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Cubic Hermite Spline

• The Hermite form is given by: 

• Where m0,m1 are the endpoint tangents, p0,p1 are the endpoint 
positions, and hij are the Hermite bases.



Cubic Hermite Spline

• Now, we take the first derivative of the function:



Cubic Hermite Spline

• And the second:



Catmull-Rom spline

• We specify a series of points (knots) at intervals along a curve and 
define a function that allows additional points within an interval to be 
calculated.



Catmull-Rom spline

• We specify a series of points (knots) at intervals along a curve and 
define a function that allows additional points within an interval to be 
calculated. 

• For this task, you must find the 4 closest knots. 
• Note that KnotIter is a map<double, T>::iterator
• Some useful functions: 

• upper_bound
• Next
• Prev
• First
• Second



Catmull-Rom spline

• Once you have the four closest points, call the 
cubicSplineUnitInterval with the the correct endpoints (p1, p2) and 
tangents:  

• Don’t forget to compute the appropriate  
time! It will no longer be time



Kinematics
Kinematics

• Kinematics refers generally to the study of robot geometry

• Given a configuration of a robot (e.g., settings to joint angles),
how does this a↵ect the position of its parts?

• For a desired position of the robot end-e↵ector, are there joint
angles that achieve this position?
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Two-link planar robot

✓1

✓2
(x, y)

l1

l2

• ✓1, ✓2: joint angles of robot
(configuration space, joint
space)

• l1, l2: length of each link
(robot parameters)

• x, y: position of end e↵ector
(task space)

• Kinematics is how we move
back and forth between these
representations
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Forward kinematics of two-link robot



Kinematics of two-link robot
Kinematics of two-link robot

⇡

✓1

✓2

x

y

l1 + l2�⇡

Forward kinematics

Inverse kinematics
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Forward kinematics of two-link robot
Forward kinematics of two-link robot

✓1

✓2
(x, y)

l1

l2

• Position of “elbow” x0, y0

x0 = `1 cos(✓1)

y0 = `1 sin(✓1)

• So, position of end e↵ector x, y

x = `1 cos(✓1) + `2 cos(✓1 + ✓2)

y = `1 sin(✓1) + `2 sin(✓1 + ✓2)

• For simplicity, we’ll write this as

x = `1c1 + `2c12

y = `1s1 + `2s12
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Inverse kinematics of two-link robot
Inverse kinematics of two-link robot

• Given x, y, can we find ✓1, ✓2 that achieve this position?

• This seems harder, there could be

– Infinite solutions (x = 0, y = 0)

– Two solutions (
p
x2

+ y2 < `1 + `2)

– One solution (
p
x2

+ y2 = `1 + `2)

– No solutions (
p

x2
+ y2 > `1 + `2)

• (Sometimes) can solve via inverse trigonometry functions
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Inverse kinematics of two-link robot

✓1

✓2
(x, y)

l1

l2

• From cosine rule

x2 + y2 = `21 + `22 � 2l1l2 cos(⇡ � ✓2)

=) ✓2 = ± cos

�1

✓
x2 + y2 � `21 � `22

2l1l2

◆

• Now solve for ✓1

tan = y/x

sin� =

`2 sin(✓2)

x2 + y2

=) ✓1 =  � �

= tan

�1
⇣y
x

⌘
� sin

�1

✓
`2 sin(✓2)

x2 + y2

◆
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Inverse kinematics of two-link robot
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Inverse kinematics of two-link robot
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Inverse kinematics of two-link robot

✓2 = ± cos

�1

✓
x2 + y2 � `21 � `22

2l1l2

◆

✓1 = tan

�1
⇣y
x

⌘
� sin

�1

✓
`2 sin(✓2)

x2 + y2

◆

• What happens when
p
x2 + y2 > `1 + `2?

• For general manipulators (more on this shortly), we may not be
able to find a closed form solution.
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Inverse kinematics as optimization

Challenges:
• There may not always be a solution. 
• If there is a solution, it may not always be the best. 
• There may no closed form equation for the solution. 

Solution:
• Iterative methods to approximate a good solution. 
• For this, we need the Jacobian matrix!



Jacobian
Jacobian

• Jacobian matrix contains derivatives of robot end e↵ector with
respect to joint angles


x
y

�
=


l1c1 + l2c12
l1s1 + l2s12

�

so

J =

"
@x

@✓1

@x

@✓2
@y

@✓1

@y

@✓2

#

=


�`1s1 � `

s

s12 �`2s12
`1c2 + `2c12 `2c12

�
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Jacobian

• Jacobian also provides (instantaneous) relationship between
joint velocities and velocities of end e↵ector

• Let ✓1(t), ✓2(t) be time-varying angles

• Then by chain rule

@x(t)

@t
=

@x(t)

@✓1(t)

@✓1(t)

@t
+

@x(t)

@✓2(t)

@✓2(t)

@t

i.e. "
@x(t)
@t

@y(t)
@t

#
= J

"
@✓1(t)
@t

@✓2(t)
@t

#
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Jacobian Transpose

• Assume we have the following 

Certain points on the links are  
identified as end effectors



Jacobian Transpose

• The basic equation for forward dynamics that describes the 
velocities of the end effectors can be written as follows (using dot 
notation for the first derivatives 

• We seek an update value          for the purpose of incrementing the 
joint angles      by         

• The change in joint angles can be estimated as 



Jacobian Transpose

• The Jacobian transpose is a method that uses the transpose of J 
instead of the inverse of J for the inverse kinematics.   

