Assignment 3
Overview

Computer Graphics
CMU 15-462/662

Logistics

» Midterms have been graded, collect them in class today

» Each page (not problem) has been graded by a different
TA. Contact the individual TA for regrade requests.

- Page 1: Yuqgiao

- Page 2: Connor
- Page 3: Zach

- Page 4: Adrian

» Mid-semester letter grades were calculated based on
Assignment 0.0, Assignment 0.5, DrawSVG, and the
midterm exam.

CMU 15-462/662

Assignment 3: Pathtracer

» Extension of the work you did in MeshEdit

- Now that we can create meshes with Scotty3D, it’s time to build
a renderer that computes a realistic rendering of the scene

» Warning: Pathtracer will be difficult for different reasons than
MeshEdit was difficult!

- In MeshEdit we aimed to maintain the invariants of a complex
data structure

@ Errors are more “obvious” and result in crashes/hangs

- In PathTracer, we aim to maintain physical accuracy, but we
aren’t changing the scene at all

® Errors are related to math or theory and the symptoms are
usually visual and may not be obvious

CMU 15-462/662

Rasterization vs Pathtracing

| Résterization Pathtracing

Transform scene geometry via Bounce simulated rays of light
matrix operations to screen throughout your scene randomly
space, then use triangle fill for each pixel, and illuminate if it

algorithm. eventually intersects a light.
Optimized for performance Optimized for realism

DrawSVG (A1) Pathtracer (A3)

Example Scotty3d Output

The Big Picture

End Goal

» You are tasked with building a pathtracer, which simulates rays of
light bouncing around your scene and eventually “into the camera”

= (Small detail: we will actually “start” our rays at the camera
origin and bounce it around the scene until we hit a light)

- Over the next few weeks we will dive into the physics of Color,
Radiometry, the “Rendering Equation,” and more details that are
important in designing a pathtracer

- Up to this point you are ready to complete the assignment up to
+ including Task 4 (shadow rays).

CMU 15-462/662

Overview of Tasks

» Task 1: Generate the initial
rays to send from the camera

» Task 2: Compute ray-primitive intersection
- You need to support triangles and spheres/'
» Task 3: Accelerate ray-scene

intersection queries using a Bounding D5
Volume Hierarchy (BVH)

» Task 4: Implement direct lighting
with shadows

CMU 15-462/662

Overview of Tasks

» Task 5: Support indirect
illumination via path tracing

» Task 6: Support non-diffuse
materials (mirror, glass)

» Task 7: Support environment
lighting via a texture

CMU 15-462/662

Camera Rays

Recall Lecture 1: Perspective Projection

» In lecture 1 we considered the pinhole model for cameras:

2D image

amera

g

3D object

>

— = image

3D object

CMU 15-462/662

Recall Lecture 1: Perspective Projection

m Notice two similar triangles:

p=(x,y,z)

-
...
L2
‘o
¥

G
‘e
.
.
.
.
.
G
.
G
‘e
.

‘e
L2
.
-
.
.
~
.
~
.
L
.
L
.
L2
L2
~
~
~
~
.
L4
.
L
.
LA
L2
LA
..
~

» Question: What is A, given 0?

- 20 is the vertical field of view

- v is the projection of Py on the image plane, with
extents [—Ah, K]

» Goal of part 1: generate the ray ¢p in world space given
the camera position, orientation, and (u, v) coordinate

- uvs are given in [0,]1]range, not [0, /]

CMU 15-462/662

Implementation

» Where is each variable in the m Notice two similar triangles:
figure, in camera.h?)

g
-
.
L
.
.
.
.
L4
.
L2
.
.
.
.
‘e
L2

L]
e,

- Do we need anything more ' S 5 »
3D object
than the excerpt on the
bottom right?

L2
L
.
.
L2
.
.
L2
L
L2
..
.
.
L2
L
L2
.
.
‘e
.

» Suggestion: Calculate the
. i class Camera {
camera ray in camera space first JEIIEeE

- Take advantage of similar
triangles — y/v = 77

double v_fov() const § return vFov; 3
double aspect_ratio() const § return ar; %

- How do we convert a camera
space vector to world space?

- Camera space: camera
forward vector is (0,0,1) Ray generate_ray(double x, double y) const;
and camera origin is at
(0,0,0) - much easier to
reason about camera rays!

Matrix4x4 getTransformation();

CMU 15-462/662

Bounding Volume
Hierarchies (BVHS)

Recall: Spatial Data Structures

» Problem: I want to efficiently perform a query on primitives
that are ordered/arranged spatially. This query is only going
to be relevant locally to some volume of space, and we would

like to bail out of the computation early for “far-away”
primitives that are outside that volume.

- Examples: Collision detection, frustum/occlusion culling

Left:
https://youtu.be/-S8wq0dz1H4 B

Right:
https://youtu.be/VqH8kcmD-HI

- How do we cheaply figure out when to bail out?
» What's the query in raytracing? The primitive?

