Graphics HW 4

04/23/2018

Jackie Li
Wennie Tabib
Carnegie Mellon University

Cubic Hermite Spline

- The Hermite form is given by:

$$
\begin{aligned}
p(t) & =h_{00}(t) p_{0}+h_{10}(t) m_{0}+h_{01}(t) p_{1}+h_{11}(t) m_{1} \\
h_{00}(t) & =2 t^{3}-3 t^{2}+1 \\
h_{10}(t) & =t^{3}-2 t^{2}+t \\
h_{01}(t) & =-2 t^{3}+3 t^{2} \\
h_{11}(t) & =t^{3}-t^{2}
\end{aligned}
$$

- Where m0,m1 are the endpoint tangents, p0,p1 are the endpoint positions, and hij are the Hermite bases.

Cubic Hermite Spline

- Now, we take the first derivative of the function:

$$
\begin{aligned}
p^{\prime}(t) & =h_{00}^{\prime}(t) p_{0}+h_{10}^{\prime}(t) m_{0}+h_{01}^{\prime}(t) p_{1}+h_{11}^{\prime}(t) m_{1} \\
h_{00}^{\prime}(t) & =6 t^{2}-6 t \\
h_{10}^{\prime}(t) & =3 t^{2}-4 t+1 \\
h_{01}^{\prime}(t) & =-6 t^{2}+6 t \\
h_{11}^{\prime}(t) & =3 t^{2}-2 t
\end{aligned}
$$

Cubic Hermite Spline

- And the second:

$$
\begin{aligned}
p^{\prime \prime}(t) & =h_{00}^{\prime \prime}(t) p_{0}+h_{10}^{\prime \prime}(t) m_{0}+h_{01}^{\prime \prime}(t) p_{1}+h_{11}^{\prime \prime}(t) m_{1} \\
h_{00}^{\prime \prime}(t) & =12 t-6 \\
h_{10}^{\prime \prime}(t) & =6 t-4 \\
h_{01}^{\prime \prime}(t) & =-12 t+6 \\
h_{11}^{\prime \prime}(t) & =6 t-2
\end{aligned}
$$

Catmull-Rom spline

- We specify a series of points (knots) at intervals along a curve and define a function that allows additional points within an interval to be calculated.

Catmull-Rom spline

- We specify a series of points (knots) at intervals along a curve and define a function that allows additional points within an interval to be calculated.
- For this task, you must find the 4 closest knots.
- Note that Knotlter is a map<double, T>: :iterator
- Some useful functions:
- upper_bound
- Next
- Prev
- First

- Second

Catmull-Rom spline

- Once you have the four closest points, call the cubicSplineUnitInterval with the the correct endpoints (p1, p2) and tangents:

$$
\begin{aligned}
& m_{1}=\left(p_{2}-p_{0}\right) /\left(t_{2}-t_{0}\right) \\
& m_{2}=\left(p_{3}-p_{1}\right) /\left(t_{3}-t_{1}\right)
\end{aligned}
$$

- Don't forget to compute the appropriate time! It will no longer be time

Kinematics

- Kinematics refers generally to the study of robot geometry
- Given a configuration of a robot (e.g., settings to joint angles), how does this affect the position of its parts?
- For a desired position of the robot end-effector, are there joint angles that achieve this position?

Forward kinematics of two-link robot

- θ_{1}, θ_{2} : joint angles of robot (configuration space, joint space)
- l_{1}, l_{2} : length of each link (robot parameters)
- x, y : position of end effector (task space)
- Kinematics is how we move back and forth between these representations

Kinematics of two-link robot

Forward kinematics

Inverse kinematics

Forward kinematics of two-link robot

- Position of "elbow" x_{0}, y_{0}

$$
\begin{aligned}
x_{0} & =\ell_{1} \cos \left(\theta_{1}\right) \\
y_{0} & =\ell_{1} \sin \left(\theta_{1}\right)
\end{aligned}
$$

- So, position of end effector x, y

$$
\begin{aligned}
& x=\ell_{1} \cos \left(\theta_{1}\right)+\ell_{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
& y=\ell_{1} \sin \left(\theta_{1}\right)+\ell_{2} \sin \left(\theta_{1}+\theta_{2}\right)
\end{aligned}
$$

- For simplicity, we'll write this as

$$
\begin{aligned}
& x=\ell_{1} c_{1}+\ell_{2} c_{12} \\
& y=\ell_{1} s_{1}+\ell_{2} s_{12}
\end{aligned}
$$