• In this formulation, 

• For some appropriate scale factor 



Summary: Kinematics
General manipulators

• Two-link planar robot is not that useful in practice

• To manipulate objects in 3D space, we typically want full
control over 3D position and 3D orientation of end e↵ector =)
at least 6 joint angles

• Forward kinematics still easy to solve (just be careful with
representing 3D rotations)

• Inverse kinematics often solvable too, but much more
complicated
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More Information: Kinematics

• See the following resources: 
• http://www.cs.cmu.edu/~zkolter/course/15-780-s14/robotics.pdf 
• http://graphics.cs.cmu.edu/nsp/course/15464-s17/lectures/

iksurvey.pdf

http://www.cs.cmu.edu/~zkolter/course/15-780-s14/robotics.pdf
http://graphics.cs.cmu.edu/nsp/course/15464-s17/lectures/iksurvey.pdf
http://graphics.cs.cmu.edu/nsp/course/15464-s17/lectures/iksurvey.pdf


Skinning Characters

• What we have 
• skeleton 
• mesh 

• Goal 
• embed the skeleton 

into the mesh

Overview
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Courtesy Robert C. Duvall, Duke University. License CC BY-NC-SA.



Skinning Characters

• Associate each vertex with joints 
• Only animate joints. Skin (mesh) vertices will move as joints move

Blending
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Skinning Characters

• The process of associating skin vertices (mesh) 
with joints (skeleton) 
• Only animate joints Skin (mesh) vertices will 

move as joints move 
• We know the position of each joint at every 

time step 
• Need to infer how skin deforms from joint 

transformations 
• Most popular technique: Skeletal Subspace 

Deformation (SSD) 
• simply Skinning 
• aliases:  

• vertex blending 
• linear blend skinning

Skinning
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Skinning Characters

• What if we attach each vertex of the 
skin to a single joint, say the nearest 
joint? 
• Skin will be rigid, except at joints 

where it will stretch badly 

Skinning
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Skinning Characters

• What if we associate each vertex of 
the skin to a single joint, say the 
nearest joint? 
• Skin will be rigid, except at joints 

where it will stretch badly  
• Solution:  

• associate a vertex to many joints! 
• skin is deformed according to a 

weighted combination of the joints

Skinning
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Linear Blending

• (At a fixed time step), a vertex on the deforming surface (skin / mesh) lies in the subspace 
defined by the rigid transformations of that point 
• i : index of the joint 
• p: position of the vertex at bind pos  

• for implementation, p is in the local coordinate frame of each joint 
• C_i : transformation of the i_th joint 
•  w_i : weight scheme 

• How much vertex p should move with joint i

 Skinning (Skeletal Subspace Deformation  = SSD)
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Linear Blending

• Properties 
• w_i sum up to 1 
• should be non-negative 
• w_i = 1 means p is rigidly attached to joint i 
• w_i = 0 means p is not attached to joint i at all

Weight Scheme
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Linear Blending

• Properties 
• w_i sum up to 1 
• should be non-negative 
• w_i = 1 means p is rigidly attached to joint i 
• w_i = 0 means p is not attached to joint i at all

Weight Scheme
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Linear Blending

• Homework 
• Weight scheme: inverse 

distance 
• joints far away from the 

vertices should only slightly 
affect the vertex

Weight Scheme
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Linear Blending

• Homework 
• Weight scheme: inverse distance 

• apply threshold:  
• Given a fixed distance r, w_i = 0 if distance between joint and vertex is 

greater than r

Weight Scheme
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Physical Simulation

http://mathlets.org/mathlets/damped-wave-equation/
Animation:
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2nd order in space2nd order in time



Physical Simulation
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PDEs are difficult/impossible to solve analytically—especially if we want to incorporate data (e.g., user 
interaction)

Must instead use numerical integration

Basic strategy: as with ODEs, run a time-stepping algorithm

Historically, very expensive—only for “hero shots” in 
movies

Computers are ever faster...

More & more use of PDEs in games, interactive tools, ...



Physical Simulation

http://mathlets.org/mathlets/damped-wave-equation/
Animation:

GRID
TRIANGLE (actually, 

this 
becomes 

that)

div grad Laplace operator



Physical Simulation

Finite differences 
High-school reminder: definition of a derivative using forward difference 

Alternative: use central difference 

For discrete signals: Remove limit and set h = 2 

1 0 -1 

-1 0 1 ? 
? 

1 0 -1 

1D derivative filter 



Physical Simulation

Basically a second derivative filter. 
•  We can use finite differences to derive it, as with first derivative filter. 

Laplace filter 

? 

first-order 
finite difference 1 0 -1 

1D derivative filter 

second-order 
finite difference 

Laplace filter 



Physical Simulation

Basically a second derivative filter. 
•  We can use finite differences to derive it, as with first derivative filter. 

first-order 
finite difference 1 0 -1 

1D derivative filter 

second-order 
finite difference 1 -2 1 

Laplace filter 



Physical Simulation

GRID

second-order 
finite difference 1 -2 1 

Laplace filter 
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Solving the Wave Equation
Finally, wave equation:

Not much different; now have 2nd derivative in time

By now we’ve learned two different techniques:

- Convert to two 1st order (in time) equations:

  Simplest	scheme:	evaluate	velocity	at	current	configuration	
  New	configuration	can	then	be	written	explicitly	in	terms	of	
known	data:	

new	configuration	
current	configuration	 velocity	at	current	time	

Forward Euler



Forward Euler
  Simplest	scheme:	evaluate	velocity	at	current	configuration	
  New	configuration	can	then	be	written	explicitly	in	terms	of	
known	data:	

new	configuration	
current	configuration	 velocity	at	current	time	