- In Scotty3D: Ray-Triangle / Ray-Sphere intersection

CMU 15-462/662

https://youtu.be/-S8wq0dz1H4
https://youtu.be/VqH8kcmD-HI

Recall: Bounding Volume Hierarchy

» Divide all of your primitives into a hierarchy: a binary tree

- The leaves are individual primitives

- The nodes are bounding volumes

A

©)

O

8

e
/AN

A

C

AN

Image Source: https://en.wikipedia.org/wiki/Bounding volume_hierarchy

»

CMU 15-462/662

https://en.wikipedia.org/wiki/Bounding_volume_hierarchy

Red box: Currently selected node
Dark blue triangles: “right” subtree
Light blue triangles: “left” subtree

Note: “right” / “left” does not have
to do with the spatial positioning, only
the topology of the BVH graph!

Once you've implemented BVH,
you can look at this visualization
via the V key after rendering

Press the < and > keys to descend
the tree and ? to move to the
parent

CMU 15-462/662

Exercise: Bounding Circle Hierarchy

» Suppose you're a graphics engineer working on a 2D video
game in which you need to draw many thousands of vector
graphics (like DrawSVG) on screen at a time. To speed up
rendering, you propose using vector objects (polygons,
curves, etc) as the primitives and circles as the volumes

Vector Object
— Assets (the
primitives)

Source: https://kenney.nl/assets/racing-pack
CMU 15-462/662

“BCH” Example Exercise

We are only considering foreground objects (not the racetrack/grass) here
for clarity (we would have to draw way more circles otherwise)

i = WA AT A A L J

Source: https://kenney.nl/assets/racing-pack

CMU 15-462/662

njects (not the racetracklgrass) here

"\ 9 5 These are the leaf nodes, which
contain individual primitives or

‘ ““ groups of primitives that are
‘ -always rendered simultaneously

‘ A
Source https //kenngy.nl/assets/racing-pack ; ; \ /

-~

CMU 15-462/662

“ " Ex le Exercise

We only considering foreground ohjects/(not the racetrack/grass) here
for glarity (we would have to draw e Cir ise)

—— - \As

Soos i CoES Ol | e

This is one level higher than the
'leaf nodes. Notice that there are
ﬁexactly two sub-volumes for each
parent volume and that volumes
|can and do overlap

Source: https://kenngy.nl/assetsfracing-pack
CMU 15-462/662

le Exercise

We only considering foraground okhj e rac ass) here
for/glarity (we would have to d e Cir ise)

—— - \As

FS

... And so on until we reach a root
node encapsulating all objects

AV A i -

Source: https://kenngy.nYassetsiracing-pack

CMU 15-462/662

“BCH” Implementation

class Primitive {

Here’s hOW We COUId Write the Color color at pixel(float x, float y);
header file for this rendering K&
engine. struck Clzele

float y;
float rad;

“Flattened Tree"” arrangement N |
inline bool 1isect(float x , float y) {
in the primitives vector | resE (L0 (L) () () red rad

}i

- start and range are valid for EEESEEIEE

BCHNode *1;

parent nodes and leaf e

Circle bounds;

nodes (same in Scotty3D!)

size t range;
}i

struct BCHAccel {

BCHNode *root;
}i

class Scene {

BVHNode § . e Qg .G
BVHNode (BBox bb, size_t start, size_t range) std: :vector<Primitive primitives;

BCHAccel *accel;

5 From bvh.h in Scotty3d

Color color at pixel(float x, float y);

}i

“BCH” Implementation

» Basic implementation of
color_at_pixel(...) without
acceleration structure. Instead of
drawing to every bordering pixel for
each primitive (like DrawSVG), we

render every primitive at each pixel.

Color Scene::color at pixel(float x, float y) {
Color cur Color(0,0,0,0);
for(int i 0; 1 primitives.size(); i) {
Color top primitives[i].color at pixel(x, Y);

cur Color::over(cur, top);

}

return cur;

» How would we traverse the
BCH, given this header?

class Primitive {

Color color at pixel(float x, float y);

}i

struct Circle {
float x;
float y;
float rad;

inline bool isect(float x , float y) {
return (X _-X)*(X_-X)t(y_-Y)*(Y_-Y) rad*rad;

}
}i

struct BCHNode {
BCHNode *1;
BCHNode *r;

Circle bounds;
size t start;
size t range;

}i
struct BCHAccel {

BCHNode *root;
}i

class Scene {

std: :vector<Primitive
BCHAccel *accel;

primitives;

Color color at pixel(float x, float y);
}i

“BCH” Implementation

class Primitive {

} Implementation Of Color color at pixel(float x, float y);
color_at_node that &

struct Circle {
traverses a BCH Lo o

void Scene::color at node(float x, float y, float rad;