Inverse kinematics of two-link robot

- Given x, y, can we find θ_{1}, θ_{2} that achieve this position?
- This seems harder, there could be
- Infinite solutions $(x=0, y=0)$
- Two solutions $\left(\sqrt{x^{2}+y^{2}}<\ell_{1}+\ell_{2}\right)$
- One solution $\left(\sqrt{x^{2}+y^{2}}=\ell_{1}+\ell_{2}\right)$
- No solutions $\left(\sqrt{x^{2}+y^{2}}>\ell_{1}+\ell_{2}\right)$
- (Sometimes) can solve via inverse trigonometry functions

Inverse kinematics of two-link robot

Carnegie Mellon THE ROBOTICS INSTITUTE

Inverse kinematics of two-link robot

- From cosine rule

$$
\begin{aligned}
& x^{2}+y^{2}=\ell_{1}^{2}+\ell_{2}^{2}-2 l_{1} l_{2} \cos \left(\pi-\theta_{2}\right) \\
& \Longrightarrow \theta_{2}= \pm \cos ^{-1}\left(\frac{x^{2}+y^{2}-\ell_{1}^{2}-\ell_{2}^{2}}{2 l_{1} l_{2}}\right)
\end{aligned}
$$

Inverse kinematics of two-link robot

- From cosine rule

$$
\begin{aligned}
& x^{2}+y^{2}=\ell_{1}^{2}+\ell_{2}^{2}-2 l_{1} l_{2} \cos \left(\pi-\theta_{2}\right) \\
& \Longrightarrow \theta_{2}= \pm \cos ^{-1}\left(\frac{x^{2}+y^{2}-\ell_{1}^{2}-\ell_{2}^{2}}{2 l_{1} l_{2}}\right)
\end{aligned}
$$

- Now solve for θ_{1}

$$
\begin{aligned}
\tan \psi & =y / x \\
\sin \phi & =\frac{\ell_{2} \sin \left(\theta_{2}\right)}{x^{2}+y^{2}} \\
\Longrightarrow \theta_{1} & =\psi-\phi \\
& =\tan ^{-1}\left(\frac{y}{x}\right)-\sin ^{-1}\left(\frac{\ell_{2} \sin \left(\theta_{2}\right)}{x^{2}+y^{2}}\right)
\end{aligned}
$$

Inverse kinematics of two-link robot

$$
\begin{aligned}
& \theta_{2}= \pm \cos ^{-1}\left(\frac{x^{2}+y^{2}-\ell_{1}^{2}-\ell_{2}^{2}}{2 l_{1} l_{2}}\right) \\
& \theta_{1}=\tan ^{-1}\left(\frac{y}{x}\right)-\sin ^{-1}\left(\frac{\ell_{2} \sin \left(\theta_{2}\right)}{x^{2}+y^{2}}\right)
\end{aligned}
$$

- What happens when $\sqrt{x^{2}+y^{2}}>\ell_{1}+\ell_{2}$?
- For general manipulators (more on this shortly), we may not be able to find a closed form solution.

Inverse kinematics as optimization

Challenges:

- There may not always be a solution.
- If there is a solution, it may not always be the best.
- There may no closed form equation for the solution.

Solution:

- Iterative methods to approximate a good solution.
- For this, we need the Jacobian matrix!

Jacobian

- Jacobian matrix contains derivatives of robot end effector with respect to joint angles

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
l_{1} c_{1}+l_{2} c_{12} \\
l_{1} s_{1}+l_{2} s_{12}
\end{array}\right]
$$

so

$$
\begin{aligned}
J & =\left[\begin{array}{ll}
\frac{\partial x}{\partial \theta_{1}} & \frac{\partial x}{\partial \theta_{2}} \\
\frac{\partial y}{\partial \theta_{1}} & \frac{\partial y}{\partial \theta_{2}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
-\ell_{1} s_{1}-\ell_{s} s_{12} & -\ell_{2} s_{12} \\
\ell_{1} c_{2}+\ell_{2} c_{12} & \ell_{2} c_{12}
\end{array}\right]
\end{aligned}
$$

Jacobian

- Jacobian also provides (instantaneous) relationship between joint velocities and velocities of end effector
- Let $\theta_{1}(t), \theta_{2}(t)$ be time-varying angles
- Then by chain rule

$$
\frac{\partial x(t)}{\partial t}=\frac{\partial x(t)}{\partial \theta_{1}(t)} \frac{\partial \theta_{1}(t)}{\partial t}+\frac{\partial x(t)}{\partial \theta_{2}(t)} \frac{\partial \theta_{2}(t)}{\partial t}
$$

i.e.

