in our acceleration structure to improve performance?

- Recall, our query is ray / primitive intersections

- Intersecting ray directions are totally unpredictable
given the randomness of BRDFs

- How do we “score” a particular partitioning?

CMU 15-462/662

The Surface Area Heuristic
Recall From previous lecture:

In short, the SAH is the way that we “score” a BVH, for the specific
application of ray-primitive intersection. What kind of queries would the
SAH be bad at? What alternatives to the SAH are there?

CMU 15-462/662

The Surface Area Heuristic
‣ Demo: Squashing a cube while preserving its

volume increases its Surface Area.

‣ How often should we expect to hit cubes with the
same volume but different surface areas, with the
sample rays randomly distributed about a sphere?

http://flafla2.github.io/demos/sah-vis/index.html

http://flafla2.github.io/demos/sah-vis/index.html

CMU 15-462/662

SAH in an axis-aligned BVH
‣ When building a BVH, we need to figure out how to partition the

primitives, starting at the root node (partitioning into initial left/
right subtree) and then recursively partitioning each subtree.

- We use the SAH to choose our partitioning (minimize)

- Why do we need the term? The term?
primitives in

subtree A

SA of bounding box of parent

primitives in  
subtree B

SA of bounding box of
 subtree A

SA of bounding box of
subtree B

‣ You can assume and are 
1 as they are constants (irrelevant for comparisons)

Ctrav Cisect

C
N{A,B}

S{A,B}

SN

(from previous lecture)

CMU 15-462/662

Questions?