BCHNode *node, Color *cur) {)) _
if(!node -bounds.isect(x, y)) return; inline bool 1isect(float x , float y) {
return (X _-X)*(X_-X)t(y_-Y)*(Y_-Y) rad*rad;
if(node->1 nullptr node->r nullptr) { }
for(int i 0; 1 node->range; i){ }i

int j node->start i

Color top primitives[j].color at pixel(x, Y); struct BCHNode {

cur Color: :over(*cur, top); BCHNode *1;

} BCHNode *r;
return;

} Circle bounds;
size t start;

color_at_node(x, y, node->1, cur); size t range;
. 14

color at node(x, y, node->r, cur);

) }i

Color Scene::color at pixel(float x, float y) { simiet BeEresel |

Color ret(0,0,0,0);
color at node(x, y, root, &ret); BCHNode *root;
return ret; }s

class Scene {

» Sidebar: While faster, this method

std: :vector<Primitive primitives;

subtly changes (breaks) alpha BCHAccel *accel;
blending behavior —_— Color color at pixel(float x, float y);

void color at node(float x, float vy,

Why? How dO ou iX it? . BCHNode *node, Color *cur);

BCH Takeaways / Questions

— . |

\0.R,7 O o
' S CPIT OO

o) :
M‘

....

» Our aim has been to minimize the number of primitives
considered by our renderer at each pixel

» Is the BCH successful? How much wasted space (space in each
bounding volume that is not covered by a primitive) is there?
How much overlap between nodes is there?

- Both of these issues lead to redundant BVH traversals
» Is a circle the best bounding shape for this scene?

» What types of scenes would a BCH be most effective for?
CMU 15-462/662

Back to 3D: Building a BVH

» With the BCH, we want to minimize “wasted space” in
building the actual bounding partition.

- We could theoretically find the best partitioning of a
BCH by brute-forcing all possible partitions and
maximizing the ratio of primitive areas to circle areas.

- Try coming up with faster partitioning schemes...

» Now consider a pathtracer. What do we want to minimize
in our acceleration structure to improve performance?

- Recall, our query is ray / primitive intersections

- Intersecting ray directions are totally unpredictable
given the randomness of BRDFs

- How do we “score” a particular partitioning?
CMU 15-462/662

The Surface Area Heuristic

Recall From previous lecture:

m For convex object A inside convex object B, the probability
that a random ray that hits B also hits A is given by the ratio
of the surface areas Sy and Sg of these objects.

P(hitA|hitB) = @ @

Leads to surface area heuristic (SAH):

C = Ctrav + S_A NA ClbLCt S_B NB ClbLCt
SN Sn

Assumptions of the SAH (which may not hold in practice!):
— Rays are randomly distributed
— Rays are not occluded

In short, the SAH is the way that we “score” a BVH, for the specific

application of ray-primitive intersection. What kind of queries would the
SAH be bad at? What alternatives to the SAH are there?

CMU 15-462/662

The Surface Area Heuristic

» Demo: Squashing a cube while preserving its
volume increases its Surface Area.

» How often should we expect to hit cubes with the
same volume but different surface areas, with the
sample rays randomly distributed about a sphere?

http.//flafla2.github.io/demos/sah-vis/index.html

: \mber of hits in last o \Qumber of hits in last
1000 rays: 224 / ’

: 000 rays: 29
\ y
Mor i Less More ess
SA SYAN SA , ISYAN
TN ; |
» g/ J : ~ ' “i)

4

&V

CMU 15-462/662

http://flafla2.github.io/demos/sah-vis/index.html

SAH in an axis-aligned BVH

» When building a BVH, we need to figure out how to partition the

primitives, starting at the root node (partitioning into initial left/
right subtree) and then recursively partitioning each subtree.

- We use the SAH to choose our partitioning (minimize C)

s
- Why do we need the N, 5 term? The —— term?
N

primitives in # primitives in
subtree A subtree B

SA of bounding box of SA of bounding box of
subtree A O\ subtreeB ¥

S
C = Ctrav + —ANACisect + _BNBCiSOC'C
SN SN

e
7%,
ke
A S
‘'l
e A
oY L
RN A AFSGK)
i 117
DR L ot
K A
A A \N))
Ay S
ST [
N U
e > ’V"‘ o

SA of bounding box of parent

» You can assume C,,, and G, are

1 as they are constants (irrelevant for comparisons)
CMU 15-462/662

Efficiently implementing partitioning

m Efficient modern approximation: split spatial extent of
primitives into B buckets (B is typically small: B < 32)

irad

b0 b1 b2 b3 b4 b5 b6 b7

For each axis: x,y,z:
initialize buckets (from previous lecture)
For each primitive p in node:
b = compute_bucket(p.centroid)
b.bbox.union(p.bbox);
b.prim_count++;
For each of the B-1 possible partitioning planes evaluate SAH
Recurse on lowest cost partition found (or make node a leaf) CMU 15-462/662, Fall 2015

Questions?

