
Graphics
HW 4

04/23/2018

Jackie Li
Wennie Tabib

Carnegie Mellon University

 1

Cubic Hermite Spline

• The Hermite form is given by:

• Where m0,m1 are the endpoint tangents, p0,p1 are the endpoint
positions, and hij are the Hermite bases.

Cubic Hermite Spline

• Now, we take the first derivative of the function:

Cubic Hermite Spline

• And the second:

Catmull-Rom spline

• We specify a series of points (knots) at intervals along a curve and
define a function that allows additional points within an interval to be
calculated.

Catmull-Rom spline

• We specify a series of points (knots) at intervals along a curve and
define a function that allows additional points within an interval to be
calculated.

• For this task, you must find the 4 closest knots.
• Note that KnotIter is a map<double, T>::iterator
• Some useful functions:

• upper_bound
• Next
• Prev
• First
• Second

Catmull-Rom spline

• Once you have the four closest points, call the
cubicSplineUnitInterval with the the correct endpoints (p1, p2) and
tangents:

• Don’t forget to compute the appropriate  
time! It will no longer be time

Kinematics
Kinematics

• Kinematics refers generally to the study of robot geometry

• Given a configuration of a robot (e.g., settings to joint angles),
how does this a↵ect the position of its parts?

• For a desired position of the robot end-e↵ector, are there joint
angles that achieve this position?

4

Two-link planar robot

✓1

✓2
(x, y)

l1

l2

• ✓1, ✓2: joint angles of robot
(configuration space, joint
space)

• l1, l2: length of each link
(robot parameters)

• x, y: position of end e↵ector
(task space)

• Kinematics is how we move
back and forth between these
representations

5

Forward kinematics of two-link robot

Kinematics of two-link robot
Kinematics of two-link robot

⇡

✓1

✓2

x

y

l1 + l2�⇡

Forward kinematics

Inverse kinematics

6

Forward kinematics of two-link robot
Forward kinematics of two-link robot

✓1

✓2
(x, y)

l1

l2

• Position of “elbow” x0, y0

x0 = `1 cos(✓1)

y0 = `1 sin(✓1)

• So, position of end e↵ector x, y

x = `1 cos(✓1) + `2 cos(✓1 + ✓2)

y = `1 sin(✓1) + `2 sin(✓1 + ✓2)

• For simplicity, we’ll write this as

x = `1c1 + `2c12

y = `1s1 + `2s12

7

Inverse kinematics of two-link robot
Inverse kinematics of two-link robot

• Given x, y, can we find ✓1, ✓2 that achieve this position?

• This seems harder, there could be

– Infinite solutions (x = 0, y = 0)

– Two solutions (
p
x2

+ y2 < `1 + `2)

– One solution (
p
x2

+ y2 = `1 + `2)

– No solutions (
p

x2
+ y2 > `1 + `2)

• (Sometimes) can solve via inverse trigonometry functions

8

Inverse kinematics of two-link robot

✓1

✓2
(x, y)

l1

l2

• From cosine rule

x2 + y2 = `21 + `22 � 2l1l2 cos(⇡ � ✓2)

=) ✓2 = ± cos

�1

✓
x2 + y2 � `21 � `22

2l1l2

◆

• Now solve for ✓1

tan = y/x

sin� =

`2 sin(✓2)

x2 + y2

=) ✓1 = � �

= tan

�1
⇣y
x

⌘
� sin

�1

✓
`2 sin(✓2)

x2 + y2

◆

9

Inverse kinematics of two-link robot

(x, y)

⇡ � ✓2

• From cosine rule

x2 + y2 = `21 + `22 � 2l1l2 cos(⇡ � ✓2)

=) ✓2 = ± cos

�1

✓
x2 + y2 � `21 � `22

2l1l2

◆

• Now solve for ✓1

tan = y/x

sin� =

`2 sin(✓2)

x2 + y2

=) ✓1 = � �

= tan

�1
⇣y
x

⌘
� sin

�1

✓
`2 sin(✓2)

x2 + y2

◆

9

(x, y)

⇡ � ✓2

• From cosine rule

x2 + y2 = `21 + `22 � 2l1l2 cos(⇡ � ✓2)

=) ✓2 = ± cos

�1

✓
x2 + y2 � `21 � `22

2l1l2

◆

• Now solve for ✓1

tan = y/x

sin� =

`2 sin(✓2)

x2 + y2

=) ✓1 = � �

= tan

�1
⇣y
x

⌘
� sin

�1

✓
`2 sin(✓2)

x2 + y2

◆

9

Inverse kinematics of two-link robot

(x, y)

⇡ � ✓2

• From cosine rule

x2 + y2 = `21 + `22 � 2l1l2 cos(⇡ � ✓2)

=) ✓2 = ± cos

�1

✓
x2 + y2 � `21 � `22

2l1l2

◆

• Now solve for ✓1

tan = y/x

sin� =

`2 sin(✓2)

x2 + y2

=) ✓1 = � �

= tan

�1
⇣y
x

⌘
� sin

�1

✓
`2 sin(✓2)

x2 + y2

◆

9

(x, y)

⇡ � ✓2

• From cosine rule

x2 + y2 = `21 + `22 � 2l1l2 cos(⇡ � ✓2)

=) ✓2 = ± cos

�1

✓
x2 + y2 � `21 � `22

2l1l2

◆

• Now solve for ✓1

tan = y/x

sin� =

`2 sin(✓2)

x2 + y2

=) ✓1 = � �

= tan

�1
⇣y
x

⌘
� sin

�1

✓
`2 sin(✓2)

x2 + y2

◆

9

(x, y)

�

• From cosine rule

x2 + y2 = `21 + `22 � 2l1l2 cos(⇡ � ✓2)

=) ✓2 = ± cos

�1

✓
x2 + y2 � `21 � `22

2l1l2

◆

• Now solve for ✓1

tan = y/x

sin� =

`2 sin(✓2)

x2 + y2

=) ✓1 = � �

= tan

�1
⇣y
x

⌘
� sin

�1

✓
`2 sin(✓2)

x2 + y2

◆

9

Inverse kinematics of two-link robot

✓2 = ± cos

�1

✓
x2 + y2 � `21 � `22

2l1l2

◆

✓1 = tan

�1
⇣y
x

⌘
� sin

�1

✓
`2 sin(✓2)

x2 + y2

◆

• What happens when
p
x2 + y2 > `1 + `2?

• For general manipulators (more on this shortly), we may not be
able to find a closed form solution.

10

Inverse kinematics as optimization

Challenges:
• There may not always be a solution.
• If there is a solution, it may not always be the best.
• There may no closed form equation for the solution.

Solution:
• Iterative methods to approximate a good solution.
• For this, we need the Jacobian matrix!

Jacobian
Jacobian

• Jacobian matrix contains derivatives of robot end e↵ector with
respect to joint angles

x
y

�
=

l1c1 + l2c12
l1s1 + l2s12

�

so

J =

"
@x

@✓1

@x

@✓2
@y

@✓1

@y

@✓2

#

=

�`1s1 � `

s

s12 �`2s12
`1c2 + `2c12 `2c12

�

12

Jacobian

• Jacobian also provides (instantaneous) relationship between
joint velocities and velocities of end e↵ector

• Let ✓1(t), ✓2(t) be time-varying angles

• Then by chain rule

@x(t)

@t
=

@x(t)

@✓1(t)

@✓1(t)

@t
+

@x(t)

@✓2(t)

@✓2(t)

@t

i.e. "
@x(t)
@t

@y(t)
@t

#
= J

"
@✓1(t)
@t

@✓2(t)
@t

#

13

Jacobian Transpose

• Assume we have the following

Certain points on the links are  
identified as end effectors

Jacobian Transpose

• The basic equation for forward dynamics that describes the
velocities of the end effectors can be written as follows (using dot
notation for the first derivatives

• We seek an update value for the purpose of incrementing the
joint angles by

• The change in joint angles can be estimated as

Jacobian Transpose

• The Jacobian transpose is a method that uses the transpose of J
instead of the inverse of J for the inverse kinematics.

• In this formulation,

• For some appropriate scale factor

Summary: Kinematics
General manipulators

• Two-link planar robot is not that useful in practice

• To manipulate objects in 3D space, we typically want full
control over 3D position and 3D orientation of end e↵ector =)
at least 6 joint angles

• Forward kinematics still easy to solve (just be careful with
representing 3D rotations)

• Inverse kinematics often solvable too, but much more
complicated

14

More Information: Kinematics

• See the following resources:
• http://www.cs.cmu.edu/~zkolter/course/15-780-s14/robotics.pdf
• http://graphics.cs.cmu.edu/nsp/course/15464-s17/lectures/

iksurvey.pdf

http://www.cs.cmu.edu/~zkolter/course/15-780-s14/robotics.pdf
http://graphics.cs.cmu.edu/nsp/course/15464-s17/lectures/iksurvey.pdf
http://graphics.cs.cmu.edu/nsp/course/15464-s17/lectures/iksurvey.pdf

Skinning Characters

• What we have
• skeleton
• mesh

• Goal
• embed the skeleton

into the mesh

Overview

 25

Courtesy Robert C. Duvall, Duke University. License CC BY-NC-SA.

Skinning Characters

• Associate each vertex with joints
• Only animate joints. Skin (mesh) vertices will move as joints move

Blending

 26

Skinning Characters

• The process of associating skin vertices (mesh)
with joints (skeleton)
• Only animate joints Skin (mesh) vertices will

move as joints move
• We know the position of each joint at every

time step
• Need to infer how skin deforms from joint

transformations
• Most popular technique: Skeletal Subspace

Deformation (SSD)
• simply Skinning
• aliases:

• vertex blending
• linear blend skinning

Skinning

 27

Skinning Characters

• What if we attach each vertex of the
skin to a single joint, say the nearest
joint?
• Skin will be rigid, except at joints

where it will stretch badly

Skinning

 28

Skinning Characters

• What if we associate each vertex of
the skin to a single joint, say the
nearest joint?
• Skin will be rigid, except at joints

where it will stretch badly
• Solution:

• associate a vertex to many joints!
• skin is deformed according to a

weighted combination of the joints

Skinning

 29

Linear Blending

• (At a fixed time step), a vertex on the deforming surface (skin / mesh) lies in the subspace
defined by the rigid transformations of that point
• i : index of the joint
• p: position of the vertex at bind pos

• for implementation, p is in the local coordinate frame of each joint
• C_i : transformation of the i_th joint
• w_i : weight scheme

• How much vertex p should move with joint i

 Skinning (Skeletal Subspace Deformation = SSD)

 30

Linear Blending

• Properties
• w_i sum up to 1
• should be non-negative
• w_i = 1 means p is rigidly attached to joint i
• w_i = 0 means p is not attached to joint i at all

Weight Scheme

 31

Linear Blending

• Properties
• w_i sum up to 1
• should be non-negative
• w_i = 1 means p is rigidly attached to joint i
• w_i = 0 means p is not attached to joint i at all

Weight Scheme

 32

Linear Blending

• Homework
• Weight scheme: inverse

distance
• joints far away from the

vertices should only slightly
affect the vertex

Weight Scheme

 33

Linear Blending

• Homework
• Weight scheme: inverse distance

• apply threshold:
• Given a fixed distance r, w_i = 0 if distance between joint and vertex is

greater than r

Weight Scheme

 34

Physical Simulation

http://mathlets.org/mathlets/damped-wave-equation/
Animation:

 35

2nd order in space2nd order in time

Physical Simulation

 36

PDEs are difficult/impossible to solve analytically—especially if we want to incorporate data (e.g., user
interaction)

Must instead use numerical integration

Basic strategy: as with ODEs, run a time-stepping algorithm

Historically, very expensive—only for “hero shots” in
movies

Computers are ever faster...

More & more use of PDEs in games, interactive tools, ...

Physical Simulation

http://mathlets.org/mathlets/damped-wave-equation/
Animation:

GRID
TRIANGLE (actually,

this
becomes

that)

div grad Laplace operator

Physical Simulation

Finite differences
High-school reminder: definition of a derivative using forward difference

Alternative: use central difference

For discrete signals: Remove limit and set h = 2

1 0 -1

-1 0 1 ?
?

1 0 -1

1D derivative filter

Physical Simulation

Basically a second derivative filter.
•  We can use finite differences to derive it, as with first derivative filter.

Laplace filter

?

first-order
finite difference 1 0 -1

1D derivative filter

second-order
finite difference

Laplace filter

Physical Simulation

Basically a second derivative filter.
•  We can use finite differences to derive it, as with first derivative filter.

first-order
finite difference 1 0 -1

1D derivative filter

second-order
finite difference 1 -2 1

Laplace filter

Physical Simulation

GRID

second-order
finite difference 1 -2 1

Laplace filter

 42

Solving the Wave Equation
Finally, wave equation:

Not much different; now have 2nd derivative in time

By now we’ve learned two different techniques:

- Convert to two 1st order (in time) equations:

  Simplest	scheme:	evaluate	velocity	at	current	configuration	
  New	configuration	can	then	be	written	explicitly	in	terms	of	
known	data:	

new	configuration	
current	configuration	 velocity	at	current	time	

Forward Euler

Forward Euler
  Simplest	scheme:	evaluate	velocity	at	current	configuration	
  New	configuration	can	then	be	written	explicitly	in	terms	of	
known	data:	

new	configuration	
current	configuration	 velocity	at	current	time	