$$
\left[\begin{array}{l}
\frac{\partial x(t)}{\partial t} \\
\frac{\partial y(t)}{\partial t}
\end{array}\right]=J\left[\begin{array}{l}
\frac{\partial \theta_{1}(t)}{\partial t} \\
\frac{\partial \theta_{2}(t)}{\partial t}
\end{array}\right]
$$

Jacobian Transpose

- Assume we have the following

$$
\begin{aligned}
& \overrightarrow{\mathbf{s}}=\left(\mathbf{s}_{1}, \mathbf{s}_{2}, \ldots, \mathbf{s}_{k}\right)^{T}: \text { positions of end effectors } \\
& \overrightarrow{\mathbf{t}}=\left(\mathbf{t}_{1}, \mathbf{t}_{2}, \ldots, \mathbf{t}_{k}\right)^{T}: \text { target positions of end effectors } \\
& \boldsymbol{\theta}=\left(\theta_{1}, \theta_{2}, \ldots \theta_{n}\right)^{T}: \text { joint angles } \\
& \quad \mathbf{e}_{i}=\mathbf{t}_{i}-\mathbf{s}_{i}, \text { the desired change in position of } \\
& \text { the ith end effector }
\end{aligned}
$$

Certain points on the links are identified as end effectors

Jacobian Transpose

- The basic equation for forward dynamics that describes the velocities of the end effectors can be written as follows (using dot notation for the first derivatives

$$
\dot{\overrightarrow{\mathbf{s}}}=J(\boldsymbol{\theta}) \dot{\boldsymbol{\theta}}
$$

- We seek an update value $\Delta \theta$ for the purpose of incrementing the joint angles θ by $\Delta \theta$

$$
\boldsymbol{\theta}:=\boldsymbol{\theta}+\Delta \boldsymbol{\theta}
$$

- The change in joint angles can be estimated as
$\Delta \overrightarrow{\mathrm{s}} \approx J \Delta \boldsymbol{\theta}$.

Jacobian Transpose

- The Jacobian transpose is a method that uses the transpose of J instead of the inverse of J for the inverse kinematics.
- In this formulation,

$$
\Delta \boldsymbol{\theta}=\alpha J^{T} \overrightarrow{\mathbf{e}}
$$

- For some appropriate scale factor α.

$$
\alpha=\frac{\left\langle\overrightarrow{\mathbf{e}}, J J^{T} \overrightarrow{\mathbf{e}}\right\rangle}{\left\langle J J^{T} \overrightarrow{\mathbf{e}}, J J^{T} \overrightarrow{\mathbf{e}}\right\rangle} .
$$

Theorem 1 For all J and $\overrightarrow{\mathbf{e}},\left\langle J J^{T} \overrightarrow{\mathbf{e}}, \overrightarrow{\mathbf{e}}\right\rangle \geq 0$.
Proof The proof is trivial: $\left\langle J J^{T} \overrightarrow{\mathbf{e}}, \overrightarrow{\mathbf{e}}\right\rangle=\left\langle J^{T} \overrightarrow{\mathbf{e}}, J^{T} \overrightarrow{\mathbf{e}}\right\rangle=\left\|J^{T} \overrightarrow{\mathbf{e}}\right\|^{2} \geq 0$.

Summary: Kinematics

- Two-link planar robot is not that useful in practice
- To manipulate objects in 3D space, we typically want full control over 3D position and 3D orientation of end effector \Longrightarrow at least 6 joint angles
- Forward kinematics still easy to solve (just be careful with representing 3D rotations)
- Inverse kinematics often solvable too, but much more complicated

More Information: Kinematics

- See the following resources:
- http://www.cs.cmu.edu/~zkolter/course/15-780-s14/robotics.pdf
- http://graphics.cs.cmu.edu/nsp/course/15464-s17/lectures/ iksurvey.pdf

Skinning Characters

Overview

- What we have
- skeleton
- mesh
- Goal
- embed the skeleton into the mesh

Skinning Characters

Blending

- Associate each vertex with joints
- Only animate joints. Skin (mesh) vertices will move as joints move

Skinning Characters

Skinning

- The process of associating skin vertices (mesh) with joints (skeleton)
- Only animate joints Skin (mesh) vertices will move as joints move
- We know the position of each joint at every time step
- Need to infer how skin deforms from joint transformations
- Most popular technique: Skeletal Subspace

Deformation (SSD)

- simply Skinning
- aliases:
- vertex blending
- linear blend skinning

Skinning Characters

Skinning

- What if we attach each vertex of the skin to a single joint, say the nearest joint?
- Skin will be rigid, except at joints where it will stretch badly

Skinning Characters

Skinning

- What if we associate each vertex of the skin to a single joint, say the nearest joint?
- Skin will be rigid, except at joints where it will stretch badly
- Solution:
- associate a vertex to many joints!
- skin is deformed according to a weighted combination of the joints

Linear Blending

Skinning (Skeletal Subspace Deformation = SSD)

- (At a fixed time step), a vertex on the deforming surface (skin / mesh) lies in the subspace defined by the rigid transformations of that point
- i : index of the joint
- p : position of the vertex at bind pos
- for implementation, p is in the local coordinate frame of each joint
- C_i : transformation of the i_th joint
- w_i : weight scheme
- How much vertex p should move with joint i

$$
\overline{\mathbf{p}}=\sum w_{i} C_{i}(\mathbf{p}) \mathbf{p}
$$

Linear Blending

Weight Scheme

- Properties
- w_i sum up to 1
- should be non-negative
- $w _i=1$ means p is rigidly attached to joint i
- $w_{\mathrm{i}} \mathrm{i}=0$ means p is not attached to joint i at all

$$
\overline{\mathbf{p}}=\sum w_{i} C_{i}(\mathbf{p}) \mathbf{p}
$$

Linear Blending

Weight Scheme

- Properties
- w_i sum up to 1
- should be non-negative
- $w _i=1$ means p is rigidly attached to joint i
- $w_{\mathrm{i}} \mathrm{i}=0$ means p is not attached to joint i at all

$$
\overline{\mathbf{p}}=\sum w_{i} C_{i}(\mathbf{p}) \mathbf{p}
$$

CarnegieMellon

Linear Blending

Weight Scheme

- Homework
- Weight scheme: inverse distance
- joints far away from the vertices should only slightly affect the vertex

Linear Blending

Weight Scheme

- Homework
- Weight scheme: inverse distance
- apply threshold:
- Given a fixed distance r, w_i = 0 if distance between joint and vertex is greater than r

Physical Simulation

Animation:

http://mathlets.org/mathlets/damped-wave-equation/

nd order in time

$$
u^{\prime \prime}=\Delta u-\lambda u^{\prime}
$$

2ad order in space

Carnegie Mellon THE ROBOTICSINSTITUTE

Physical Simulation

- PDEs are difficult/impossible to solve analyticallyespecially if we want to incorporate data (e.g., user interaction)
- Must instead use numerical integration
- Basic strategy: as with ODEs, run a time-stepping algorithm
- Historically, very expensive-only for "hero shots" in movies
- Computers are ever faster...
- More \& more use of PDEs in games, interactive tools, ...

Physical Simulation

Animation:

httn://mathlets orn/mathlets/damped-wave-equation/

Carnegie Mellon THE ROBOTICS INSTITUTE

Physical Simulation

Finite differences

High-school reminder: definition of a derivative using forward difference

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Alternative: use central difference

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+0.5 h)-f(x-0.5 h)}{h}
$$

For discrete signals: Remove limit and set $\mathrm{h}=2$

$$
f^{\prime}(x)=\frac{f(x+1)-f(x-1)}{2}
$$

1D derivative filter

1	0	-1

Physical Simulation

Laplace filter

Basically a second derivative filter.

- We can use finite differences to derive it, as with first derivative filter.

Physical Simulation

Basically a second derivative filter.

- We can use finite differences to derive it, as with first derivative filter.

$$
\begin{aligned}
& \begin{array}{c}
\text { first-order } \\
\text { finite difference }
\end{array} f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+0.5 h)-f(x-0.5 h)}{h} \longrightarrow \begin{array}{|l|l|l|}
\hline 1 & 0 & -1 \\
\hline
\end{array} \\
& \text { second-order } \\
& \text { finite difference } \\
& f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
\end{aligned}
$$

Physical Simulation

second-order
finite difference

$$
f^{\prime \prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} \longrightarrow \begin{array}{|l|l|l|}
\hline 1 & -2 & 1 \\
\hline
\end{array}
$$

Solvina the Wave Eauati

- Finally, wave equation:
$\ddot{u}=\Delta u$
- Not much different; now have 2nd derivative in time
- By now we've learned two different techniques:
- Convert to two 1st order (in time) equations:
$\dot{u}=v, \quad \dot{v}=\Delta u$

$$
u^{\prime \prime}=\Delta u-\lambda u^{\prime}
$$

Forward Euler

- Simplest scheme: evaluate velocity at current configuration
- New configuration can then be written explicitly in terms of known data:

Forward Euler

- Simplest scheme: evaluate velocity at current configuration
- New configuration can then be written explicitly in terms of known data:

